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Abstract
Water scarcity in the world is a real and latent problem. Reverse osmosis (RO) desalination processes are a widely used technology
to reduce this problem. However, one limitation is the concentration polarization (CP), which represents the accumulation of
salts on the active surface of the membrane. The physical measurement of this variable is complicated and expensive, due to the
accessories and calculation implements for its determination. To determine the CP, in this study experimental tests were carried
out in a reverse osmosis plant in a range of pressures from 1 to 6 MPa and permeate flux from 0.75 to 3.5 L min−1, using brackish
water (13,335 mg L−1) and seawater (35,522 mg L−1). A mathematical model was obtained for each established concentration,
resulting in a fourth and second order polynomial model for brackish and seawater, respectively. A descriptive statistical analysis
was applied to the results of these models to compare the similarity of the theoretical-experimental data and the reliability of the
model. The models obtained will be of great help in decision making involving CP and its inherent variables.
Keywords: desalination, scaling, sea water, concentration polarization, water scarcity.

Resumen
La escasez de agua en el mundo, es un problema real y latente. Los procesos de desalinización por ósmosis inversa (OI), son una
tecnología bastamente utilizada para disminuir éste problema. Sin embargo, una limitante es la polarización de la concentración
(PC), que representa la acumulación de sales en la superficie activa de la membrana. La medición física de esta variable es
complicada y de alto costo, por los accesorios e implementos de cálculo para su determinación. Para determinar el PC, en este
estudio se realizaron ensayos experimentales en una planta de ósmosis inversa en un rango de presiones de 1 a 6 MPa y flux de
permeados de 0.75 a 3.5 L min−1, se utilizó agua salobre (13,335 mg L−1) y agua de mar (35,522 mg L−1). Se obtuvo un modelo
matemático para cada concentración establecida, dando como resultado un modelo polinomial de cuarto y segundo orden para
agua salobre y de mar respectivamente. A los resultados de estos modelos se les aplicó un análisis estadístico descriptivo, para
comparar la similitud de los datos teóricos-experimentales y la confiabilidad del modelo. Los modelos obtenidos serán de gran
ayuda en la toma de decisiones que involucren al PC y las variables inherentes.
Palabras clave: desalinización, escalamiento, agua de mar, polarización de la concentración, escasez de agua.
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1 Introduction

A major constraint to the world’s growth and
socioeconomic development is water scarcity, which
also poses a threat to sustaining life on the planet
(Liu et al., 2017). Today about 70% of the population
experiences water scarcity at least once a year (Ghosh,
2022). This serious situation is due to population
growth, increasing industrial demand worldwide and
to the high pollution of river waters around the
world, which makes seawater desalination processes
increasingly attractive and necessary (Huang et
al.,2021; Morin-Crini et al., 2022; Jrad et al., 2023).

Desalination is an effective technology that
mitigates water scarcity in arid zones and coastal
regions (Galicia et al., 2020; Saleem et al., 2020).
It is a non-conventional technique that increases the
availability of consumable water, and consists of
treating brackish water from the sea or saline aquifers,
removing salts and transforming it into water suitable
for supplying populations or irrigation (Alsayed &
Ashraf, 2021).

Seawater desalination using membranes is a
process that separates saline water into two streams:
a potable water stream with low concentration of
dissolved salts - called permeate water - and a
concentrated brine stream - called reject water -
(Alsayed et al.,2021; Dévora-Isiordia et al., 2023).The
most widely used system for seawater desalination is
reverse osmosis because of its high flux production
rate and salt removal (Dévora-Isiordia et al., 2013;
Farahat et al., 2023). Reverse osmosis is the most
widely membrane technology used in the world and
in Mexico with 70 and 88.5% respectively in 2022,
that provides the largest amount of water and has come
to solve a percentage of water shortages in industrial,
agro-industrial and human consumption systems due
to its easy scalability in membranes, high-pressure
pump systems and spare parts (Ríos-Arriola et al.,
2022). The cost of desalinating seawater by reverse
osmosis is cheaper than other technologies that use
thermal energy. The amount of energy depends on the
type of water to be desalinated, according to Devora-
Isiordia (2023) the energy consumption by the RO
is from 2 to 2.8 kWh m−3 and the cost is 0.6 USD
m−3, this in current pesos would be 10.15 mexican
pesos m−3 instead the energy consumption by thermal
technologies (MED: Multi-effect distillation and MSF:
multistage flash distillation) is from 3.4 to 4 and 5 to
8 kWh m−3, its cost respectively is 1.5 and 1.1 USD
m−3. The worldwide desalination capacity used by RO
was 88,000,000 m3 d−1 in 2015 (García, 2016). The
desalination capacity per RO installed in Mexico in
2022 was 560,000 m3 d−1 (Ríos-Arriola et al., 2022).

Garcia (2016) published that desalination plants on an
industrial scale in Spain fluctuate a conversion from
40% to 50% for the most part, although there are
desalination plants (there are two) with conversions
greater than 55% conversion, worldwide the range
fluctuates from 40% to 50%, but desalination plants
installed before 1990 have a conversion of 30 to 40%.
In the case of Mexico, the desalination plant in the
city of Ensenada has a conversion of 50%, in the city
of Los Cabos the desalination plant has a conversion
of 49% (Garcia, 2016) and in the desalination plant
Guaymas-Empalme its conversion is 45% recently put
into operation in 2021 (Gobierno del estado de Sonora,
2023).

However, there are problems associated with this
process such as high energy consumption (Mi et
al., 2023), environmental impact (Jalili et al., 2023),
biofouling (Armendáriz-Ontiveros et al., 2022) and
concentration polarization in membrane modules.
Concentration polarization (CP) is defined as the
deposition of salts on the membrane surface Dévora-
Isiordia et al. (2023), presents an illustration about the
CP that goes according to the previous definition (see
Figure 1), due to an increase in permeate flux with
respect to the filtration area, reducing the observed salt
rejection which decreases the efficiency of the system
(Fan, 2018; Armendáriz-Ontiveros et al., 2022).The
PC phenomenon occurs naturally since the function
of the membrane is to retain salts from brackish
or marine water bodies, however when this exceeds
the value of 1.2 the desalination process yields are
affected this according to Kucera (2015). The CP
is an important factor that determines the operating
cost and the useful life of the membrane in reverse
osmosis plants. Membrane modules that operate with
very good pretreatment and good CP control using
brackish water can last up to 12 years (Ruutenhuch,
1992) and in the case of seawater up to 5 years. If
the membranes have to be replaced in a short time,
it causes costs due to process stoppage and the cost
of acquiring the membranes, hence the importance of
having a good control of the CP and being able to
predict it in reverse osmosis processes.

During a real process, the physical and numerical
quantification of the polarization factor becomes
difficult and in some cases, almost impossible (Bai
et al., 2023). Therefore, the present research aims
to obtain a mathematical model that determines by
theoretical and experimental methods the CP factor
in a reverse osmosis pilot plant as a function of
operating pressure (MPa) and permeate flux (L m−2

h−1). The model will allow the scientific and industrial
community to have a quick and concret tool for CP
measurement that will allow making decisions to avoid
further damage to the membranes, reduce production
and energy costs.
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Figure 1. Concentration polarization in reverse osmosis membrane (Dévora-Isiordia et al., 113 
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Figure 1. Concentration polarization in reverse
osmosis membrane (Dévora-Isiordia et al., 2023).

2 Materials and methods

2.1 Description of the reverse osmosis
plant

A reverse osmosis pilot plant with a capacity of
1 L min−1 (Figure 2 and 3) was used, consisting
of the following parts: low pressure pump Webtrol
PC100RMT 1HP, CDS3 pre-chlorination system,
multimedia filter of 1" 263A910MM, activated carbon
filter 263A910AC, CDS3 anti-scalant system, H-
1034-BL ¾", cartridge filters with two compartment,
pre and post filter pressure gauges 316SS, Danfoss
APP 0.8 3HP -stainless steel duplex motor-, Nason
low and high pressure sensors CU-15psi and CD−1000
psi respectively, volumetric flow meters from 0.5 to
5 G min−1 and 0.1 to 1 G min−1 in the reject
and permeate flow rates respectively, Cds3 post-
chlorination system, 316SS pre-membrane pressure
gauge, 2.5" x 40" FRP membrane module and Filmtec
SW30-2540 reverse osmosis membrane, 2.5" x 40"
with 2.8 m2 active area.
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2.2 Calibration curve

A calibration curve was performed as a function of
electrical conductivity to determine the concentration
of the solutions to be used in mg L−1. Instant ocean
sea salt and a conductivity meter (YSI 30) were used.

The equation used to find the equilibrium between
the conductivity of synthetic seawater and seawater is
the following (see equation 1)

ω = β

[
CT

1+ (α0 +α1ω)(T − 25C)
−Cω25

]γ
(1)

Where:
CT: Electrical conductivity of water at the measured
temperature (µS cm−1)
β: Experimental constant with a value of 4.10 × 10−7

for instant ocean sea salt.
α0: Constant for instant ocean sea salt of 0.0209026.
α1: Constant for instant ocean sea salt of 0.0347997.
ω: It is the result of the iteration of the previous
equation.
T : Temperature (K) at which seawater conductivity
was measured.

In order to prepare the synthetic seawater for the
reverse osmosis plant, saltwater stock solution was
created by adding 3.5 kg of Instant ocean sea salt,
the stock solution was a total of 60 L at concentration
of 58,300 mg L−1, and thus be dissolved in total of
100 L. In this way, concentration of 35,522 mg L−1 of
synthetic seawater was achieved.

In the case of the brackish water feed water, stock
solution of salt water was created by adding 1.3 kg of
instant ocean sea salt, the stock solution was a total of
60 L at concentration of 22,800 mg L−1, and thus be
dissolved in total of 100 L. In this way, concentration
of 13,535 mg L−1 of brackish water was obtained.

2.3 Equations used in the reverse osmosis
process

Two stock solutions were prepared at 100 L, and
brought to 2 concentrations of 1) 13,535 mg L−1 and
2) 35,522 mg L−1, for brackish water and seawater,
respectively. With the data taken by the reverse
osmosis pilot plant, different results were obtained
such as membrane resistance (Rm), distilled water
viscosity (µw), permeance (Lp), permeate flux (Jv),
nominal operating pressure (P) and flow rate (Qp),
polarization (Γ), percentage of observed rejection
(%Robs) and percentage of intrinsic rejection (%Rint).
For the experiments, 6 replicates were performed. The
equations were taken from the report of NIST (2018),
Jiang et al. (2003) and Armendáriz-Ontiveros et al.
(2020).

To find the viscosity, the formula used was as

follows:

µw =exp
(
5.495921× 105T−2 − 1.66779× 103T−1

−7.612821) (2)

Where:
µw: Distilled water viscosity (Pa s).
T : Temperature (K).

The following equation was used to obtain the flux
(Jv) where the permeate flow rate (Qp) is divided by
the area of the reverse osmosis membrane.

Jv =
Qp

Am
(3)

Where:
Qp: Permeate flow rate (m

3
s−1).

Am: Membrane area (m
2
).

Jv: Flux (m s−1).
The following equation was used to find the actual

viscosity of the salt water

µ = µw
[
1+
√
ω(b1 + b2T 3)+ω(b3 + b4T 3)+ b5ω

2T 3
]

(4)

Where:
µw: Distilled water viscosity (Pa s).
ω: Mass fraction of salt water in process.
T : Salt water temperature (K).
b1, b2, b3, b4 and b5: Constants for solution viscosity
calculation. The values of the constants are: −1.07266,
1.2722×10−7, −56.2241, 1.3332×10−6, 1.2053×10−5

respectively and were obtained experimentally with
instant ocean sea salt.

In order to determine the observed salt rejection,
the following was necessary:

%Robs =
Ca −Cp

Ca
× 100% (5)

Where:
%Robs: Observed sales rejection (%).
Ca: Feed water concentration (mg L−1).
Cp: Permeate water concentration (mg L−1).

In order to obtain the polarization factor, the
following equation was required:

Γ =
∆P− JvµRm

(Ca −Cp)
(6)

Where:
Γ: Polarization factor
∆P: It is the pressure difference in the system (Pa).
Jv: Flux (m s−1).
µ: Salt water viscosity (Pa s).
Rm: Membrane resistance (1 m−1).
γ: Osmotic pressure for synthetic sea salt water (MPa).
Ca: Feed water concentration (mg L−1).
Cp: Permeate water concentration (mg L−1).

4 www.rmiq.org
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To obtain the intrinsic rejection of salts, the
following equation was necessary:

%Rint =
1

Γ(1/Robs − 1)+ 1
× 100% (7)

Where:
%Rint: Percentage of intrinsic rejection of salts (%).
Robs: Observed rejection of salts without their
percentage value.
Γ: Reverse osmosis membrane polarization.

2.4 Mathematical modeling

Microsoft Excel software version 16.66.1 was used to
record the experiment. Each treatment was performed
6 times (13,535 mg L−1 and 35,522 mg L−1).
Equations 1 to 7 were applied with the CP calculation
software. Subsequently, a regression adjustment was
performed, and the best model was sought, with the
highest R2 value preferably close to 1. When the
best model was obtained, a comparison of operating
pressure-CP was performed experimentally versus
theoretical values (model). At the end, a descriptive
statistical analysis was performed to observe its
reliability.

3 Results and discussion

3.1 Polarization effect of concentration at
different salinities

The experiment started with a feed flow of 8 L min−1

at a concentration of 13,535 mg L−1 -brackish water-
. The results are shown in Table 1. It is observed
that at a pressure of 6.07 MPa (880 psi), there
is a recovery capacity of 43.75%, similar to that
reported by Villarino (2010) who found an intrinsic
salt rejection of 99.46% at the same conditions.
Considering an average seawater value of 35,000 mg
L−1, it is considered that there is no impact on marine
flora and fauna if discharged into the sea. A salt
rejection of more than 99.5% was achieved, which
shows an excellent rejection of salts by the membrane
(see Table 1).

The intrinsic rejection of salts shown in Table
1, is in accordance with the data reported by the
technical sheet of the SW30-2540 membrane module,
in approximate conditions the rejection was 99.4%
(conditions: 5.5 MPa, 2600 L d−1, 2.8 m2 and 32,000
mg L−1 of NaCl), all the salt rejections were higher
than that proposed by the manufacturer’s Lenntech
(2023) technical sheet, this is because sea salt contains
larger ions than NaCl such as sulfates, carbonates,

(contains 80-85% NaCl ions) and also because a lower
concentration solution was used. Therefore, there is a
greater rejection of salts using sea salt. Comparing the
salt rejection results obtained by Dévora-Isiordia et al.
(2023), with a plant with a capacity of 10 L min−1,
four modules of Hydranautics SWC4 RO membranes,
using a pressure of 1.92 MPa, feed water of 10,000
mg L−1 with sea salt from Cortes, 40% conversion
and a temperature of 28 °C, at these conditions, a salt
rejection of 93.2% was obtained, at similar pressure
conditions (Table 1), an intrinsic rejection of salts was
obtained of 99.63%, which indicates that the RO pilot
plant of this research was more efficient regarding
the rejection of salts, but not in the conversion, since
a value of 8.6% was obtained. The maximum value
operated in the RO plant of this investigation was
43.7%, but later it will be seen in the following
discussions that it is not recommended at least for
a SW30-2540 membrane module of 2.8 m2 and a
capacity of 1 L min−1. If you have a larger membrane
area, for example 10 equal modules, you can easily
work at 40% conversion without risk of damaging the
membranes.

Comparing the CP results with the results obtained
from Dévora-Isiordia et al. (2023), it was confirmed
that the higher the operating pressure, the higher
the CP will be (Table 1). For the aforementioned
conditions (1.92 MPa, 10,000 mg L−1 feed water with
Cortes Sea salt, 40% conversion and temperature of
28 °C), the CP was 1.09, very similar to the result
obtained in this investigation (1.05). This indicates that
the equations used in this research and the elaborated
mathematical models can be used by researchers who
have RO plants with similar capacity.

On the other hand, CP is not only a very
important parameter in the operation of reverse
osmosis plants, but also in ion exchange plants since,
as mentioned, concentration polarization in both cases
limits performance by generating a narrow diffusion
boundary layer along the membranes (Al-Amshawee
et al., 2023). Table 1 shows that the CP increases
directly with increasing pressure, at a pressure of 2.76
MPa it has a polarization factor of 1.14 which is
recommended as expressed by Sandin et al. (2012)
and Kucera (2015). Having a PC value higher than
1.2 leads to unfavorable conditions, which increases
membrane fouling (Bai et al., 2023), increased energy
consumption (Saeed et al., 2023), reduced permeate
water quality and flux (Matthiasson et al., 1980).
Values of permeate flow rate (Qv), permeate flux (Jv)
are shown in the table. It is observed that the intrinsic
and observed rejections are very similar, and normal
values of CP (Γ) are highlighted in green color, in
transition of CP problems in yellow color, and in red
color values not allowed in risk of CP operation.
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Table 1. Salt rejection and polarization with brackish water at 13,535 mg L−1.

P (MPa) TPerm (°C) Qv (L min−1) Jv (Lm−2 h−1) Robs (%) Rint (%) Γ

1.90 26.10 0.75 16.07 99.65 99.63 1.05 ■
2.27 26.53 1.00 21.42 99.70 99.67 1.10 ■
2.76 29.41 1.50 32.14 99.73 99.69 1.14 ■
3.65 29.23 2.00 42.85 99.75 99.69 1.22 ■
4.69 30.23 2.50 53.57 99.75 99.58 1.69 ■
5.17 29.75 3.00 64.28 99.76 99.63 2.04 ■
6.07 26.13 3.50 75.00 99.65 99.46 2.15 ■

CP: ■ normal, ■ transition, ■ operational risk.

Table 2. Salt rejection and polarization of seawater at 35,522 mg L−1.

P (MPa) TPerm (°C) Qv (L min−1) Jv (Lm−2 h−1) Robs (%) Rint (%) Γ

3.44 25.76 0.75 16.07 99.41 99.39 1.02 ■
4.00 27.6 1 21.42 99.60 99.58 1.04 ■
4.82 27.84 1.5 32.14 99.67 99.62 1.15 ■
6.06 28.72 2 42.85 99.68 99.59 1.30 ■

CP: ■ normal, ■ transition, ■ operational risk.

Table 2 shows polarization factors lower than those
presented in Table 1, because the permeate flows used
for the concentration of 35,522 mg L−1 are lower;
according to Medina (2000) the lower the recovery,
the lower the CP for both concentrations (Table 1 and
2), it is concluded that the CP value of 1.2 should not
be exceeded, regardless of whether it is brackish or
seawater.

It is also observed that the desalination plant has
a high salt rejection of seawater, despite working
at low pressures (3.44, 4.00 and 4.82 MPa), with a
salt rejection above 99%, which indicates that the
plant can be operated at a lower permeate flow with
similar efficiencies when operating at typical seawater
pressures (6.06MPa).

The intrinsic rejection of salts shown in Table
2, is in accordance with the data reported by the
technical sheet of the SW30-2540 membrane module
(Lenntech, 2023), under very similar conditions the
rejection was 99.4% (conditions: 5.5 MPa, 2600 L
d−1, 2.8 m2 and 32,000 mg L−1 of NaCl), all the salt
rejections were higher, except the one obtained at 3.44
MPa, which was of 99.39%, which is very similar to
that proposed by the manufacturer’s technical sheet
Lenntech (2023).

The rejection of salts shown in Table 1, in the case
of the lowest rejection, which was 99.46%. Therefore,
the concentration of the permeate flow was 73 mg L−1

which, according to NOM-127-SSA1-2021, is a low-
salt water which is approved for human consumption.
It can also be used in agriculture and industry.

In the case of Table 2, the lowest rejection
is still taken, which was 99.39%. Therefore, the
concentration of the permeate flow was 217 mg L−1,
NOM-127-SSA1-2021 indicates that it is approved for
human consumption.
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model, with an R2 adjustment equal to 0.9984, where the pressure in MPa corresponds to the 322 
X axis, while CP is indicated on the Y axis, for brackish water as feed water to the reverse 323 
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Figure 4. Pressure (MPa) versus flux (L m−2 h−1) of
the brackish water experiment (13,535 mg L−1).

Figure 4 shows that the permeate flux is
directly proportional to the pressure increase (Andrade
Salazar et al., 2013; Nolasco Medrano, 2019). The
linear regression mathematical model ratifies the
linear behavior of the pressure versus permeate
flux data, the R2 of 0.9928 demonstrates the
linearity of the model. According to Martínez-
Pérez (2023) "The correlation coefficient allows
measuring the general agreement between two or
more measurements involving quantitative variables,
obtained with different measuring instruments or
evaluators".

Figure 5 shows that the relationship of pressure
versus CP has a nonlinear behavior with an R2 value
of 0.926, so when a polynomial model was applied,
it was adjusted to a fourth order model, with an R2

adjustment equal to 0.9984, where the pressure in MPa
corresponds to the X axis, while CP is indicated on the
Y axis, for brackish water as feed water to the reverse
osmosis process.
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Figure 5. Polynomial Pressure Adjustment (MPa)
versus CP of the brackish water experiment (13,535
mg L−1).

More complex models such as the Boltzmann
lattice method have been evaluated by Hu et al.
(2023), for the analysis of fluid dynamics and transfer
phenomena. As well as Nguyen et al. (2022), for
calculating the ion flux of a feed water to reverse
osmosis processes with emphasis on the polarization
factor, where the Poisson-Nernst-Planck equations
were implemented.

Considering the values in Table 1, the model
obtained from Figure 5 and not exceeding the CP
values suggested in this research, the following water
supply projection is presented. At a pressure of 2.76
MPa the CP value calculated by the model was 1.13,
which corresponds to that recommended by Kucera,
2015b. With the above pressure and using the equation
in Figure 4, we have a permeate flow of 82.20
L h−1, which represents 1,972 L in a day, which
according to Tello-Moreno (2008) the minimum water
consumption requirement for a person in a developing
country is 50 L d−1, therefore, the plant in such
conditions would supply 39 people with 24 h of work.

In the model obtained, the resulting CP value
was adjusted to different pressures, obtaining very
similar theoretical and experimental values, restricted
to brackish water. The usefulness of the model will be
useful in decision making for the control or prevention
of CP at certain pressures in the industrial, human
consumption and research sectors. 
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Figure 6. Pressure (MPa) versus flux (L m−2 h−1) of
the seawater experiment (35,522 mg L−1).
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Figure 7. Polynomial Pressure Adjustment (MPa) versus CP with seawater (35,522 mg L-1). 361 
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Table 3. Concentration polarization results: Theoretical and experimental. 363 

Pressure 
(MPa) 

⎾ 
Experimental 

⎾ 
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Standard 
deviation Variance R2 

Linear 
R2 

Polynomial 
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0.926 0.9984 
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2.76 1.14 1.13 0.0071 0.0001 
3.65 1.22 1.22 0.0000 0.0000 
4.69 1.69 1.74 0.0354 0.0013 
5.17 2.04 2.05 0.0071 0.0000 
6.07 2.15 2.21 0.0424 0.0018 

   
Seawater calculations at 35,522 mg L-1   

3.44 1.02 1.01 0.0071 0.0001 

0.9841 0.9924 4.00 1.04 1.06 0.0141 0.0002 
4.82 1.15 1.14 0.0071 0.0001 
6.06 1.30 1.29 0.0071 0.0001 

 364 
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according to Ruiz-Espejo (2017) standard deviation is defined as the square root of the 367 
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Figure 7. Polynomial Pressure Adjustment (MPa)
versus CP with seawater (35,522 mg L−1).

Although the experimental results behave in a
linear way with an R2 value of 0.9841, a second order
polynomial model was applied, resulting in an R2 of
0.9924 (see Figure 7), so it is suggested to use the latter
model, due to the closeness of the experimental results
with respect to the modeled data. Suggested model for
seawater as feed water for the reverse osmosis process.

Considering the values in Table 2, the model
obtained from Figure 7 and not exceeding the CP
values suggested in this research, the following water
supply projection is presented. At a pressure of 4.82
MPa the CP value calculated by the model was
1.14, which corresponds to that recommended by
Kucera (2015). With the above pressure and using
the equation in Figure 6, we have a permeate flow
of 30.58 L h−1, which represents 734 L in one day,
which according to Tello-Moreno (2008) the minimum
water consumption requirement for one person in a
developing country is 50 L d−1, therefore, the plant
in such conditions would supply 14 people with 24 h
of work.

Table 3 describes the different ways in which the
CP can be obtained experimentally and theoretically.
It is observed with descriptive statistics standard
deviation values which according to Ruiz-Espejo
(2017) standard deviation is defined as the square root
of the variance of a population or of a random variable
that represents it, it is well known that less than 10%
is allowed and reliable. It has a great importance in
classical inference, especially in relation to the study
of the normal distribution as one of the parameters that
determine the distribution in addition to the population
mean, but its interest is more reduced in traditional
inference in finite populations values less than 10%,
which according to is allowed and acceptable. The
variance value has the same tendency with values close
to zero, which indicates the reliability of the model.
This shows us that the obtained models potentiate the
decision making to predict the CP, without having to
instrument, or stop the operation process of a reverse
osmosis plant. Under this context, process control,
time savings due to stoppages or damages will be
avoided. On the other hand, if the model predicts high
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Table 3. Concentration polarization results: Theoretical and experimental.

Pressure Γ Γ Standard Variance R2 R2

(MPa) Experimental Theoretical deviation Linear Polynomial

Brackish water calculations at 13,535 mg L−1

1.9 1.05 1.04 0.0071 0.0001
2.27 1.10 1.12 0.0141 0.0002
2.76 1.14 1.13 0.0071 0.0001
3.65 1.22 1.22 0.0000 0.0000 0.926 0.9984
4.69 1.69 1.74 0.0354 0.0013
5.17 2.04 2.05 0.0071 0.0000
6.07 2.15 2.21 0.0424 0.0018

Seawater calculations at 35,522 mg L−1

3.44 1.02 1.01 0.0071 0.0001
4.00 1.04 1.06 0.0141 0.0002 0.9841 0.9924
4.82 1.15 1.14 0.0071 0.0001
6.06 1.30 1.29 0.0071 0.0001

CP values, adjustments can be made to the antiscalant
dosage and frequency to be applied. These examples
of the application of the model will be the results
and contributions to the scientific community for its
implementation and prevention.

Conclusions

The results found in this study confirm that the
concentration polarization factor is directly related to
the nominal operating pressure, permeate flux and
membrane active area. A fourth-degree polynomial
model was determined that allows to quickly calculate
the polarization factor of brackish water at 13,535 mg
L−1 in a range of pressures from 1.9 to 6.07 MPa,
in the same way a second-order model was obtained
for a seawater concentration of 35,522 mg L−1 with
pressure range from 3.9 to 6.06 MPa, the model
obtained CP values very close between experimental
and theoretical data, which indicates the veracity of
these, supported by the descriptive statistical analysis.

Additionally, it is ratified that these suggested
models are a quick tool for the quantification of the
polarization factor, which could be useful in future
research for the analysis of this phenomenon and avoid
the difficulties of its calculation in real life. In addition,
by predicting this phenomenon, it will be possible to
apply the knowledge acquired for the good of society
by providing quality and quantity of water, but with
the help of the model to prevent problems during
operation.
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Nomenclature

CT electrical conductivity of water at the
measured temperature, µS cm−1

T temperature at which conductivity
was measured in the seawater, K

Qp permeate flow rate, m3 s−1

Am membrane area, m2

Jv flux, m s−1

µw viscosity, Pa s
% Robs salt rejection observed, %
Ca feed water concentration, mg L−1

Cp permeate water concentration, mg L−1

Rm membrane resistance, 1 m−1

β experimental constant with a value of
4.10×10−7 for salt from instant ocean
sea salt.

α0 constant for instant ocean sea salt of
0.0209026.

α1 constant for instant ocean sea salt of
0.0347997.

ω is the result of the iteration of the
previous equation.

b1, . . . ,b5 constants for solution viscosity
calculation.
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