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Abstract
A fast, efficient, and green biodiesel synthesis methodology was developed using ammonium-based ionic liquids catalysts and
microwave irradiation as a heating source. All ionic liquids (ILs) probed can act as catalysts, Brønsted acidic ILs containing
the -SO3H group are the most efficient in terms of conversion. In these conditions, biodiesel can be synthesized at 50 °C and
25 minutes of microwave irradiation. According to the results, the new catalysts have great potential for use in environmentally
friendly and highly efficient biodiesel synthesis processes.
Keywords: biodiesel, ionic liquids, microwave, catalysts, Brønsted acid.

Resumen
Se desarrolló una metodología para la síntesis rápida, eficiente y ecológica de biodiesel utilizando líquidos iónicos base amonio
como catalizadores e irradiación por microondas como fuente de calentamiento. Todos los líquidos iónicos probados pueden
actuar como catalizadores, siendo los líquidos iónicos ácidos de Brønsted que contienen el grupo -SO3H los más eficientes.
En estas condiciones, el biodiesel se puede sintetizar en 25 minutos de irradiación en microondas. Por lo tanto, los nuevos
catalizadores tienen un gran potencial para su uso en procesos ecológicos y son muy eficientes para la síntesis de biodiesel.
Palabras clave: Biodiesel, líquidos iónicos, microondas, catalizadores, ácidos de Brønsted.
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1 Introduction

Biodiesel is composed of a mixture of fatty acid
methyl esters (FAME) obtained from various crude
oil feedstocks, such as vegetable oils, animal fats,
and waste oils, through transesterification reactions
between triglycerides and alcohols (methanol or
ethanol).

Biodiesel represents an alternative to replace
conventional fossil diesel partially. In addition
to being obtained from renewable sources, it
is an environmentally friendly fuel due to its
biodegradability, non-toxicity, lower particulate
emissions, and the possibility of recycling CO2 (Xie
& Li, 2023)

The classic way of obtaining biodiesel is by
transesterification of triglycerides from vegetable
oils or animal fats with alcohol. The synthesis
is carried out in basic homogeneous catalysis
(NaOH or KOH catalysts) or acid catalysis (using
H2SO4 as the catalyst). Generally, the synthesis
process is carried out in batch or semi-continuous
reactions. Mexican researchers developed a process
for continuously synthesizing biodiesel (Evangelista-
Flores et al., 2014), and also under supercritical
conditions (Aldana-González et al., 2022).

Applying traditional synthetic methods presents
environmental issues such as corrosion and emulsion
formation. It is often complex to separate the
homogeneous catalyst from the biodiesel, and its
recuperation leads to toxic discharges linked with
these reaction routes (Helwani et al., 2009). Several
approaches have been studied to mitigate the previous
troubles, involving heterogeneous catalysts, organic
bases, supercritical fluids, two-phase and multiphase
systems, and enzymatic catalysis (Andreani & Rocha,
2012; Singh et al., 2020).

Currently, ionic liquids (ILs) are achieving
extensive acceptance as possible environmentally
friendly solvents for their outstanding properties
(Martínez-Palou, 2010) and applications in Organic
Synthesis (Tierney & Lidström, 2005), catalysis
(Olivier-Bourbigou et al., 2010), and biocatalysis
(Muginova et al., 2010). ILs are ideal replacements for
volatile organic solvents in environmentally friendly
technologies (Lei et al., 2017) due to their shallow
vapor pressures, thermal and chemical resistance,
performance in catalysis, non-flammability, and non-
corrosive nature. This reduces workers’ occupational
exposure risk and atmosphere solvent pollution.
Furthermore, it is known that some IL can increase the
rate and yield of many organic reactions (Maciejewski,
2021). The biodegradation of ionic liquids by fungi
such as Fusarium sp. has also been studied (Esquivel-
Viveros et al., 2009).

In the recent decades, ILs have been described as

catalysts (Cheng et al., 2022; Han et al., 2022; Lima
et al., 2022), solvents (Muhammad et al., 2015a) and
media for biocatalysis (Arai et al., 2010; Ruzich &
Bassi, 2010; Zhao et al., 2010) in biodiesel synthesis
(Muhammad et al., 2015b).

The utility of microwave irradiation (MW) to
carry out organic reactions has now become a regular
feature, as shown by the increasing number of reviews
and books (Kappe et al., 2012; Martinez-Palou, 2006).
The non-conventional synthetic route has shown
extensive usage as an efficient technique to expedite
many organic reactions, providing increased yields,
higher selectivity, lower amounts of byproducts, and
consequently, easier work-up and purification.

Owing to their ionic character, ILs interact
efficaciously with microwaves, and their application
in microwave-assisted synthesis is an intense research
field (Martínez-Palou, 2010). Facile and efficient
biodiesel syntheses centered on microwave irradiation
have been reported in many papers (Khedri et al.,
2019) including a technique for a continuous flow,
circulating microwave system (Choedkiatsakul et al.,
2015; Groisman & Gedanken, 2008; Hernando et al.,
2007).

Although basic catalyzed transesterification
is more generalized and straightforward, the
present work uses acid catalysts because alkaline
transesterification requires oils with low free fatty
acids, water, and impurities to ensure good-quality
biodiesel. In contrast, acid catalysis is less susceptible
to these limitations. On the other hand, one of the
essential variables in transesterification to obtain
biodiesel is the energy needed to achieve the
triglyceride/alcohol interaction in a very efficient way,
so there is a great tendency in recent years to use non-
conventional heating methods such as microwaves,
ultrasound, and infrared radiation or a combination of
them (Kodgire et al., 2023; Sebayang et al., 2023).

Herein, biodiesel synthesis is presented using
novel non-symmetric ammonium-based ILs as
catalysts under microwave irradiation. Eight ionic
liquids were synthesized and evaluated as catalysts
for obtaining biodiesel. Although there are many
precedents in the use of ionic liquids as catalysts for
biodiesel synthesis as cocatalysts using nanocatalysts
(Baskar et al., 2022), acidic imidazolium ionic liquids
(Ding et al., 2018), acid ionic liquid catalyzed using
combined ultrasonic-microwave energy (Yan et al.,
2020), etc. To our knowledge, the ionic liquids
proposed in this study have not been previously
described for this application with or without
combination with microwave dielectric heating. The
ionic liquids studied in this work are relatively
inexpensive compared to imidazolium cation based
(the most explored for biodiesel catalysis) and
stable, allowing their use under more severe reaction
conditions and in large-scale processes and the
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catalyst’s reutilization. On the other hand, taking
advantage of the ionic liquid/microwave dielectric
heating synergy allows high yields in short reaction
times.

According to the methodology in the present
work, biodiesel can be produced quickly and
with high purity employing ammonium based
ILs. Applying microwave dielectric heating with
IL-catalyst decreases reaction time considerably,
providing an environmentally friendly process for
biodiesel production.

2 Methodology

2.1 General

Biodiesel was synthesized from commercial corn
oil and methanol (99%, Merk). Dimethylethylamine
(98%, Merk), chloromethyl methylether (99%, Merk),
chloromethyl ethylether (99%, Merk), silver acetate
(99%, Merk), sodium dicyanamide (99%, Merk), 1,3-
propane sultone (97%, Merk), Pyridine (99%, Merck)
and 1,4-butane sultone (98%, Merk). All reagents
were used without any further purification. 1H Nuclear
Magnetic Resonance (NMR) spectra were acquired
at 25 °C on a 300 MHz (Jeol-Eclipse) spectrometer,
the chemical shifts (in parts per million) being
referenced to the residual peaks of tetramethylsilane
using deuterated-chloroform (CDCl3) or deuterium
oxide (D2O) as solvent. Microwave reactions were
performed in a monomode microwave unit (Discover
- Microwave Synthesizer, 2023).

2.2 Procedures for the synthesis of ionic
liquids

N-(methoxymethyl)-N,N-dimethylethanamonium
chloride (entry 1, Table 1). Dimethylethylamine (7.0
g, 96 mmol) and chloromethyl methylether (8.0 g,
0.1 mol) were mixed in chloroform at 0 °C in a
cooling bath and then left to rise to room temperature.
The reaction was continuously stirred for 18 h. After
separating the two phases, the lower phase was cleaned
twice using anhydrous ether (50 mL), and the product
was dried in a vacuum for 8 h at 50 °C to obtain a
yellowish liquid (91%). δH (D2O) 1.34 (tt, J = 7.4, 0.8
Hz, 3H), 3.00 (s, 6H), 3.38 (q, J = 7.1 Hz, 2H), 3.69
(s, 3H), 4.60 (s, 2H). δC (D2O) 7.5, 57.2, 46.9, 61.2,
91.8.

N-(ethoxymethyl)-N,N-dimethylethanamonium
chloride (entry 2, Table 1). Dimethylethylamine (7.0
g, 96 mmol) and chloromethyl ethylether (9.4 g, 0.1
mol) were stirred in chloroform at 0 °C and then left
to rise to room temperature. The reaction was stirred
for 18 h. After separating the two phases, the lower
phase was cleaned twice with anhydrous ether (50

mL), vacuum-dried for 8 h at 50 °C and yellowish
liquid was obtained (89%). δH (D2O) 1.23 (t, J = 7.1
Hz, 3H), 1.31(t, J = 7.1 Hz 3H), 2.96 (s, 6H), 3.33 (q,
J = 7.41 Hz, 2H), 3.88 (q, J = 7.1 Hz, 2H), 4.60 (s,
2H). δC (D2O) 7.3, 14.6, 46.7, 56.9, 70.2, 90.3.

N-(methoxymethyl)-N,N-dimethylethanamonium
acetate (entry 3, Table 1). N-(methoxymethyl)-N,N-
dimethylethanamonium chloride (1.47 g, 0.01 mol)
was diluted in 50 ml of acetonitrile, and 1.70 g (0.01
mol) of silver acetate was slowly placed. After 24 h
of stirring at 60 °C, the silver chloride was filtered off
and vacuum-dried for 2 h at 50 °C. A yellowish liquid
was achieved (82%). δH (D2O) 1.27 (t, J = 7.14 Hz,
3H), 1.98 (s, 3H), 2.93 (s, 6H), 3.31 (q, J = 7.4 Hz,
2H), 3.61 (s, 3H), 4.52 (s, 2H). δC (D2O) 7.4, 21.31,
46.74, 57.03, 61.1, 91.7, 177.6.

N-(ethoxymethyl)-N,N-dimethylethanamonium
acetate (entry 4, Table 1). N-(ethoxymethyl)-N,N-
dimethylethanamonium chloride (1.59 g, 0.01 mol)
was diluted in 50 ml of acetonitrile, and 1.70 g (0.01
mol) of silver acetate was added slowly. After 24 h of
stirring at 60 °C, the silver chloride was filtered off
and dried. The compound was vacuum-dried 2 h at 50
°C. A yellowish liquid was obtained (82%). δH (D2O)
1.23 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 2.0
(s, 3H), 2.9 (s, 6H), 3.33 (q, J = 7.4 Hz, 2H), 3.88 (q,
J = 7.14 Hz, 2H), 4.6 (s, 2H). δC (D2O) 7.41, 14.64,
21.53, 46.76, 57.0, 70.9, 90.3, 177.3.

N-(methoxymethyl)-N,N-dimethylethanamonium
dicyanamide (entry 5, Table 1). Sodium dicyanamide
(0.89 g, 0.01 mol) and N-(methoxymethyl)-N,N-
dimethylethanamonium chloride (1.47 g, 0.01 mol)
were dissolved in water (50 mL) and heated (50
°C) and stirred for 6 h. The water was eliminated
by vacuum. Metathesis produced a colorless liquid
(80%). δH (D2O) 1.36 (tt, J = 7.4, 0.8 Hz, 3H), 3.0 (s,
6H), 3.39 (q, J = 7.4 Hz, 2H), 3.7 (s, 3H), 4.6 (s, 2H).
δC (D2O) 7.55, 46.9, 57.2, 61.2, 91.8, 120.3.

N-(ethoxymethyl)-N,N-dimethylethanamonium
dicyanamide (entry 6, Table 1). Sodium dicyanamide
(0.89 g, 0.01 mol) and N-(ethoxymethyl)-N,N-
dimethylethanaminium chloride (1.59 g, 10 mmol),
and sodium dicyanamide (1.11 g, 12 mmol), were
dissolved in water (20 mL) and heated (50 °C) and
stirred for 6 h. The water was eliminated by vacuum
to obtain a colorless liquid (85%). δH (D2O) 1.28 (t,
J = 7.14 Hz, 3H), 1.31 (t, J = 7.4 Hz, 3H), 3.00 (s,
6H), 3.37 (q, J = 7.4 Hz, 2H), 3.91(q, J = 7.91 Hz,
2H), 4.63 (s, 2H). δC (D2O) 7.4, 14.7, 46.7, 57.0, 70.2,
90.3, 120.3.

N-(Propyl-3-sulphonyl)-N,N-Dimethylethanamonium
p-toluenesulfonate (entry 7, Table 2) and N-
(Butyl-3-sulphonyl)-N,N-Dimethylethanamonium p-
toluenesulfonate (entry 8, Table 1) were synthesized
by reaction dimethylethylamine (0.70 g, 9.6 mmol)
with 1,3-propane- or 1,4-butane sultone (1.2 mol),
respectively, at 40 °C during 24 hours, to obtain the
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requisite zwitterions in quantitative yields, which
were washed three times using toluene (20 mL).
In the second step, the zwitterions acidification was
accomplished by combining a stoichiometric amount
of p-toluenesulfonic acid, and the mixture was stirred
at 40 °C for 3 days. The ionic liquids were washed
repeatedly with toluene (20 mL) and ether (20 mL) and
dried under vacuum. IL15 was obtained as a colorless
liquid (88%). δH (D2O) 1.10 (t, J = 7.4 Hz, 3H), 1.81-
2.00 (m, 2H), 2.19 (s, 3H), 2.65 (s, 6H), 2.94 (q, J =
7.1 Hz, 2H), 3.02 (s, 6H), 4.22 (t, J = 7.1 Hz, 2H), 7.16
(d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H). δC (D2O)
9.2, 18.4, 20.7, 28.3, 42.2, 53.3, 60.0, 125.6, 129.9,
140.2, 142.4. IL16 was obtained as a colorless liquid
(83%). δH (D2O) 1.10 (t, J = 7.4 Hz, 3H), 1.69-1.76
(m, 2H), 1.97-2.02 (m, 2H), 2.20 (s, 3H), 2.65 (s, 6H),
2.91 (t, J = 7.7 Hz, 2H), 2.94 (q, J = 7.1 Hz, 2H), 4.22
(t, J = 7.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.53 (d,
J = 8.0 Hz, 2H). δC (D2O) 8.0, 19.3, 20.6, 22.0, 50.2,
57.3, 60.0, 63.5, 129.6, 136.2, 140.0, 142.5.

1-(4-sulfonic acid)butylpyridinium hydrogensulfate
(BIL) was synthesized as described before (Wu et al.,
2007).

2.3 Microwave-promoted synthesis of
biodiesel

In a sealed tube (10 mL) equipped with a stirring bar
were added corn oil (1.0 g), methanol (5.0 g), and
the IL catalyst (0.10 g). The reaction mixture was
placed into the microwave cavity and heated from
room temperature up to 50 °C with simultaneous
cooling of the reaction tube using airflow (20 psi) to
favor continued microwave irradiation with an initial
power of 200 W. The irradiation time was 5, 10, 20,
and 25 minutes and samples of the product were taken
and dissolved in D2O or CDCl3. Two relevant signals
of 1H RMN were chosen for integration to monitor
the advance of biodiesel reaction. Methoxy groups
in FAME (3.62 ppm, singlet) and the R-methylene
protons found in every triglyceride compound (2.28
ppm, triplet) of the corn oil (Gelbard et al., 1995).
The conversion was estimated from these signals’
integrated areas (A) using Equation 1.

%Conversion =
2 ∗ A3.6ppm

CH3O

3 ∗ A2.3ppm
CH2CO

× 100 (1)

3 Results and discussion

3.1 Selection and synthesis of ionic liquids

Ammonium base ILs derivatives from dimethylethylamine
were selected for being evaluated as catalysts
for biodiesel synthesis because these ILs are

easy to obtain and cheaper than those consisting
of heterocycles (i.e., imidazolium, pyridinium,
isoquinolonium, pyrazolium). The unsymmetrical
ethyldimethylamine was selected as raw material to
favor liquid product formation, which can interact
more effectively with the reagents (better mass
transfer).

Eight ionic liquids were synthesized under
microwave irradiation to accelerate the synthesis of
these compounds, increase purity and yields, and avoid
using volatile and toxic organic solvents.

3.2 Biodiesel synthesis

Corn oil was chosen as the feedstock for biodiesel
synthesis. The choice was made based on the
availability of the biomaterial, and it has a relatively
low production cost in Mexico.

The transesterification reaction for biodiesel
preparation using ionic liquids as catalysts and the
protons employed for monitoring the reaction are
shown in Figure 1.

In addition, methanol is a suitable microwave
adsorbent, and ILs interact very efficiently with
microwaves due to their ionic character. For this
reason, a high increase in reaction temperature and
pressure profile is observed in all reactions.

This work was carried out on a small scale because
the microwave used only has small capacity vessels
(10 mL), however, from the background of the subject
it is predictable that the reaction of both ILs synthesis
and transesterification can be scaled up without
major inconvenience, even the use of microwaves
for a continuous transesterification process has been
previously described (Motasemi & Ani, 2012).

3.3 Ionic liquids screening

First screening reactions were run in a monomode
microwave reactor in closed tubes with 1 mL of corn
oil, methanol, and 1-(4-sulfonic acid) butylpyridinium
hydrogensulfate (BIL) as a catalyst to optimize
oil/methanol and oil/IL ratio. BIL was employed
because it was reported as an excellent catalyst for
diesel synthesis under conventional heating (Gelbart
et al., 1995) and established temperature at 50 °C
during three minutes of MW irradiation as a mild
condition with an initial power of 100 W, which
decreased as the reaction progressed. Due to the
rapid increase in reaction temperature, simultaneous
cooling of the reaction tube was applied by airflow (20
psi) to favor continuous irradiation. After screening
reaction conditions, the best results were obtained
at oil/methanol ratio (w/w) = 1:5 and oil/IL ratio
(w/w) = 0.10. The reaction above conditions was
also established for the ammonium-based ionic liquids
screening.
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Figure 2. Temperature and irradiation profiles during
the microwave-assisted biodiesel synthesis for entry 6.

Interestingly, the ratio of oil/methanol and oil/IL
is lower than those commonly reported for reaction
under conventional heating and catalyst, and the
reaction time was dramatically diminished. Using
the same catalyst, the optimum conditions for a
quantitative product formation under conventional
heating were a molar ratio IL/oil of 0.057 and an
oil/methanol ratio of 1:5 at 170 °C for 5 hours.

A screening of the ammonium-based ionic liquids
catalysts at different reaction times with an initial
power of 100 W is presented in Table 1. As shown
in Figure 2, the working temperature was reached
in less than 2 minutes because of the high polarity
of the medium and was kept constant (± 1°C) for
the remainder of the reaction time. The irradiation
profile is subject to the reaction temperature, so at the

beginning, the irradiation was up to 39 W for a few
seconds. From that moment on, the irradiation is much
lower, achieving some maximum peaks of 20 W.

Figure 3 shows the kinetic curves with standard
deviations of the conversion of corn oil when the
eight ILs were used as catalysts to obtain biodiesel.
The results are the average of three experimental
replicates of each reaction, and the standard deviation
of each value is shown in Table 1. Figure 3 shows that
when using the ionic liquids of inputs 7 and 8, the
highest conversions were obtained at 95.3 and 98.0
%. However, for the IL of input 6, the conversion
obtained is not significantly different from that of
input 7. The remaining reactions (entries 1-5) achieve
conversions above 80% up to 25 min of reaction.
Another essential aspect observed in the kinetic curves
is that the reactions in which the ILs of inputs 1-4 were
used reached the equilibrium conversions after 13 min.
On the other hand, in the reactions of inputs 7 and 8,
the equilibrium conversions are reached after 20 min,
and a tendency to get conversions close to 100 % is
observed shortly after 25 min.

The best results were obtained with the ILs 7 and
8 with an almost quantitative biodiesel formation after
20 minutes of microwave irradiation due to the high
Brønsted acidity of the -SO3H group. The fundamental
property that distinguishes ILs from entries 7 and 8
from others is the proton transfer from the acid to the
base, giving rise to proton-donor and -acceptor sites
that may be available to construct a hydrogen-bonded
network as shown in the proposed reaction mechanism
for the transesterification process (Figure 4).
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Among these ILs, the compound from entry 8
may perform better because a large carbon chain
dissociates H+ ions efficiently, giving rise to a more
robust Brønsted acidity.

The microwave equipment consists of a continuous
focalized microwave power delivery system with
a power output from 0 to 300 W. Reactions
were conducted in a 10 mL sealed tube. An IR
sensor underneath the reaction vessel recorded the

temperature in the vessel’s chamber. Continuous
flow air was injected outside the reaction tube
to avoid the accelerated temperature increase and
favor a continuous microwave irradiation to the
reaction mixture. Temperature, pressure, and power
profiles were monitored using commercially available
software provided by the microwave manufacturer
(Figure 2).

Table 1. Evaluation of ILs as catalysts for biodiesel synthesis under microwave irradiation.

Entry IL structure Conversion (%) after MW irradiation time (min)a

Cation Anion 5 10 20 25

1
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Figure 3. Kinetic curves for obtaining biodiesel using IL as catalysts.  262 

The best results were obtained with the ILs 7 and 8 with an almost quantitative biodiesel 263 
formation after 20 minutes of microwave irradiation due to the high Brønsted acidity of the 264 
-SO3H group. The fundamental property that distinguishes ILs from entries 7 and 8 from 265 
others is the proton transfer from the acid to the base, giving rise to proton-donor and -266 
acceptor sites that may be available to construct a hydrogen-bonded network as shown in the 267 
proposed reaction mechanism for the transesterification process (Figure 4).  268 
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Figure 3. Kinetic curves for obtaining biodiesel using IL as catalysts.
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Figure 4. Proposed reaction mechanism for the transesterification process with ILs.  271 
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3.4. Microwave-assisted reaction scaling 281 
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The reaction was run using the optimal conditions for closed vessel experiments (T= 25-50 284 
°C, ratio methanol/oil ratio: 1:5 and 0.10% w/w of catalyst IL8). The reactions were 285 
conducted using a round-bottom flask provided with a reflux condenser and magnetic stirring 286 
bar, and the mixture was heated from room temperature to 50 °C and held at this temperature 287 

Figure 4. Proposed reaction mechanism for the transesterification process with ILs.

3.4 Microwave-assisted reaction scaling

After the above results were obtained with 6 grams
of reagents under closed vessel conditions, a scale-
up of the reaction using 30 g of reagents in an open
vessel was performed. The reaction was run using
the optimal conditions for closed vessel experiments
(T= 25-50 °C, ratio methanol/oil ratio: 1:5 and 0.10%
w/w of catalyst IL8). The reactions were conducted
using a round-bottom flask provided with a reflux
condenser and magnetic stirring bar, and the mixture
was heated from room temperature to 50 °C and held
at this temperature for 30 minutes. NMR analysis of
the reaction products showed a quantitative conversion
to biodiesel.

The ILs from entries 7 and 8 in Table 1
were insoluble in the organic phase and water and
temperature resistance, making the catalysts’ recovery
and recycling very convenient. The scaled-up and
transfer of the microwave process from batch to stop-
flow and continuous flow process for the biodiesel
preparation for being converted into a production
method have been demonstrated by other authors
system (Choedkiatsakul et al., 2015; Groisman &
Gedanken, 2008; Hernando et al., 2007).

Conclusions

Eight ILs were synthesized and evaluated as catalysts
of biodiesel synthesis under microwave irradiation.
All ILs probed can act as catalysts under microwave
irradiation. Brønsted acidic ILs containing the -
SO3H group were the most efficient, obtaining 98
% conversion. In these conditions, biodiesel can
be synthesized in 25 minutes under microwave
irradiation. Therefore, IL 8 can act as a novel catalyst
and have great potential for use in green and very
efficient processes for biodiesel synthesis.
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