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Abstract

The complexity in time series of two-phase flow is associate with the interaction of gas bubbles and liquid phase, this interaction
shows characteristic that depend on different condition such as low rate, physical properties phases, geometry, and tube
inclination, etc. This work uses singular value decomposition (SVD) entropy and rescaled range analysis (R/S) to evaluated
complexity in voltage signals of four flow patterns. Entropy helps to understand the complexity of each flow pattern, while R/S
analysis allows detecting long-range correlations that exist in a time series. Results shows the entropy by SVD and R/S analysis
in time series are interesting techniques that can use for the identification of flow patterns with the advantage that are easy to use
and implement due to their low computational cost.

Keywords: flow-pattern, fractal analysis, entropy, voltage series.

Resumen

La complejidad en las series temporales de flujo bifdsico estd asociada con la interaccién de las burbujas de gas y la fase liquida,
esta interaccion muestra caracteristicas que dependen de diferentes condiciones como las velocidades de flujo, las propiedades
fisicas de las fases, la geometria y la inclinacion del tubo, etc. Este trabajo utiliza la entropia a través de descomposicién de
valores singulares (SVD) y el andlisis de rango reescalado (R/S) para evaluar la complejidad en las sefiales de tensién de cuatro
patrones de flujo. La entropia ayuda a comprender la complejidad de cada patrén de flujo, mientras que el analisis R/S permite
detectar las correlaciones de largo alcance que existen en una serie temporal. Los resultados muestran que la entropia por SVD y
el andlisis R/S en series temporales son técnicas interesantes que pueden utilizarse para la identificacién de patrones de flujo con
la ventaja de que son féciles de utilizar e implementar debido a su bajo coste computacional.

Palabras clave: flujo biféasico, andlisis fractal, entropia, series de voltaje.
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1 Introduction

In a wide range of industrial process there is the
need for flows through pipelines. Some examples
are flows in condenser, reactors, heat exchanger, and
others. The importance of prediction gas-liquid flow
patterns depends on the natural understanding of their
interactions. These interactions are manifested in the
flow properties, rate flow, diameter, inclination in
pipeline, etc. (Firouzi & Hashemabadi, 2009). This
is reflected in the design, operation, and handling
of fluids in industrial processes. For example, in the
oil industry the simultaneous flow of liquid and gas
through pipelines is widely present. When gas and
liquid flow through a pipeline, various flow patterns
can occur, depending on the geometry, pipe size, fluid
properties, flow rates and direction, as well as the
shape and inclination of the pipeline (Kleinstreuer &
Griffith, 2004; Rouhani & Sohal, 1983).

The complexity of two-phase flow patterns is
associated with chaotic behavior that is difficult to
analyze. When examining time series of biphasic
flows, we wish to determine their complexity
according to the definition given by Kolmogorov
complexity theory, which defines the complexity of
a finite object in terms of the smallest computer
program that can reproduce that object. In a time
series, it is required that it contain the minimum
information necessary to describe a process, that is,
that there is no redundant information in the data. In
a biphasic flow that has one continuous phase and the
other dispersed phase. The dispersed phase can be in
the form of gas bubbles (gas) or particles (solid or
liquid) of different sizes and shapes. The geometric
distribution of phases, known as flow topology, is an
important characteristic of two-phase flows because
it influences the interactions between phases where
mass, momentum, and energy can be exchanged.
Thus, the complexity in this process is the result of
the intermingled effects of many factors that intervene
and enhance each other.

The detailed description of two-phase flow in pipes
is made difficult by the existence of an interface
between the two phases. For a gas-liquid flow,
depending on the flow velocities, physical properties
of the phases, pipe geometry and inclination, there is
an interface which comes in a wide variety of forms
(Aguilar et al., 2014). According to the shape of this
interface, flow patterns have been characterized in a
two-phase system. The most observed flow patterns
in the flow of gas-liquid mixtures in horizontal pipes
are stratified flow, bubbly flow, annular flow, and slug
flow. For downward flow in vertical and inclined pipes,
annular and stratified flow predominate (Hernandez,
2008).

Different methods have been studied to identify

the flow patterns, of which the following are
highlighted: a) visualization and experimental
methods. (Kleinstreuer & Griffith, 2004; Rouhani
& Sohal, 1983; Cheng et al., 2008). b) flow maps
obtained from experimental results and theoretical
models (Cheng et al., 2008; O’Donovan & Grimes,
2020, Wu et al., 2017), ¢) time series analysis based on
conventional statistical methods, d) neural networks
and e) time series analysis based on unconventional
methods, such as chaos theory. These methods aim to
discriminate flow patterns based on the information
hidden in the fluctuations of a variable (Moguel e al.,
2021).

Serizawa et al. (2002) performed adiabatic flow
experiments with vapor-water and air-water flows
in microchannels where they obtained that the flow
patterns were affected by the surface roughness, as
a result they presented a flow pattern map based
on experimental observations. In turn, Wu et al.
(2017) studied the critical factors of pipe geometry;
diameters, deviation from vertical, fluid properties and
flow conditions that affect the transition from one flow
pattern to another.

Recently, work has been published on the specific
modeling of the various flow patterns. In general,
these models work well with the data sets used in
their development. However, few papers have shown
a real data set. This may be because direct observation
and identification of flow regimes in industrial plant
pipelines is difficult, as generally industrial fluids
flow in steel pipes and often at high pressures and/or
temperatures, which affects the availability of reliable
experimental data over a wide range of conditions
(Xue et al., 2014).

Despite advances in the field of flow pattern
identification and analysis, most research has focused
on flow in horizontal (or near-horizontal) pipes, which
behave differently from vertical flow, where gravity
affects the flow. Therefore, the analysis of flow
patterns in inclined pipes remains a challenge due to
the complexity of phase interactions in two-phase flow
(Cheng et al., 2008).

Singular value decomposition has been applied to
signal processing problems (Abdi, 2007) and recovery
information (Shen et al., 2020), where the relevance
of obtaining correlations in data series lies in the
identification of patterns involved in the dynamics
of complex processes. Therefore, this paper proposes
the use of singular value decomposition (SVD)
entropy (Caraiani, 2014) as a suitable framework
for the analysis of time series, specifically for the
study of the complexity of two-phase flow patterns.
SVD-based entropy provides information on the
nonlinear structures present in signals of different
flow patterns and at different time scales. In addition,
in order to know the long-range dependence of a
time series, the rescaled range (R/S) analysis is
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used, which will be explained below, and will be
used to determine the Hurst coefficient (H). The
latter is related to the autocorrelation of the time
series. The value of the Hurst coeflicient will be in
the interval [0,1] and depending on the value that
the coefficient takes in the interval, it is possible
to determine some characteristics of the process to
which said coefficient corresponds. Recognizing the
importance of integrating available experimental data,
two-phase downward flow data from a stress-time
series representing the liquid-gas fraction in a pipe
cross section has been used.

2 Conceptual framework and
methodology

2.1 Singular Value Decomposition Entropy

Singular value decomposition entropy is used as
a measure of complexity of a time series. The
geometrical SVD generates linear transformations,
which give an idea of the complexity of a matrix.

Given a time series {X(#;)} obtained as a sequence
of real numbers of length n, X(#;) is the given value in
time.

X(ti,n) ={X(),X(t; +1),.... X[t +n-1)} (D)

The following matrix of delayed signals is constructed
where the rows are formed by the n delayed
subsequences:

X(t; - n)
X(tiv1:n)
= @)
X(tiyn-1:1)

The matrix is correlated if there is a relationship
between its row vectors, which indicates that the
greatest amount of information is concentrated in
a subspace of reduced dimension. On the contrary,
the absence of correlations implies that the reduction
of dimension leads to loss of information. This
means that all row vectors in the matrix without
correlations contain the same amount of information
and, therefore, no vector can be neglected without
suffering a deterioration in the reconstruction capacity
of the process.

To analyze the time series of the flow patterns
described above, singular value decomposition is
proposed as a suitable approach to address the
question of whether the matrix M is correlated or not.
SVD is a factorization of a matrix into the product of
three matrices, for the matrix given by Eq. (2), SVD
leads to the factorization of the form:

M(tin) = Utsm) Y (Vi (tsm) ()

U(t;;n) and VT (t;;n) are unitary orthogonal matrices
(VT = v71 and 3(t;;n) is a diagonal matrix (n x
n) formed by the singular values of the matrix of
delayed signals. These values are obtained by finding
the square root of the non-zero eigenvalues of MM .
Thus, o; = VA; corresponds to the i-th singular value
of M(t;;n) which are ordered in decreasing order.
So, the first value contains the most information in
the system, oy > 03 > -+ > 05. The columns of
U(t;;n) are the singular vectors on the left side and
the columns of V7 (#;;n) are the singular vectors on the
right (Wall et al., 2003).

Geometrically the SVD produces a change
of coordinates through rotations (U (ti;m)VT (1;n))
and deformation }(#;;n). As an example, is the
transformation that the unit circle undergoes after the
SVD, VT(tl-;n) produces the rotation of the sphere,
>.(ti;n) generates a deformation to an ellipse where
the first singular values are the semi-axes and finally,
U(t;;n) produces a rotation of the ellipse. The singular
values of the matrix M(t;;n) reflect the correlation
information of the time series X(¢;) for a time horizon
of n discrete times.

We can construct a complexity measure with the
entropy, using the singular values of the matrix M(¢;;n)
following Sabatini (2000). The original idea of entropy
dates back to Shannon (1948) and is considered as
a statistical measure of randomness and amount of
information; the more information there is the less
entropy (Rao et al., 2004). This is calculated from
the distribution of the singular values of the matrix
M(t;;n). First, the singular values are normalized as
follows (Caraiani, 2014):

oi(ti;n)

“4)

aittin) " oi(tin)
Then, the entropy depends on the time scale n. One
would like to compare the entropy over a range of
n time scales. A normalized entropy is calculated by
noting that the maximum entropy for a given time
scale is In(n). In such a case, all singular values are
equal to 1/n, reflecting that the information is likely to
travel without a preferred direction. So, the normalized
entropy is given by (Alvarez-Ramirez & Rodriguez,
2021):

1

Sx(ti;n) = "ty

D aitmIn(@in) ()
i=1

For an uncorrelated process (e.g., white noise),
oi(tiyn) = 1/n, i = 1,...,n such that Sx(t;;n) = 1.
On the contrary, a matrix where correlations exist one
should have that S x(¢;;n) < 1.

2.2 Discrete Fourier Transform

In this way, a tool used in the identification of
hidden patterns in time series is the discrete Fourier
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transform which transforms a function from the time
domain to the frequency domain, without altering
the information content (Wang, 1984). The discrete
Fourier transform of a sequence of N complex
numbers xp,...,xy—; from the time domain to
X0,...,Xy—1 in the frequency domain is defined as
follows:

N-1 .
Tl
X[kl = )" x,e” v e ©)
n=0
. L . _2mi
where i is the imaginary unit and ¢~V ¥ represents

the N-th root of the unit for each k =0,...,N — 1. The
inverse discrete Fourier transform (IDFT) is given by:

1A 2ni
_ ZLkn
x[n] = N ZXke N @)
k=0
for n = 0,...,N — 1. The complex numbers of

X represent the amplitude and phase of different
sinusoidal components of the input signal x. If we
represent X in polar form, we get a sinusoid of
amplitude and phase from the modulus and argument
of X. The magnitude is represented mathematically as

follows:
M = |X| = JRe(X)? + Im(X)? (8)

The phase is obtained from the argument of X as
follows:

0 = arg(X) = atan2(Im(X), Re(X)) )

The Discrete Fourier Transform is used in signal
processing by producing a decomposition of the signal
into components of different frequencies. In this way,
it is possible to obtain relevant information that is
not evident in the time domain. The technique is also
extended to 2D image processing where it is used to
enhance, define or extract information from a digital
image.

2.3 Hurts exponent and Rescaled range
analysis (R/S)

Rescaled range analysis (R/S) is a statistical tool
used for the analysis of time series dynamics and
to determine the presence or absence of long-range
dependence in a process (Hurst, 1951). The rescaled
range analysis proposed by Hurst was fundamental
for the study and characterization of complex time
series, such as in the field of financial market
(Alvarez-Ramirez et al., 2008), price dynamics of
high value products (Alvarez-Ramirez et al., 2002),
climatological series (Meraz et al., 2015), among
others.

For univariate time series, rescaled rank analysis
(R/S analysis) is carried out as follows. The data
is center, i.e., the mean is subtracted from the time

series, subsequently the run through the mean-adjusted
series is performed. In other words, the accumulated
deviations are obtained.

J
ZOEDR(D! (10)
i=1

The series ranges are obtained by obtaining the
difference between the maximum value and the
minimum value of the accumulated deviations.

R(tj) =max (Z(t)). Z(t2). ... Z(t}))
—min(Z(t).Z(t2).....Z(t)))  (11)

The standard deviation of the series is obtained.

1 J
S(tj) = J}Z(X(ti)_m(tj))z 12)
i=1

Finally, the rescaled range is calculated as follows

R(z))

(R/S)tj) = o=

Sy

It is noted that (R/S) is a dimensionless variable. For

a self-similar process, the rescaled rank series satisfies
the power law function:

13)

(R/S)()) = Ki¥! (14)
tj corresponds to the scale, K is a constant and
H is the Hurst exponent which is estimated as
the slope of a log-log plot of R/S versus t;. The
asymptotic behavior of the correlation function at
infinity determines the presence or absence of long-
range dependence. For sufficiently large time series,
H = 0.5 indicates randomness, H > 0.5 implies
that a series is persistent which characterizes long-
range correlated processes embedded in the series.
In contrast, H < 0.5 autocorrelation is anti-persistent
(Gneiting, & Schlather, 2004).

3 Materials and methods

3.1 Flow selection

In this work, the two-phase downward flow data
described by Moguel er al. (2021) were used. The
physical setup is described from a voltage-time series
representing the liquid-gas fraction in a pipe cross
section. The device interprets this fraction as a voltage
signal, with an acquisition frequency of 1000 Hz,
through a PC equipped with a multifunction I/O
card and a LabVIEW program. Voltage signals are
useful for characterizing biphasic flow patterns as
they directly reflect phase retention (Soedarmo et al.,
2018).
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Table 1. Description of flow characteristics (Moguel et al., 2021).

Flow pattern SW FF WA LS
A a B b C c D d
Vs (m/s) 05 05 005 005 07 07 07 07
Vsc (m/s) 05 07 05 05 3 4 05 1
0 -45 45 -8 80 -70 -70 -70 -70
Stratified wavy Falling film Wavy annular Liquid slip

Flow
direction

N %F

% LS

The liquid phase goes to
the bottom of the pipe
and the gas phase is at
the top. Waves form on

Low gas and liquid flow.
The liquid flows forming
a thin film adhered to the
wall and the gas flows

the interface between through the center of the
liquid and vapor. pipe, forming small
waves.

It is generated at high gas
flow velocities. Drag
forces acting on the
liquid film result in
erratic waves of large
amplitude.

The liquid forms a thick
film on the pipe walls. A
significant portion of the
liquid near the liquid-gas
interface breaks away
from the film and falls.

Figure 1. Flow patterns: stratified wavy (SW), falling film (FF), wavy annular flow (WA) and liquid slip flow (LS).

In addition, the series can be easily obtained
and reflect an apparently random behavior, interesting
characteristics that motivate the proposed analysis.

The complexity of the series has been extensively
studied in various areas of science as previously
mentioned. However, in the area of chemical
engineering, few studies of the complexity in chemical
processes have been visualized. Due to the need
to have reliable data to validate the proposed
analysis, the time series obtained by Moguel et
al. (2021) of four different flow patterns from an
experimental setup. Figure 1 presents the description
of these flow patterns; stratified wavy flow (SW)
and three subclassifications of annular flow named
falling film (FF), wavy annular (WA) and liquid slip
(LS). Previously these patterns were characterized
according to their wave structure and topology using
a high-speed camera (Al-Ruhaimani er al., 2017;
Moguel et al., 2021).

3.2 Gas-liquid fraction as a voltage time
series

The two-wire capacitance sensor is an electronic
device installed in the test section of the pipe. A pair
of parallel filaments pass through the cross section
of the pipe. The conductivity changes as a function
of the amount of liquid, the voltage between the
filaments is an instantaneous measurement of the gas-
liquid fraction. The voltage response range is 0 to 5
V; the greater the amount of liquid, the higher the

voltage. The capacitance sensor is calibrated daily due
to weather conditions. In addition, the voltage-time
series are normalized for comparison purposes. This
normalization is based on the sensor response when
the pipe is empty (V;;in) and when it is full (Viyqy). If V
is a voltage-time series, the normalized signal is Vg =
(V= Viin)/ Vimax — Vinin)- Voltage measurements were
sampled at 1000 Hz for 1 minute, obtaining time series
of 60,000 data for each experimental flow pattern. The
voltage time series correspond to different gas and
liquid velocities, as well as different pipe inclination
angles. The time series show an apparently random
behavior, with different amplitude ranges.

4 Results and discussion

A study of the complexity of the flow patterns for
each time series of the flows described in section 4
was performed using the entropy obtained by singular
value decomposition and Hurst analysis.

4.1 SVD Entropy

Figure 1 shows the entropy variation for the time series
corresponding to the flows: A) stratified wavy (SW);
B) falling film (FF); C) wavy annular (WA) and D)
liquid slip (LS). For the SW flow the entropy variation
with respect to scale exhibits the existence of small
fluctuations, using a low pass filter it is observed that

WWW.rmiq.org



Marin-Lopez et al./ Revista Mexicana de Ingenieria Quimica Vol. 22, No. 3(2023) Sim2347

A) —— entropy

06 — filter
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0.3/ ‘ —— entropy
‘ — filter
0.21 —— mean
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Time (s)

03} entropy
— filter
0.2/ —— mean
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Time (s)

a) entropy
— filter

0 10 20 30 40 50 60

—— entropy
— filter
—— mean

0 10 20 30 40 50 60
Time (s)

03} entropy
— filter
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Time (s)
entropy d)

— filter

0 10 20 30 40 50 60
Time (s)

Figure 2. Entropy of four flow patterns: A) SW: Vg1 = 0.5, Vsg = 0.5, angle = -45°; B) FF: Vg1 = 0.05, Vsg = 0.5,
angle = -85°% C) WA: Vg1 = 0.7, Vgg = 3, angle = -70°; D) LS: Vg1 = 0.7, Vsg = 0.5, angle = -70°; a) SW: Vg =
0.5, Vsg = 0.7, angle = -45°; b) FF: Vg1 = 0.05, Vs = 0.5, angle = -80°; ¢c) WA: Vg1 = 0.7, Vsg =4, angle = -70°

and d) LS: Vg1 = 0.7, Vgg = 1, angle = -70°.

these fluctuations generate an average entropy of 0.24
approximately. Figure a) corresponding to the SW
flow shows an increase in the mean entropy caused
by a 0.2 m/s increase in the gas surface velocity. The
FF flow pattern exhibits a considerable increase in
entropy fluctuations, indicating that the falling film
flow pattern is more complex than the stratified wavy
one. These fluctuations generate an average entropy
of 0.37. On the other hand, Figure b) indicates that a
variation produced by the reduction of the inclination
angle (reduction of 5 degrees) reflects an increase

in entropy, i.e., it is a more complex flow pattern,
obtaining an average entropy of 0.49.

Figure C) which corresponds to the WA flow
pattern generates a higher entropy compared to the
flow patterns of the previous cases with a mean
entropy of 0.53. Figure c) indicates that a increase
in gas surface velocity generates a increase in mean
entropy (0.56), which means a more complex flow
pattern. Finally, Figure D) represents the LS flow
pattern that generated a behavior with sustained
fluctuations with a mean entropy of 0.55. Figure d)
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indicates that a doubling of the gas surface velocity entropy behavior increases until it reaches a maximum
results in a decrease of the mean entropy. This may and then decreases when the gas velocity limit for that
indicate that by increasing the gas surface velocity the flow pattern is exceeded.

Table 2. Average entropy obtained for each flow pattern analyzed.

Flow pattern SW FF WA LS
A a B b C c D d
Sav 024 026 037 049 053 056 055 035
Table 3. Hurst analysis results obtained for the analyzed flow patterns
Flow pattern SW FF WA LS
A a B b C c D d
H 0475 0403 0.601 0.863 0.655 0.729 0.839 0.812
K 14385 4942 6.797 1.4 7312 1.671 1.039 1.024
R? 0.823 0.535 0916 0.887 0.575 0.831 0.974 0.954
0.7 0.7
A) — n=100 a) — n=100
os - -
EO'S 3045
Eo,z; g044 ~ - 4

0'20 10 20 30 40 50 60 0‘20 10 20 30 40 50 60
Time (s) Time (s)

— n=100 — n=100
03| ... n=200 03] .. n=200
-—- n=300 -—- n=300
025 10 20 30 40 50 60 02, 10 20 30 40 50 60
Time (s) Time (s)

02, 10 20 30 40 50 60 02, 10 20 30 40 50 60
Time (s) Time (s)
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Figure 3. Entropy for different scales for four flow patterns: A) SW: Vg1 = 0.5, Vsg = 0.5, angle = -45°; B) FF: Vg,
=0.05, Vgg = 0.5, angle = -85°; C) WA: Vg1 = 0.7, Vsg = 3, angle = -70°; D) LS: Vg1 = 0.7, Vsg = 0.5, angle =
-70°%; a) SW: Vg1 = 0.5, Vsg = 0.7, angle = -45°; b) FF: Vg1 = 0.05, Vg = 0.5, angle = -80°; ¢c) WA: Vg = 0.7,
Vsg =4, angle =-70° and d) LS: Vg = 0.7, Vsg = 1, angle = -70°.
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Figure 4. Hurst analysis for four flow patterns: A) SW: Vg = 0.5, Vs = 0.5, angle = -45°; B) FF: Vg1 = 0.05, Vsg
= 0.5, angle = -85°; C) WA: Vg1 = 0.7, Vs = 3, angle = -70°; D) LS: Vg1 = 0.7, Vsg = 0.5, angle = -70°; a) SW:
Vs = 0.5, Vsg = 0.7, angle = -45°; b) FF: Vg1 = 0.05, Vs = 0.5, angle = -80°; ¢c) WA: Vg1 = 0.7, Vsg = 4, angle

=-70°and d) LS: Vg7 =0.7, Vsg = 1, angle = -70°.

Table 2 shows the average entropy obtained for
each flow pattern analyzed, we can highlight that; a)
an increase in the surface velocity of the gas translates
into an increase in entropy, this up to a limit value
where the flow pattern can be modified, that is, it is
altered by the distribution of the gas molecules on
the liquid. Subsequently, the entropy decreases when
exceeding the maximum limit of gas velocity, this

decrease in entropy may be due to the creation of a
more orderly flow, by increasing the speed of the gas
molecules these pass with such speed so that the time
necessary to achieve a total dispersion of gas bubbles
is not given, b) the average entropy increases as the
gas velocity increases, this result suggests that the gas
flow velocity plays an important role in the liquid-gas
interaction and c) the decrease of the pipe inclination
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angle increases the entropy, which results in a flow
pattern with more complexity.

An analysis corresponding to the number of time
series data of the study flow patterns showed that the
entropy varies with time. This suggests that the stress
time series should relate to interactions of phenomena
at different time scales associated with the nature
of the flow patterns. Therefore, it is convenient to
consider the scale-dependent entropy, i.e., with the
number of data. Figure 3 presents the variation of
entropy with scale, three scales 100, 200 and 300 data
were analyzed for the four flow patterns. Figure 3
indicated that the entropy increases with scale, this
increase in entropy indicates that; as more data is
incorporated, the liquid and gas interaction become
more complex for longer time horizons.

4.2  Hurts exponent and Rescaled range
analysis (R/S)

Figure 4 shows the rescaled range (R/S) performed
on each time series of the four selected flow patterns.
From this analysis the Hurst exponent of the SW
flow pattern is less than 0.5, which implies an
anti-persistent signal. In addition, the other flow
patterns studied have Hurst exponents greater than
0.5, indicating the existence of hidden long-range
correlations in the time series.

Table 3 presents the condensed results of the global
R/S analysis performed on the analyzed flow pattern
series. In the SW flow pattern, the Hurst exponent
values are less than 0.5 indicating anti-persistent
correlations. For the FF, WA and LS flow the Hurts
exponent values are greater than 0.5 indicating that
the series are persistent. These results suggest that the
Hurst exponent can be used as an indicator of changes
in the flow regime, as Franca et al., (1991) obtained a
Hurts exponent of 0.73 for wavy flow patterns which
is similar to the results obtained in the present work.

Conclusions

The use of SVD entropy was explored to study the
complexity of liquid-gas two-phase flow patterns. The
exact decomposition of the delayed signal matrix in
terms of the singular components was performed,
and it was determined that the SVD entropy can be
easily extended to analyze the complexity of flow
patterns at various scales. Also, rescaled analysis
indicates that correlations between different flow
patterns and the Hurst exponent can be established.
The results show correlations associated with the
shape characteristics of each type of two-phase flow
pattern, which allows characterizing the nonlinear
dynamics by R/S analysis. The analysis was able to

detect variations of the Hurst exponent as a function
of changes in surface velocities, which can be very
useful to detect transition phenomena between flow
patterns. Therefore, SVD entropy and R/S analysis
can complement existing flow pattern identification
techniques with the advantage of being easy to apply,
having a low computational cost and making use of a
single voltage time series.
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