
Vol. 22, No. 3(2023) Fen23102
Revista Mexicana de Ingeniería Química 

 
CONTENIDO 

 
Volumen 8, número 3, 2009 / Volume 8, number 3, 2009 
 

 

213 Derivation and application of the Stefan-Maxwell equations 

 (Desarrollo y aplicación de las ecuaciones de Stefan-Maxwell) 

 Stephen Whitaker 

 

Biotecnología / Biotechnology 

245 Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo 

intemperizados en suelos y sedimentos 

 (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil 

and sediments) 

S.A. Medina-Moreno, S. Huerta-Ochoa, C.A. Lucho-Constantino, L. Aguilera-Vázquez, A. Jiménez-

González y M. Gutiérrez-Rojas 

259 Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas 

 (Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions) 

L. Mayorga-Reyes, P. Bustamante-Camilo, A. Gutiérrez-Nava, E. Barranco-Florido y A. Azaola-

Espinosa 

265 Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the 

presence of Valfor® zeolite NaA 

 (Optimización estadística de la fermentación etanólica de Saccharomyces cerevisiae en presencia de 

zeolita Valfor® zeolite NaA) 

G. Inei-Shizukawa, H. A. Velasco-Bedrán, G. F. Gutiérrez-López and H. Hernández-Sánchez 

 

Ingeniería de procesos / Process engineering 

271 Localización de una planta industrial: Revisión crítica y adecuación de los criterios empleados en 

esta decisión 

 (Plant site selection: Critical review and adequation criteria used in this decision) 

J.R. Medina, R.L. Romero y G.A. Pérez 

 

 

 

 

Fick’s law: A derivation based on continuum mechanics

La ley de Fick: Una deducción basada en la mecánica del continuo
F.J. Valdés-Parada1, B.D. Wood2*, S. Whitaker3†

1División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, col.
Vicentina, CDMX, 09340, Mexico.

2School of Chemical, Biological and Environmental Engineering, Oregon State University. Corvallis 97331 OR, United States.
3Department of Chemical Engineering, University of California at Davis. Davis 95616 CA, United States.

Received: July 25, 2023; Accepted: September 19, 2023

Abstract
In this study we derive Fick’s law on the basis of the principles of chemical species mass and momentum conservation. The goal
is to provide a simple derivation of this equation using a continuum mechanics approach. In addition, the associated assumptions
and constraints that may limit its application are clearly identified. Our result is an analysis that derives Fick’s law in liquid
systems, and it is presented so that only a basic knowledge of continuum mechanics is needed to follow the derivation.
Keywords: Fick’s law, dilute solution, diffusion velocity, continuum mechanics, multicomponent mixtures.

Resumen
En este estudio deducimos la ley de Fick con base en los principios de conservación de masa y de cantidad de movimiento
de especies químicas. El propósito es proporcionar una deducción sencilla de esta ecuación usando la mecánica del medio
continuo. Además, las suposiciones y restricciones asociadas que pueden limitar su aplicación son claramente identificadas.
Nuestro resultado es un análisis que deduce a la ley de Fick en sistemas líquidos y está presentada de tal forma que sólo se
requiera un conocimiento básico de la mecánica del continuo para seguir la deducción.
Palabras clave: ley de Fick, solución diluida, velocidad de difusión, mecánica del continuo, mezclas multicomponentes.
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1 Introduction

Most chemical transport processes involving diffusive
transport of chemical species are represented by
Fick’s law under the assumption that the solution is
appropriately dilute. From a theoretical perspective,
Fick’s law is a special case of the more general
governing equations for the diffusion velocity, uA,
in binary and multicomponent systems. A short, but
useful, review of the theoretical results is presented
by Bird and Klingenberg (2013). While the governing
equation for uA is not well known, Fick’s law (which
ultimately depends on the diffusion velocity) is widely
used in the literature (see for example Bird et al., 2006;
Slattery, 1999; Deen, 2012; Cussler, 2009; Bailey
and Ollis, 1986; Levenspiel, 1998; Hirschfelder et
al., 1964; Rosner, 2000; Borja-Málaga et al., 2022;
Jaramillo-Gutiérrez et al., 2022, among many others).
The original source of Fick’s work has been identified
by many researchers; however, the original text is in
German, indicating that it has been actually read by
only a fraction of those citing it. A detailed description
and analysis of Fick’s work has been provided by
Patzek (2014a,b). The author of these works was
fortunate to have a German speaking neighbor who
helped translate the relevant sections of the text for his
analysis. Patzek (2014a,b) noted that the original text
was reported in 1855

Fick, A. (1855). Ueber Diffusion.
Annalen der Physik und Chemie von J.C.
Pogendorff, 94, 59-86.

and highlighted the fact that Fick did not derive what is
known today as Fick’s law, although it is often stated in
the literature that Fick provided a derivation. Instead,
Fick suggested what he thought was a reasonable
mathematical proposition for the diffusive flux in a
binary system by making an analogy with Fourier’s
and Ohm’s laws. In a vectorial form, Fick’s description
can be expressed as

JA = −D∇cA. (1)

Since the time of Fick’s experiments, there have
been many efforts to derive Fick’s law from
more fundamental principles [e.g., from the tenants
of Rational Mechanics, as presented by Truesdell
(1984)]. Moreover, both Pekar̆ and Samohỳl (2014)
and Liu and Müller (1984) present examples of the
development of Fick’s law arising from an analysis via
Rational Mechanics for linear fluids.

The objective of this work is to provide a
simple, yet still rigorous, derivation of Fick’s law in
the form given in Eq. (1) from the framework of
continuum mechanics, and to analyze the assumptions
and restrictions behind it. The distinction of this

work with previous reports in the literature relies on
the systematic use of simplification of the species
equations of motion to yield the Maxwell-Stefan
equations and subsequently to Fick’s law. This
provides a simple derivation that has pedagogical
value. In particular, our focus has been to develop
a presentation that can be understood by students
in engineering and science, requiring primarily
familiarity with the balances arising in continuum
mechanics.

The work is organized as follows: In section 2,
a brief historical background is provided regarding
the various derivations of Fick’s law. Then, in
section 3, the main axioms related to species
mass and momentum transport are presented and
discussed. Section 4 is dedicated to the derivation
and simplification of the governing equation for the
species mass diffusion velocity. In section 5, we
discuss the assumptions that lead to ideal linear
behavior for liquid solutions, which are applied to
the simplified species momentum balance equation.
The discussion is then focused on N-component
(section 6) and subsequently simplified to consider
binary (section 7) systems. In the latter, the classical
expression of Fick’s law is derived. Finally, the main
conclusions of this work are provided in section 8.

2 Historical background

A pertinent starting point in the study of diffusion
is the work of Graham (1829), who performed
experiments on gases (in particular hydrogen and
oxygen) and found that hydrogen escaped through
a plate four times faster than oxygen. This was
probably the first report of diffusion (or spontaneous
intermixture in Graham’s words). He noted [and
later confirmed with better experiments (Graham,
1863)] that this phenomenon was increased by heat
and established that flow velocities were inversely
proportional to the square root of the gases densities.
He also conducted experiments in liquid mixtures
(Graham, 1850) and found that, in this case, diffusion
takes place at a much slower rate than in gases (and
this process only got slower over time), although it was
also favored by temperature. The differences between
liquid and gas diffusion became more evident when he
used concentrated solutions.

Motivated by Graham’s experiments in liquids,
and by the success of Fourier’s law to study heat
transfer, Fick (1855) proposed a one-dimensional
version of equation (1) and was able to reproduce
Graham’s experimental results and he even performed
experiments on his own (see analysis by Patzek
(2014a,b)). In fact, he noticed that the diffusion
coefficient D increases (in a nonlinear manner) with
the temperature.
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Graham’s experiments motivated another scientist,
Joseph Loschmidt (1870), to carry out experiments
of gas diffusion using a device similar to Graham’s,
and to quantify the corresponding diffusion coefficient
of ten pairs of gases. Soon after Loschmidt’s
experiments, Maxwell (1873) developed an early
version of the kinetic theory of gases that allowed
him to predict the diffusion coefficient for binary
mixtures of gases. Maxwell was subsequently able to
validate his kinetic theory using Loschmidt’s results.
Furthermore, the theories of Maxwell and Stefan
(1871) constitute the cornerstone for the study of
diffusion in multicomponent systems. The Maxwell-
Stefan equations are an alternative to Fick’s law and
will be presented later on in the text.

The extension to colloids (and large molecules)
in liquids was investigated by Einstein (1905). He
derived the following expression for the diffusion
coefficient in liquids

D =
∆2

2t
. (2)

Here, ∆ is the mean square displacement of the
molecules in a given direction at a certain time t.
The relevance of the above equation is that it relates
a quantity at the continuum-scale level, the diffusion
coefficient, with a quantity defined at the molecular
scale. Certainly, ∆2 can be expressed in terms of the
temperature, T as follows (see, for example, Chap. 4
in Perrin, 1913)

∆
2 =

2RTt
NAC

, (3)

where NA is the Avogadro number and, following
Stokes (1851), C = 6πµr, with µ and r being the
fluid viscosity and the radius of the solute particle,
respectively. Substituting the above relations into Eq.
(2) leads to the well-known Stokes-Einstein equation

D =
RT

6πµrNA
. (4)

The above is just one among many expressions
available for the prediction of the diffusion coefficient
that have been developed using various theoretical
approaches (see, for instance Chap. 17 in Bird et al.,
2006).

During the first half of the twentieth century, Fick’s
law gained much interest, however, in its original
conception it was limited to binary mixtures. Onsager
(1945), suggested generalizing Fick’s law to an N-
component system as follows

JA = −

N−1∑
k=1

DAk∇ck. (5)

Here, DAk represent multicomponent diffusion
coefficients. This expression shows that the diffusive

mass flux of a chemical species is influenced by the
concentration gradients of N − 1 chemical species.
The above equation can be derived on the basis of
nonequilibrium thermodynamics as shown by Curtiss
and Bird (1999). Using this same approach, it is also
possible to derive the generalized Maxwell-Stefan
equations (see, for example, Krishna and Wesselingh,
1997).

Truesdell (1962) identified four approaches to
model diffusive mass transfer of a chemical species in
a mixture. These are:

1. The kinematic approach, which he viewed as
being unsupported by fundamental principles,
and leads to Fick’s law.

2. The hydrodynamical approach, which is
focused on the arguments originally presented
by Stefan (1871) that suggest using a species
momentum equation absent of viscous stress
and chemical reactions contributions.

3. The kinetic theory approach where diffusion
is a sum of binary phenomena as a first-
order approximation of the Boltzmann equation
(i.e., the Chapman-Enskog process in Maxwell
kinetic theory).

4. The thermodynamic approach that leads to the
Eckart-Meixner equations for diffusion.

He then proposed a mechanical theory of diffusion,
which starts with a species momentum balance
expression that incorporates viscous effects. Truesdell
(1962) suggested a linear relationship between the
species momentum supply and the relative species
diffusive velocities. He then illustrated how his theory
was related to the four approaches listed above.
However, in the conclusion of this work, the particular
conditions that lead to Fick’s law were not clearly
detailed.

Shortly after, Adkins (1963) reported an analysis
similar to the one by Truesdell (1962) and proposed
a theory for diffusion under a mechanical basis in
the absence of chemical reactions. In his analysis,
Adkins assumed that the body force in the species
momentum equation could be decomposed into an
external body force and a diffusive force, the latter was
assumed to depend only on the mixture composition
and the relative motions of the chemical species. In
addition, he proposed the following assumptions to
be applied to binary mixtures in order to retrieve
Fick’s law: 1) the chemical species are perfect fluids
so that the contribution from viscous stress can be
ignored, 2) the inertial contributions are discarded, 3)
the total density of the mixture can be approximated
as constant, and 4) there are no significant external
body forces. This theory was applied to several study
cases including diffusion under non-Newtonian flow
conditions through elastic solids (Green and Adkins,
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1964; Adkins, 1964), diffusion in a compressible and
incompressible mixture of ideal fluids (Mills, 1966).
These assumptions are consistent with those adopted
in this work (see inequalities (34) and (36) in the
material following).

Many derivations of Fick’s law from other
perspectives have been reported over the past fifty
years. As further examples, Atkin and Craine (1976)
used both irreversible thermodynamics and gas
kinetics theory to derive a version of Fick’s law. Later
on, Lowney and Larrabee (1980) regarded diffusion
as a Markov process and derived Fick’s law for the
case in which the diffusion coefficient depends on
the solute concentration. More recently, Kerkhof and
Geboers (2005) proposed an approximate solution
of the Boltzmann equation for dilute monoatomic
gases that yielded a momentum balance equation for
chemical species, which eventually lead to Fick’s law.

Finally, there has been some work dedicated to the
derivation of Fick’s law from a continuum mechanics
approach, i.e., that rely on simplifying the species
equations of motion. This is the approach adopted
in the developments below; we have attempted to
identify similarities and differences with previous
developments. We note that the derivations provided
in the following start with balances developed by
Whitaker (1986) and continued in part by the works of
Whitaker (2009a,b) and del Río and Whitaker (2016).
However, the derivations presented here represent the
first completed presentation of the results from a
purely mechanical perspective.

3 Fundamental axioms for species
mass and momentum transport

Our derivation of Eq. (1) begins with the fundamental
axiom for the mass conservation of chemical species
that can be expressed, on a mass basis, in the
form [Whitaker, 2012; Truesdell and Toupin, 1960,
Truesdell (1984, Eq. 5.11 ff.)]

∂ρA

∂t
+∇ · (ρAvA) = rA, A = 1,2, . . . ,N. (6)

A comment regarding notation is useful here. We
assume that there are N chemical species forming
a liquid solution. Each chemical species is uniquely
identified by consecutive integer numbers, so that the
species are labeled 1,2, . . . ,N. The Nth species will
always be considered the redundant species, and this
will be defined in detail later. We will use the letters A
and B as dummy indexes, so that A and B represent
some integer in the sequence (1,2, . . . ,N). Thus, for
example, we may write the sum of the mole fractions
of the N species by any of the equivalent expressions

following

1 = x1 + x2 + . . .+ xN =

A=N∑
A=1

xA =

B=N∑
B=1

xB. (7)

With this notation in place, we proceed by providing
the supplemental axiom that the sum of the net mass
rates of production and consumption of all chemical
species is zero. This is expressed in the following form

A=N∑
A=1

rA = 0. (8)

Equation (6) is often referred to as the species
continuity equation and it can be used to derive the
total continuity equation. This is obtained by summing
Eq. (6) over all species, taking into account Eq. (8), in
order to obtain

∂ρ

∂t
+∇ · (ρv) = 0. (9)

Here, the total density, ρ, the mass average velocity, v,
and the species mass fraction, ωA, are defined by

ρ =

A=N∑
A=1

ρA, v =
A=N∑
A=1

ωAvA, ωA =
ρA

ρ
. (10)

The species velocity, vA, can be decomposed into
the mass average velocity, v, and the mass diffusion
velocity, uA, according to (see Appendix A)

vA = v+uA, A = 1,2, . . . ,N. (11)

Clearly, in order to retrieve the definition of the mass
average velocity, it is necessary that the sum of the
diffusive fluxes is zero; this is

A=N∑
A=1

ρAuA = 0. (12)

Use of the decomposition given in Eq. (11) into Eq.
(6) leads to

∂ρA

∂t
+∇ · (ρAv) = −∇ · (ρAuA)+ rA, A = 1,2, . . . ,N.

(13)

The molar form of the above result is obtained by the
use of the definitions

ρA = cAMA, rA = RAMA, A = 1,2, . . . ,N, (14)

with MA being the molecular weight of species A. This
leads to the following versions of Eqs. (13) and (8)

∂cA

∂t
+∇ · (cAv) = −∇ · JA +RA, A = 1,2, . . . ,N, (15a)

A=N∑
A=1

RAMA = 0. (15b)

In Eq. (15a), we have adopted a form for the diffusive
flux that mixes the molar concentration with the mass-
averaged velocity. While this form is not common
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[see Eq. 16.1-8 and discussion in §16.2 in Bird et
al. (1960)], this mixed term creates no conceptual
or mathematical difficulties at this juncture in the
development. The diffusive flux of species A is defined
as

JA = cAuA, A = 1,2, . . . ,N. (16)

In order to determine the diffusion velocity, uA, we
need the governing differential equation for uA, which
is developed in the following section. Here, it should
be kept in mind that the objective of this work is to
obtain a representation for the diffusive flux, JA, that
leads to Fick’s law.

The two fundamental axioms for the laws of
continuum mechanics (the axioms for conservation of
linear and angular momentum) can be expressed by
[see, for instance Whitaker, (2009b); Truesdell and
Toupin (1960, Sect. 215 and 295), Truesdell (1984, Eq.
5.11 ff.)]

∂ρAvA

∂t
+∇ · (ρAvA ⊗ vA) = ρAbA +∇ ·TA

+

B=N∑
B=1

PAB + rAv∗A, A = 1,2, . . . ,N, (17)

TA = TT
A , A = 1,2, . . . ,N. (18)

Here, V = v ⊗ v is the dyadic Vi j = viv j. Note
that Eq. (18) arises directly from the conservation of
species angular momentum (also known as moment of
momentum), and thus replaces it in this set of equations
[cf. Slattery (1999, Eq. 8.3.3-2)].

The equations above resemble to Cauchy’s
equations of motion with the notable difference that
(1) they are referred to chemical species (rather than a
single phase), (2) the last two terms in Eq. (17) contain
contributions due to the diffusive force exerted by the
thermomechanical interaction of the other species on
species A (PAB) (Bowen, 1967), and (3) they reflect the
possible increase (or decrease) of momentum due to
chemical reactions. Note that, by definition, PAA = 0.
In the reaction term, the velocity associated with the
net production rate of species A momentum due to
chemical reactions is represented by v∗A, which is not,
in general, equal to the species velocity vA, although
some authors have adopted such assumption (Datta
and Vilekar, 2010). Note that the terms dealing with
volume forces and chemical reactions (first and last
terms on the right-hand side in Eq. (17), respectively)
could also have been written as sums of all the external
forces and all the production reactions associated to
species A (see, for example, Eq. (2) in Datta and
Vilekar, 2010). Nevertheless, these terms are kept in
their current form in the rest of the analysis for the
sake of simplicity.

Two supplemental axioms were given by Whitaker
(2009b) and Truesdell and Toupin (1960) in the form

A=N∑
A=1

B=N∑
B=1

PAB = 0, (19a)

A=N∑
A=1

rAv∗A = 0. (19b)

Similar axioms are given for binary mixtures by
Truesdell and Toupin (1960, p. 568, 707). The axiom
given by Eq. (19a) is also specified by Hirschfelder et
al. (1964, Eq. 7.3-30); they do not consider reaction,
thus there is no axiom corresponding to Eq. (19b). The
above axioms show that

∑B=N
B=1 PAB and rAv∗A only have

an internal effect (i.e., they only influence the species
momentum transport), that end up having no effect in
the entire mixture as anticipated by Atkin and Craine
(1976).

The total linear momentum equation is obtained
by summing Eq. (17) over all species and imposing
the two supplemental axioms given by Eqs. (19). This
leads to a consistency relationship for the entire phase
(where the phase is equal to the sum of all species)

∂ρv
∂t
+∇ · (ρv⊗ v) = ρb+∇ ·T. (20)

Here, the following definitions have been employed

ρv =
A=N∑
A=1

ρAvA, ρb =
A=N∑
A=1

ρAbA, (21)

and

T =
A=N∑
A=1

(TA − ρAuA ⊗uA) . (22)

This expression can be compared with cf. Truesdell
(1984, Eq. 5.14), where Truesdell writes TI =∑A=N

A=1 TA. Our objective at this point is to use Eqs.
(17) and (20) to obtain the governing equation for
the species diffusion velocity, uA. We begin with the
following proposal for the species A stress tensor

TA = −pAI+ τA, A = 1,2, . . . ,N, (23)

in which pA is the partial pressure of species A and τA
its corresponding viscous stress. The total stress tensor
takes the following form after substitution of Eq. (23)
into Eq. (22)

T =
A=N∑
A=1

(−pAI+ τA − ρAuA ⊗uA) , (24)

or, equivalently

T = −pI+ τ −
A=N∑
A=1

ρAuA ⊗uA, (25)

www.rmiq.org 5



Valdés-Parada et al./ Revista Mexicana de Ingeniería Química Vol. 22, No. 3(2023) Fen23102

in which the following definitions have been used

p =
A=N∑
A=1

pA, τ =
A=N∑
A=1

τA. (26)

Note that in Eq. (25), the term
∑A=N

A=1 ρAuA ⊗ uA is
identically zero when there is global equilibrium of
diffusive fluxes for species A [i.e., there are no spatial
gradients of the density, specific internal energy, or
temperature of species A in the solution; cf. Truesdell
(1984), Eq. 5.31]. There may be instances (e.g., in
dilute solutions) where this term can be assumed
to be small compared to other terms in the stress
tensor. While we do not pursue such restrictions at
this juncture, it is worth keeping in mind that the sum
of the species deviation velocities

∑A=N
A=1 ρAuA ⊗ uA is

unlikely to play a significant role in many practical
cases of interest.

It is important to recognize that the application
of Eqs. (23) and (25) requires an assumption of
local thermodynamic equilibrium [Batchelor (1967,
§1.2), DeGroot and Mazur (1967, p. 23)], and this
should be satisfactory for many, but not all, mass
transfer processes under a wide range of conventional
engineering conditions.

4 Extraction of the diffusion term
from the momentum
conservation equation

The next step in the derivation of Eq. (1) requires the
development of the governing equation for the species
mass diffusion velocity, uA. We begin by multiplying
Eq. (6) by the species velocity, vA, to obtain

vA

[
∂ρA

∂t
+∇ · (ρAvA)

]
= rAvA, A = 1,2, . . . ,N, (27)

and then subtract this equation from Eq. (17) to rewrite
it in the following form

ρA

(
∂vA

∂t
+ vA · (∇⊗ vA)

)
= ρAbA +∇ ·TA +

B=N∑
B=1

PAB

+ rA
(
v∗A − vA

)
, A = 1,2, . . . ,N. (28)

Note that the above equation is equivalent to Eq. (2.20)
in the work of Atkin and Craine (1976). Here, we have
defined the gradient of the vector field by the dyadic
expression (∇ ⊗ vA) = ∂vA j

∂xi
which is appropriate this

dyadic in postfactor position (Gibbs, 1906b, Art. 109).
Following an analogous approach, multiplication

of Eq. (9) by the mass average velocity yields

v
[
∂ρ

∂t
+∇ · (ρv)

]
= 0, (29)

and then subtract this equation from Eq. (20) to obtain

ρ

(
∂v
∂t
+ v · (∇⊗ v)

)
= ρb+∇ ·T. (30)

Multiplication of this result by the mass fraction, ωA,
and the use of Eq. (22) leads to

ρA

(
∂v
∂t
+ v · (∇⊗ v)

)
= ρAb

+ωA∇

·B=N∑
B=1

(TB − ρBuB ⊗uB)

 . (31)

We now subtract this result from Eq. (28) to obtain the
desired governing differential equation for uA given by

ρA

(
∂uA

∂t
+ vA · (∇⊗uA)+uA · (∇⊗ v)

)
= ρA (bA −b)

+∇ ·TA −ωA∇ ·

B=N∑
B=1

(TB − ρBuB ⊗uB)


+

B=N∑
B=1

PAB + rA
(
v∗A − vA

)
, A = 1,2, . . . ,N − 1. (32)

Here, we note that there are only N − 1 independent
equations represented by this result because we have
used the sum of all equations to obtain it. The selection
of which species to exclude from the the system
is arbitrary, but, as noted previously, this species
is redundant, and will always be indexed by the
integer N. The conservation of the Nth species can
be determined by summing the results for the first
N − 1 species in A, and subtracting this balance from
Eq. (20).

At this point, we make use of the proposal given by
Eq. (23) along with the definitions given by Eqs. (26)
to obtain the following form of the governing equation
for the diffusion velocity

ρA

(
∂uA

∂t
+ vA · (∇⊗uA)+uA · (∇⊗ v)

)
−ωA∇ ·

B=N∑
B=1

ρBuB ⊗uB

 = − (ωA∇ · τ −∇ · τA)

−∇pA +ωA∇p+ ρA (bA −b)+
B=N∑
B=1

PAB

+ rA
(
v∗A − vA

)
, A = 1,2, . . . ,N − 1. (33)

Simplification of this result has been explored by
Whitaker (2009b) using order of magnitude estimates.
Such estimates suggest but do not confirm the
conditions necessary for the simplification of Eq.
(33), and more detailed studies would be welcome.
A plausible set of restrictions (Whitaker, 2009b) arise
from regarding the species partial pressure gradient as
the leading term, so that
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R1. ρA
∂uA

∂t
≪∇pA, (34a)

R2. ρA (vA · (∇⊗uA)+uA · (∇⊗ v))≪∇pA, (34b)

R3. ωA∇ ·

B=N∑
B=1

ρBuB ⊗uB≪∇pA, (34c)

R4. (ωA∇ · τ −∇ · τA)≪∇pA, (34d)

R5. rA
(
v∗A − vA

)
≪∇pA. (34e)

Here R1, R2, etc. refer to restrictions (Whitaker,
1988) and the corresponding constraints are given in
Appendix B. When these five restrictions are imposed
on Eq. (33), and we accept the plausible assumption
that small causes give rise to small effects (Birkhoff,
1960) for linear equations, we obtain

∇pA −ωA∇p− ρA (bA −b)

=

B=N∑
B=1

PAB, A = 1,2, . . . ,N − 1. (35)

Truesdell (1962) represents the left-hand side of this
result by pdA and cites cites Hirschfelder et al. (1964)
as the source. Curtiss and Bird (1999) represent the
left-hand side of Eq. (35) by cRTdA and refer to it as
the generalized driving force for diffusion. The term
PAB is frequently presented without a particular name,
but here we might follow Truesdell (1962) and give
these quantities the moniker diffusive drags.

As an additional assumption, we impose the
restriction that all body forces (e.g., electrical and
gravitational fields) can be neglected with respect to
diffusion. While this approximation may not be valid
for solutions with significant density differences, we
impose it with this note of warning. The more general
case where external forces are maintained is covered
by del Río and Whitaker (2016). The associated
restriction for neglecting body forces is

R6. ρA (bA −b)≪∇pA, (36a)

and we assume that ωA∇p can be neglected on the
basis of

R7. ωA∇p≪∇pA. (36b)

The constraints related to the above two restrictions
are given in Appendix B. Imposing these two
restrictions on Eq. (35) leads to

∇pA =

B=N∑
B=1

PAB, A = 1,2, . . . ,N − 1. (37)

Clearly, the restrictions proposed above could have
also been proposed in terms of

∑B=N
B=1 PAB as this term

is equally important as ∇pA.

5 Ideal solutions

The concept of ideal solutions (or, sometimes
ideal mixtures) has been adopted as an essential
thermodynamic model for many years [e.g., Gibbs
(1906a, p. 164), Guggenheim (1933, Chp. VI)].
Perhaps the most succinct definition of an ideal
mixture comes from Hildebrand (1936, p. 53) who
stated, correctly and boldly, “An ideal solution obeys
Raoult’s law at all temperatures and pressures”. There
are a number of necessary conditions that arise
from this statement, and there are also a number of
equivalent statements defining the ideal solution. For
example, Prigogine (1967, p. 22) states that an ideal
solution has a chemical potential for component A
defined by

µA = µ
•
A (p,T )+RT ln xA, (38)

where µ•A (p,T ) is independent of composition. Pitzer
(1995, Chp. 11) offers an identical definition, with
additional commentary. While Eq. (38) does allow one
to express the constitutive theory of Fick’s law in terms
of the chemical potential rather than the concentration,
for ideal solutions Eq. (38) allows this interchange to
be made quite easily a posteriori. Thus, we will adopt
the use of the mole fraction over the chemical potential
for the remainder of the manuscript.

The goal of this work is to illustrate how
one might derive Fick’s law in a reasonably
straightforward manner directly from the laws
of continuum mechanics. To do the conventional
assumption of a linear (or linearized, if under the
appropriate restrictions) constitutive equation for the
partial pressure of the solute in the liquid mixture is
required. Such relationships are obtained by primarily
two methods: (1) they are based on experimental data,
and, because of the complexity and/or nonlinearity
of the problem, are fit with empirical relationships
(this is typical in engineering sciences); or (2) an
appropriate theory based on a constitutive theory, of
which there are many possibilities [e.g., equilibrium
or non-equilibrium thermodynamics, equilibrium or
non-equilibrium statistical mechanics, kinetic theory
and extensions (the Onsager reciprocal relations),
molecular dynamics computations, etc.]. While the
framework developed to this point is relatively
general, the analysis is limited to only linear
dependencies of the partial pressure on the mole
fraction. Thus, the analysis is limited to either (1)
systems that behave as ideal solutions [e.g., as
illustrated in Fig. 1 (top)], or (2) systems where
the solute of interest is either sufficiently dilute or
sufficiently near unimolar that the approximation of
linearity is valid, such as the system illustrated near
x = 0 and x = 1 in Fig. 1 (bottom).
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Figure 1. (Top) An example of an ideal binary solution
that obeys Raoult’s law [after Guggenheim (1949, p.
198)]. (Bottom) An example of a binary solution that
deviates from Raoult’s law [after Hildebrand (1936, p.
38)]. Note that at high mole fraction, each of the two
solutes behaves nearly as an ideal solution.

5.1 Raoult’s law and Henry’s law

While ideal solutions that obey Raoult’s law over
the entire range of compositions are the exception
rather than the rule, such solutions can nonetheless be
realized in the lab [cf. Fig. 1 (top)]. More importantly,
a species in even a non-ideal solution will frequently
exhibit nearly ideal behavior when its mole fraction is
near unity. This leads to the following observation by
Hildebrand (1936, p. 20):

It may be noted, further, that when the
solution is sufficiently dilute for the solute
to obey Henry’s law to a given degree
of approximation, the solvent must obey
Raoult’s law with a corresponding degree
of approximation and vice versa. . . These
conditions, accordingly, are the criteria
of ideality, through a limited range, as
Raoult’s law for both components is the
criterion for ideality throughout the entire
range of composition [emphasis added].

For the remainder of this work, we assume that

ideality exists in this sense; hence, for the solutions
we consider we assume either (1) the solution exhibits
ideal behavior over the entire range of compositions,
or (2) the analysis is applied only to a solvent with
N−1 dilute solutes, such that Raoult’s law is applicable
to the solvent, and Henry’s law is applicable to the
solutes.

A note is required at this juncture regarding the
treatment of the roles of Raoult’s law, Henry’s law in
the development to follow. First, we note that these are
both linear laws in terms of the mole fractions. Each
of them states that the partial pressure, pA of chemical
species A (where A can represent either a solute or a
solvent) is given by the form

pA

p◦A
= αAxA, (39)

where p◦A is the reference pressure, taken as the vapor
pressure associated with a pure state for species A
(Hildebrand, 1936, p. 19; p. 26) and xA is the mole
fraction of species A. For Raoult’s law, one has αA = 1
identically. Raoult’s law generally applies when the
mole fraction of species A, is near unity. Thus, even
non-ideal solutions exhibit a range of mole fractions
where Raoult’s law is valid. As an example, the non-
ideal solution illustrated in Fig. 1 (bottom) clearly
behaves as an ideal solution as xA approaches unity
(for both acetone and chloroform); these regions are
indicated by the letter “R” on the figure.

For Henry’s law, the constant αA is generally
different from unity; in Fig. 1 (bottom), dotted lines
indicate the Henry’s law approximation for the two
species illustrated when they are respectively at
concentrations xA ≪ 1; this is indicated by the letter
“H” on the figure. Note that when solutions behave in
an ideal manner over the range of compositions, then
the Henry’s law and Raoult’s law coefficients coincide,
with αA = 1. For completeness, we note the we have
imposed an additional restriction in our analysis.

R8. The solution involved behaves either
ideally (via Raoult’s law) over the entire
range of compositions, or the analysis is
applied only to mass fractions in which
Raoults’ law and Henry’s law are valid
approximations.

5.2 The momentum balance for ideal
solutions

For ideal solutions (also known as ideal liquid
mixtures), the partial pressure and mole fraction are
related by Eq. (39), or, by the following gradient
relationship

∇pA = (αA p◦A)∇xA. (40)
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With this result, we can express the momentum
balance from Eq. (37) in the form

∇xA =

B=N∑
B=1

(αA p◦A)−1PAB, A = 1,2, . . . ,N − 1.

(41)

At this juncture, it is helpful to point out that one
could in principle generate a theory for non-ideal
solutions over the entire range of concentrations by
extending Eq. (39). For example, if one were interested
in accounting for the activity of the solutes (for
ideal mixtures the activities are identically unity),
then the coefficient αA would become a function of
the mole fraction of all species in the system [e.g.,
αA = αA(x1, x2, . . . , xN)]. Accounting for temperature
gradients could be handled in a similar way. Because
our focus is on a simple, linear theory, we do not
pursue these considerations further in this work.

The task now is to expresses the diffusive drags,
PAB, by a constitutive equation. From dilute gas
kinetic theory, we know that PAB|gas, is given by

Ideal gas mixture: PAB|gas = pgas
xAxB

DAB
(uB −uA) ,

A = 1,2, . . . ,N − 1, (42)

where pgas is the gas mixture pressure. This result
can be obtained by comparing Eq. (35) of this work
with Eqs. 7.3-27 and 7.4-48 of Hirschfelder et al.
(1964) and neglecting the effect of thermal diffusion.
Note that there are approximations in this result even
for gases; for example, the drags are assumed to be
pairwise additive, which neglects interactions among
three or more species simultaneously.

For the case of liquids, we need an analogous
representation for PAB|liq. One possibility is to posit
the use of Eq. (42) as a model. This leads to

Ideal liquid mixture:

PAB|liq = pliq
xAxB

D◦AB
(uB −uA) , A = 1,2, . . . ,N − 1.

(43)

Here, pliq represents the thermodynamic pressure
associated with the liquid phase as stated in the first
of Eqs. (26)

pliq =

B=N∑
B=1

pB. (44)

It is important to recall that there is no body
force component in this expression as these have
been neglected based on the analysis above. While
this representation is an empirical expression for
the diffusive force, PAB|liq, it is one that is based
on an analogous process in gases. As such, D◦AB
represents an empirical coefficient to be determined by
experiment.

6 N-Component liquid systems

Our system of the momentum balance equations for an
N-component system consist of the total momentum
balance given by Eq. (20) and the N − 1 species
momentum balance equations (with index set A) based
on the combination of Eqs. (41) and (43). We can use
these two results, to obtain the following expression
analogous to the Maxwell–Stefan equation

0 = −∇xA +

B=N∑
B=1

1
αA p◦A/pliq

xAxB

D◦AB
(uB −uA) ,

A = 1,2, . . . ,N − 1. (45)

Some interpretation is helpful here. It is best to
think of this momentum balance as applying to some
fixed species, A. Then, the result suggests that the
balance of species A is dependent upon the pairwise
drags with all other species. Note that when the value
of the index B coincides with that of A we have
(uA − uA) = 0, thus there is no self-interaction among
the species. In the interest of clarity, note that the two
balances for a binary system composed of species A
and species B are given by

0 = −∇xA +
1

αA p◦A/pliq

xAxB

D◦AB
(uB −uA) , (46a)

0 = −∇xB +
1

αB p◦B/pliq

xAxB

D◦BA
(uA −uB) . (46b)

While we might proceed using this formulation,
the analysis would be complicated by the presence
of pliq, which is generally not a constant. However,
when we have a dilute solution of N − 1 solutes in
a single solvent, then pliq is nearly identical to the
thermodynamic pressure of the solvent. To be clear,
suppose we set the solvent to index A = 1. Then we
require

B=N−1∑
B=2

xB≪ x1. (47)

Under these conditions, pliq can be assumed to be a
constant that depends only upon the solvent properties.
Similarly, αA is a constant that is specific to each
solvent-solute pair. Thus, we propose the following
definition

DAB ≡ D◦AB
αA p◦A
pliq
, A = 1,2, . . . ,N − 1,B = 1,2, . . . ,N.

(48)

With this definition, the momentum balance takes the
form

0 = −∇xA +

B=N∑
B=1

xAxB

DAB
(uB −uA) , A = 1,2, . . . ,N − 1.

(49)
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This result offers a closure to the problem, but one
resulting behavior of this choice is that, in general,
we have DAB , DBA. As pointed out by Truesdell
(1962), this is the result that should be obtained unless
additional constraints are imposed.

While Fick’s law is frequently expressed in terms
of gradients of the mole fraction, here our goal is to put
it in the conventional form as the gradient of a molar
concentration. To this end, we note that Fick’s law
applies for the special case in which the total density
of the solution, ρ, is constant; we pursue the impact of
this assumption in the remainder of this section.

The total molar concentration is given by c = c1 +

c2 + · · · + cN ; similarly, the total density is given by
ρ = ρ1 + ρ2 + · · ·+ ρN . The density can be rewritten in
the form

ρ = c1M1 + c2M2 + · · ·+ cN MN . (50)

Note that, by definition, we have xA = cA/c. Thus,
we can make use of the relation

cAMA = cxAMA, (51)

in order to express Eq. (50) in the form

ρ = c
A=N∑
A=1

xAMA,

A=N∑
A=1

xA = 1. (52)

The total molar concentration can now be written as

c =
A=N∑
A=1

ρA

MA
. (53)

Defining the mass fraction of species A by ωA = ρA/ρ
(with

∑A=N
A=1 ωA = 1) we can develop the relation

ρA

MA
= ρ
ωA

MA
, (54)

in order to express Eq. (53) in the form

c = ρ
A=N∑
A=1

ωA

MA
. (55)

At this point, we can make use of Eqs. (52) and (55) to
obtain the useful relations given by

M =
ρ

c
=

A=N∑
A=1

xAMA =
1∑A=N

A=1 ωA/MA
. (56)

This result can be used to express the mole fraction of
species A as

xA =
cA

c
=
ρA/MA

c
=

(
ρ

c

)
ωA

MA
= M

(
ωA

MA

)
, (57)

and from this we see that the gradient of xA is given by

∇xA =

∇M
MA

ωA +

 M
MA

∇ωA, A = 1,2, . . . ,N.

(58)

At this point, we note that we want the right-hand side
of this result to be expressed entirely in terms of ∇ωA.
We begin to accomplish this by using Eq. (56) in the
form

M =
1∑B=N

B=1 ωB/MB
, (59)

so that ∇M can be expressed as

∇M = −M
2

B=N∑
B=1

∇ωB

MB
. (60)

Use of this expression for ∇M in Eq. (58) allows
writing the gradient of the mole fraction as

∇xA =
M

2

MA

 1

M
∇ωA −ωA

B=N∑
B=1

∇ωB

MB

 . (61)

From this point in the analysis, one may follow
the developments reported in Section 7 of the work
by Whitaker (2009b) or in Section 2 of Krishna
(2019) in order to develop a generalized Fick’s law
for multicomponent systems. However, our goal is to
retrieve Fick’s law in the form given in Eq. (1). For
this reason, at this point we simplify the analysis by
restricting it to binary systems.

7 Binary liquid systems

Binary systems are often used to introduce the
phenomenon of diffusion, and we will follow that
approach here. For binary systems, one expects that
DAB = DBA, and one can find by adding Eqs. (46) that
this relationship does indeed result.

The binary version of Eq. (61) is given by

∇xA =
M

2

MA

 1

M
∇ωA −ωA

B=2∑
B=1

∇ωB

MB

 = M
2

MA

[
1

M
∇ωA

−ωA

(
∇ωA

MA
+
∇ωB

MB

)]
. (62)

Here we note that

∇ωA

MA
+
∇ωB

MB
=
∇ωA

MA
−
∇ωA

MB
= ∇ωA

(
1

MA
−

1
MB

)
= ∇ωA

(
MB −MA

MAMB

)
, (63)

and this allows expressing Eq. (62) as

∇xA =
M

2

MA
∇ωA

[(
ωA

MA
+
ωB

MB

)
−ωA

(
MB −MA

MAMB

)]
, (64)
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and this can be simplified to the convenient form given
by

∇xA =
M

2

MAMB
∇ωA. (65)

At this point, we return to the two mass continuity
equations given by Eqs. (13)

∂ρA

∂t
+∇ · (ρAv) = −∇ · (ρAuA)+ rA, (66a)

∂ρB

∂t
+∇ · (ρBv) = −∇ · (ρBuB)+ rB, (66b)

and note that representations for uA and uB are needed
to complete our analysis of these two equations. Given
the binary form of Eqs. (49)

0 = −∇xA +
xAxB

DAB
(uB −uA) , (67)

we make use of Eq. (12) to obtain the following
relation between uA and uB

ωAuA +ωBuB = 0, (68)

that allows expressing Eq. (67) in the form

0 = −∇xA −
xAxB

DABωAωB
(ωAuA) . (69)

Multiplying and dividing the last term of this result by
the mixture density leads to

0 = −∇xA −
xAxB

ρDABωAωB
(ρAuA) . (70)

Here we have a mixed-mode representation in which
the mass diffusive flux, ρAuA, is expressed in terms of
the gradient of the mole fraction, ∇xA, along with the
mixed-mode term, xAxB/ωAωB. At this point, we can
use Eq. (65) to write Eq. (70) as

M
2

MAMB
∇ωA = −

xAxB

ρDABωAωB
(ρAuA). (71)

Next, we make use of the following relations between
the mole and mass fractions

xA =
cA

c
=

cAM
ρ
=

(ρA/MA)M
ρ

=
M
MA
ωA, (72a)

xB =
cB

c
=

cBM
ρ
=

(ρB/MB)M
ρ

=
M
MB
ωB, (72b)

which lead to

xAxB

ωAωB
=

(M/MA)ωA(M/MB)ωB

ωAωB
=

M
2

MAMB
. (73)

Substitution of this result into Eq. (71) provides

ρAuA = −ρDAB∇ωA, (74)

that can be expressed as

ρAuA = (cAuA)MA = −ρDAB∇ωA. (75)

If we assume that the density is constant

A1. ρ = constant, (76)

Eq. (75) can be used to obtain the following result

(cAuA) = −DAB∇(ρωA/MA) = −DAB∇cA. (77)

We now make use of Eq. (16) to obtain the classic form
of Fick’s law given by

Fick’s law: JA = −DAB∇cA. (78)

Use of this result in Eq. (15a) leads to

∂cA

∂t
+∇ · (cAv) = ∇ · (DAB∇cA)+RA,

ρ = constant
binary system

(79a)

while the analysis for species B leads to the analogous
result given by

∂cB

∂t
+∇ · (cBv) = ∇ · (DAB∇cB)+RB,

ρ = constant
binary system

(79b)

Rather than accepting this result on the basis of the
assumption given by Eq. (76), it would be better to
impose the restriction given by

R9. ωA∇ρ≪ ρ∇ωA. (80)

This restriction is an indication that there is a related
constraint (Whitaker, 1988) associated with Eqs. (79)
that dictates when this restriction is a valid one; this
constraint has yet to be developed.

8 Conclusions

The use of Fick’s law is usually advised to be
applicable under dilute solution conditions. However,
by performing a careful analysis of its derivation
departing from the simplification of the species
momentum transport equation in an N-component
mixture, it was found that more assumptions are
required to retrieve it. In particular, the gradient
of species A partial pressure was regarded as the
leading term in the species momentum transport
equation. This implies assuming that, under diffusive
conditions, species A experiences spatial variations
at larger distances (L) than the total mixture (ℓ). In
this way, for conditions in which Re2ℓ2 ≪ tre f vre f L,
Reℓ/L ≪ 1 ≪ Fr [with Re and Fr being the
Reynolds and Froude numbers defined in equation
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(B.7)], and assuming ideal mixture conditions, the
species momentum transport equation reduces to the
Maxwell-Stefan equations. From this result a version
of Fick’s law for multicomponent systems is certainly
possible to be obtained and the classical version of
Fick’s law was retrieved for binary systems. The
simplifications provided in this work motivate further
theoretical and experimental verification and suggest
that caution must be taken when using Fick’s law. In
addition, this work motivates the derivation of more
sophisticated closure relationships that may be used in
situations where Fick’s law is not applicable.

Nomenclature

bA body force per unit mass exerted on species
A, N/kg

b body force per unit mass exerted on the
mixture, N/kg

cA molar concentration of species A, moles/m3

c total molar concentration, moles/m3

DAB liquid-phase binary diffusion coefficient for
species A and B, m2/s

g gravitational body force per unit mass,
N/kg

JA cAuA, diffusive flux of species A,
moles/m2s

MA molecular mass of species A, g/mole
M xAMA + xBMB, mean molecular mass of a

binary mixture, g/mole
N number of chemical species
PAB force per unit volume exerted by species B

on species A, N/m3

p
∑A=N

A=1 pA, total pressure, N/m2

pA partial pressure of species A, N/m2

rA net mass rate of production of species A
owing to homogeneous reactions, kg/m3s

R universal gas constant J/mol K
RA net molar rate of production of species

A owing to homogeneous reactions,
moles/m3s

t time, s
T phase temperature, K,
TA stress tensor for species A, N/m2

T total stress tensor for the mixture, N/m2

uA vA − v, species A mass diffusion velocity,
m/s

vA velocity of species A, m/s
v

∑A=N
A=1 ωAvA, mass average velocity, m/s

v∗A velocity associated with the net rate of
production of species A momentum owing
to chemical reaction, m/s

xA cA/c, mole fraction of species A

Greek letters
αA coefficient of the linear constitutive

equation for the pressure-mole fraction
relationship for species A

ρA mass density of species A, kg/m3

ρ total mass density, kg/m3

µ viscosity, N/m2s,
µA chemical potential of species A, J/mol,
τ viscous stress tensor, N/m2

τA viscous stress tensor for species A, N/m2

ωA ρA/ρ, mass fraction of species A
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Appendix A. Mass diffusion
velocity

The objective of this section is to provide a derivation
for the decomposition of the species velocity given in
Eq. (11). To this end, let us commence with the mass
average velocity definition, which can be written as

v = ωAvA +

B=N−1∑
B=1

ωBvB. (A.1)

Note that the mass fraction of species A can be
expressed in terms of those of the other components
of the mixture as follows

ωA = 1−
B=N−1∑

B=1

ωB. (A.2)

Substituting this expression into Eq. (A.1) leads to the
following expression for the species velocity

vA = v+
B=N−1∑

B=1

ωB (vA − vB) . (A.3)

The last term on the right-hand side of the above
equation represents the weighted average of the
species A velocity relative to those of the other species.
This term thus defines the species diffusive velocity,
i.e.,

uA =

B=N−1∑
B=1

ωB (vA − vB) . (A.4)

Substitution of this result into Eq. (A.3) leads to the
decomposition given in Eq. (11).

Appendix B. Simplification of the
governing equation
for the diffusion
velocity

The purpose of this appendix is to derive a set of
constraints that allow simplifying Eq. (33) to the form

given in Eq. (37). One way to achieve this goal is to
reformulate Eq. (33) in a dimensionless form, to later
ponder about the weights of different terms. Therefore,
let us commence by introducing the dimensionless
time and gradient operator as

t̂ =
t

tre f
; ∇̂ = ℓ∇. (B.1)

Here, tre f and ℓ denote a reference length and a
characteristic length of the transport process. Next, let
us introduce the following dimensionless definitions
for the flow variables

v̂ =
v

vre f
; p̂ =

p
pre f

; τ̂ =
τ ℓ

µre f vre f
. (B.2)

In the above, the reference pressure can be defined
in terms of the reference velocity as follows pre f =

µre f vre f /ℓ. At this point, it is convenient to introduce a
reference value for the species A mass fraction, which
is denoted as ωAre f < 1. On the basis of this definition,
the species A mass fraction can be rescaled as

ω̂A =
ωA

ωAre f
, A = 1,2, . . . ,N. (B.3)

Finally, let us introduce the following definitions
that are applicable to all chemical species

ρ̂A =
ρA

ρre f
; ûA =

uA

ωAre f vre f
; v̂A =

vA

vre f
; v̂∗A =

v∗A
vre f

;

τ̂A =
τAℓ

ωAre f µre f vre f
; p̂A =

pA

pAre f
; P̂AB =

PABℓ

pAre f
;

b̂A =
bA −b
ωAre f bre f

; r̂A =
rAtre f

ωAre f ρre f
, A = 1,2, . . . ,N.

(B.4)

Note that r̂A can be conceived as a Damköhler number.
In the following, it is assumed that pA experiences
changes over a distance L, which is assumed to be
much larger than ℓ. Such separation of length scales
has been previously suggested by Whitaker (1986)
and it is supported by the hypothesis that, under
diffusive conditions, species A experience changes
in its concentration at larger distances than the total
mixture concentration. This means that pAre f can be
related to pre f according to

pAre f =
L
ℓ
ωAre f pre f =

L2

ℓ2
ωAre f µre f vre f

L
. (B.5)

Substituting the above definitions into Eq. (33), leads
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to

ρre f ℓ
2

tre f µre f
ρ̂A
∂ûA

∂t̂
+Reρ̂A

(
v̂A · ∇̂ûA + ûA · ∇̂v̂

)
−ω2

Are f Reω̂A∇̂ ·

B=N∑
B=1

ρ̂BûB ⊗ ûB

 = − (
ω̂A∇̂ · τ̂ − ∇̂ · τ̂A

)
−

L
ℓ
∇̂p̂A + ω̂A∇̂ p̂+

Re
Fr
ρ̂Ab̂A +

L
ℓ

B=N∑
B=1

P̂AB

+
ρre f ℓ

2

tre f µre f
r̂A

(
v̂∗A − v̂A

)
, A = 1,2, . . . ,N − 1. (B.6)

In the above equation, the Reynolds and Froude
numbers were defined as follows

Re =
ρre f vre f ℓ

µre f
; Fr =

v2
re f

bre f ℓ
. (B.7)

From Eq. (B.6), it follows that, for situations in which
the reference time is such that

ρre f ℓ
3

Lµre f
=

Reℓ2

vre f L
≪ tre f , (B.8)

it is reasonable to adopt restrictions R1 and R5 given in
(34a) and (34e) in the main text. Note that restriction
R5 also requires assuming that r̂A ≤O(1). At this point
it is pertinent to point out that the inequality given in
(B.8) is equivalent to (1-47) in Whitaker (1986) as long

as the reference density is taken to be ρre f = pre f /C2,
with C being the speed of sound in the N-component
mixture. Moreover, this choice for ρre f leads to Re =
Ma2, with Ma = vre f /C being the Mach number.

Directing the attention to the inertial-like terms,
restricting the Reynolds number (or, equivalently
Ma2) to meet the following length-scale constraint

Re≪
L
ℓ
, (B.9)

it is reasonable to adopt restrictions R2 and R3. Note
that the latter is easier to satisfy than the former
since ωAre f < 1. The above constraint is equivalent to
inequality (1-51) in Whitaker (1986).

Focusing on the viscous terms, the length-scale
constraint ℓ ≪ L, allows justifying restrictions R4
(34d) and R7 (36b). Finally, on the basis of (B.9),
the following constraint is proposed for the Froude
number

Re
ℓ

L
≪ 1≪ Fr, (B.10)

which allows imposing restriction R6 (36a). Under
these conditions, Eq. (33) can be reduced to the form
given in Eq. (37) in the main text. The constraints
derived here are consistent with those originally
proposed by Whitaker (1986) as well as those more
recently reported by Whitaker (2009a) and applied to
the Stefan diffusion tube.
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