Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Alim24109


Development of modified cassava starches by ultrasound-assisted amylose/lauric acid complex formation

V. Ramos-Villacob, J.A. Figueroa-Flórez, J.G. Salcedo-Mendoza, J.E. Hernandez-Ruydíaz, L.A. Romero-Verbel

https://doi.org/10.24275/rmiq/Alim24109


 

Abstract

Tuber starches have a smooth surface and a dense amylopectin structure, which prevents the formation of complexes with lipid compounds. The present study evaluated the effect of ultrasound on the formation of starch-lipid complexes on cassava starch's structural, morphological, physicochemical, and digestibility properties. Lauric acid was added at concentrations of 0.075 and 0.15 % w/v to previously swollen cassava starch suspension (60 °C, 1 h), and the mixtures were stirred and heated in an ultrasonic bath at 60 °C (power 100W, frequency 37 and 80 kHz for 1 h). The starch modification was confirmed by infrared spectroscopy, showing the presence of the C=O group. The modified starches presented a V-type crystalline structure and lower crystallinity due to the modification conditions, lauric acid concentration, and ultrasonic effect. Deformations and partial ruptures of starch granules were observed under microscopy. In addition, the modified starches showed decreased amylose content and solubility in cold water, higher stability during heating, and lower retrogradation, attributed to the presence of lipids. There was also an increase in resistant starch content due to the formation of complexes. In conclusion, ultrasound is a promising technique for driving the formation of cassava starch-lauric acid complexes, with modified properties which may be expand their potential use in the food industry.

Keywords: Starch-lipid complex, cassava, sonication, frequency, digestion.

 


References

  • Alpizar-Reyes, E., Cruz-Olivares, J., Cortés-Camargo, S., Rodríguez-Huezo, M. E., Macías-Mendoza, J. O., Alvarez-Ramírez, J., & Pérez-Alonso, C. (2022). Structural, physicochemical, and emulsifying properties of pectin obtained by aqueous extraction from red pitaya (Hylocereus polyrhizus) peel. Revista Mexicana de Ingeniería Química, 21(3), 1–22. https://doi.org/10.24275/rmiq/Alim2887
  • Anggraini, V., Sudarmonowati, E., Hartati, N. S., Suurs, L., & Visser, R. G. F. (2009). Characterization of Cassava Starch Attributes of Different Genotypes. Starch - Stärke, 61(8), 472–481. https://doi.org/10.1002/star.200800121
  • Arenas, C. and Pedraza, D. (2017). Evaluación del proceso de modificación de almidón de papa mediante acetilación y oxidación, para su aplicación como excipiente en la industria farmacéutica a nivel laboratorio. Tesis de grado en Ingeniería química, Fundación universidad de américa, Colombia
  • Cao, F., Lu, S., Wang, L., Zheng, M., & Young Quek, S. (2023). Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chemistry, 415, 135765. https://doi.org/10.1016/j.foodchem.2023.135765
  • Chandak, A., Dhull, S. B., Chawla, P., Fogarasi, M., & Fogarasi, S. (2022). Effect of Single and Dual Modifications on Properties of Lotus Rhizome Starch Modified by Microwave and γ-Irradiation: A Comparative Study. Foods, 11(19), 2969. https://doi.org/10.3390/foods11192969
  • Chang, F., He, X., & Huang, Q. (2013). The physicochemical properties of swelled maize starch granules complexed with lauric acid. Food Hydrocolloids, 32(2), 365–372. https://doi.org/10.1016/j.foodhyd.2013.01.021
  • Chumsri, P., Panpipat, W., Cheong, L.-Z., & Chaijan, M. (2022). Formation of Intermediate Amylose Rice Starch–Lipid Complex Assisted by Ultrasonication. Foods, 11(16), 2430. https://doi.org/10.3390/foods11162430
  • D’Silva, T. V., Taylor, J. R. N., & Emmambux, M. N. (2011). Enhancement of the pasting properties of teff and maize starches through wet–heat processing with added stearic acid. Journal of Cereal Science, 53(2), 192–197. https://doi.org/10.1016/j.jcs.2010.12.002
  • Dewi, A. M. P., Santoso, U., Pranoto, Y., & Marseno, D. W. (2022). Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymers, 14(6), 1086. https://doi.org/10.3390/polym14061086
  • Di Marco, A. E., Ixtaina, V. Y., & Tomás, M. C. (2023). Effect of ligand concentration and ultrasonic treatment on inclusion complexes of high amylose corn starch with chia seed oil fatty acids. Food Hydrocolloids, 136, 108222. https://doi.org/10.1016/j.foodhyd.2022.108222
  • Falsafi, S. R., Maghsoudlou, Y., Aalami, M., Jafari, S. M., & Raeisi, M. (2019). Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities. Ultrasonics Sonochemistry, 53, 110–119. https://doi.org/10.1016/j.ultsonch.2018.12.039
  • Faridah, D. N., Andriani, I., Talitha, Z. A., & Budi, F. S. (2021). Physicochemical characterization of resistant starch type V (RS5) from manggu cassava starch (Manihot esculenta). Food Research, 5(2), 228–234. https://doi.org/10.26656/fr.2017.5(2).496
  • Figueroa-Flórez, J. (2020). Procesos de biocátalisis enzimática en almidones nativos y pre-gelatinizados de yuca: Efectos a nivel morfológico, molecular y de digestibilidad in vitro. Tesis de doctorado en Biotecnología, Universidad Nacional de Colombia, Colombia
  • Ge, X., Shen, H., Sun, X., Liang, W., Zhang, X., Sun, Z., Lu, Y., & Li, W. (2022). Insight into the improving effect on multi-scale structure, physicochemical and rheology properties of granular cold water soluble rice starch by dielectric barrier discharge cold plasma processing. Food Hydrocolloids, 130, 107732. https://doi.org/10.1016/j.foodhyd.2022.107732
  • Golkar, A., Milani, J. M., Motamedzadeghan, A., & Kenari, R. E. (2023). Physicochemical, structural, and rheological characteristics of corn starch after thermal-ultrasound processing. Food Science and Technology International, 29(2), 168–180. https://doi.org/10.1177/10820132211069242
  • Hagenimana, A., & Ding, X. (2005). A Comparative Study on Pasting and Hydration Properties of Native Rice Starches and Their Mixtures. Cereal Chemistry Journal, 82(1), 70–76. https://doi.org/10.1094/CC-82-0070
  • Jamalabadi, M., Saremnezhad, S., Bahrami, A., & Jafari, S. M. (2019). The influence of bath and probe sonication on the physicochemical and microstructural properties of wheat starch. Food Science & Nutrition, 7(7), 2427–2435. https://doi.org/10.1002/fsn3.1111
  • Jin, Z. (Ed.). (2018). Functional Starch and Applications in Food. Springer Singapore. https://doi.org/10.1007/978-981-13-1077-5
  • Kang, X., Liu, P., Gao, W., Wu, Z., Yu, B., Wang, R., Cui, B., Qiu, L., & Sun, C. (2020). Preparation of starch-lipid complex by ultrasonication and its film forming capacity. Food Hydrocolloids, 99, 105340. https://doi.org/10.1016/j.foodhyd.2019.105340
  • Kaur, A., Singh, N., Ezekiel, R., & Guraya, H. S. (2007). Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry, 101(2), 643–651. https://doi.org/10.1016/j.foodchem.2006.01.054
  • Kaur, K., & Singh, N. (2000). Amylose-lipid complex formation during cooking of rice flour. Food Chemistry, 71(4), 511–517. https://doi.org/10.1016/S0308-8146(00)00202-8
  • Królikowska, K., Pietrzyk, S., Pustkowiak, H., & Wolak, K. (2022). The effect of cassava and wheat starches complexation with selected fatty acids on their functional properties. Journal of Food Science and Technology, 59(4), 1440–1449. https://doi.org/10.1007/s13197-021-05153-x
  • Li, Q., Dong, Y., Gao, Y., Du, S., Li, W., & Yu, X. (2021). Functional Properties and Structural Characteristics of Starch–Fatty Acid Complexes Prepared at High Temperature. Journal of Agricultural and Food Chemistry, 69(32), 9076–9085. https://doi.org/10.1021/acs.jafc.1c00110
  • Li, X., Gao, X., Lu, J., Mao, X., Wang, Y., Feng, D., Cao, J., Huang, L., & Gao, W. (2019). Complex formation, physicochemical properties of different concentration of palmitic acid yam (Dioscorea pposita Thunb.) starch preparation mixtures. LWT, 101(November 2018), 130–137. https://doi.org/10.1016/j.lwt.2018.11.032
  • Liu, K., Zu, Y., Chi, C., Gu, B., Chen, L., & Li, X. (2018). Modulation of the digestibility and multi-scale structure of cassava starch by controlling the cassava growth period. International Journal of Biological Macromolecules, 120, 346–353. https://doi.org/10.1016/j.ijbiomac.2018.07.184
  • Liu, Q., Wang, Y., Yang, Y., Yu, X., Xu, L., Jiao, A., & Jin, Z. (2023). Structure, physicochemical properties and in vitro digestibility of extruded starch-lauric acid complexes with different amylose contents. Food Hydrocolloids, 136(March 2022), 108239. https://doi.org/10.1016/j.foodhyd.2022.108239
  • Lu, X., Liu, H., & Huang, Q. (2020). Fabrication and characterization of resistant starch stabilized Pickering emulsions. Food Hydrocolloids, 103, 105703. https://doi.org/10.1016/j.foodhyd.2020.105703
  • Luo, S., Zeng, Z., Mei, Y., Huang, K., Wu, J., Liu, C., & Hu, X. (2020). Improving ordered arrangement of the short-chain amylose-lipid complex by narrowing molecular weight distribution of short-chain amylose. Carbohydrate Polymers, 240, 116359. https://doi.org/10.1016/j.carbpol.2020.116359
  • Marinopoulou, A., Papastergiadis, E., & Raphaelides, S. N. (2016). An investigation into the structure, morphology and thermal properties of amylomaize starch-fatty acid complexes prepared at different temperatures. Food Research International, 90, 111–120. https://doi.org/10.1016/j.foodres.2016.10.035
  • Martins, A., Beninca, C., Bet, C. D., Bisinella, R. Z. B., de Oliveira, C. S., Hornung, P. S., & Schnitzler, E. (2020). Ultrasonic modification of purple taro starch (Colocasia esculenta B. Tini): structural, psychochemical and thermal properties. Journal of Thermal Analysis and Calorimetry, 142(2), 819–828. https://doi.org/10.1007/s10973-020-09298-3
  • Méndez, P. A., Méndez, Á. M., Martínez, L. N., Vargas, B., & López, B. L. (2022). Cassava and banana starch modified with maleic anhydride-poly (ethylene glycol) methyl ether (Ma-mPEG): A comparative study of their physicochemical properties as coatings. International Journal of Biological Macromolecules, 205(January), 1–14. https://doi.org/10.1016/j.ijbiomac.2022.02.053
  • Niba, L. L., Bokanga, M. M., Jackson, F. L., Schlimme, D. S., & Li, B. W. (2002). Physicochemical Properties and Starch Granular Characteristics of Flour from Various Manihot Esculenta (Cassava) Genotypes. Journal of Food Science, 67(5), 1701–1705. https://doi.org/10.1111/j.1365-2621.2002.tb08709.x
  • Oyeyinka, S. A., Adegoke, R., Oyeyinka, A. T., Salami, K. O., Olagunju, O. F., Kolawole, F. L., Joseph, J. K., & Bolarinwa, I. F. (2018). Effect of annealing on the functionality of Bambara groundnut ( Vigna subterranea ) starch-palmitic acid complex. International Journal of Food Science & Technology, 53(2), 549–555. https://doi.org/10.1111/ijfs.13635
  • Oyeyinka, S. A., Kayitesi, E., Diarra, S. S., Adedeji, A. A., Amonsou, E. O., & Singh, S. (2021). Bambara Groundnut Starch. In Food and Potential Industrial Applications of Bambara Groundnut (pp. 85–118). Springer International Publishing. https://doi.org/10.1007/978-3-030-73920-1_6
  • Oyeyinka, S. A., Singh, S., Venter, S. L., & Amonsou, E. O. (2017). Effect of lipid types on complexation and some physicochemical properties of bambara groundnut starch. Starch/Staerke, 69(3–4), 1–10. https://doi.org/10.1002/star.201600158
  • Raza, H., Ameer, K., Ren, X., Liang, Q., Chen, X., Chen, H., & Ma, H. (2021). Physicochemical properties and digestion mechanism of starch-linoleic acid complex induced by multi-frequency power ultrasound. Food Chemistry, 364(February), 130392. https://doi.org/10.1016/j.foodchem.2021.130392
  • Raza, H., Liang, Q., Ameer, K., Ma, H., & Ren, X. (2022). Dual-frequency power ultrasound effects on the complexing index, physicochemical properties, and digestion mechanism of arrowhead starch-lipid complexes. Ultrasonics Sonochemistry, 84, 105978. https://doi.org/10.1016/j.ultsonch.2022.105978
  • Reyes, I., Rodríguez-Huezo, M. E., & Garcia-Diaz, S. (2023). Opuntia ficus-indica mucilage reduces wheat starch in vitro digestibility. Revista Mexicana de Ingeniería Química, 22(2), 1–10. https://doi.org/10.24275/rmiq/Alim2316
  • Rolland-Sabaté, A., Sánchez, T., Buléon, A., Colonna, P., Jaillais, B., Ceballos, H., & Dufour, D. (2012). Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocolloids, 27(1), 161–174. https://doi.org/10.1016/j.foodhyd.2011.07.008
  • Salgado-Delgado, A. M., Lozano-Pineda, E., Salgado-Delgado, R., Hernández-Uribe, J. P., Olarte-Paredes, A., & Granados-Baeza, M. J. (2022). Chemical modification of rice (Oryza sativa) and potato (Solanum tuberosum) starches by silanization with trimethoxy(methyl)silane. Revista Mexicana de Ingeniería Química, 21(3), 1–16. https://doi.org/10.24275/rmiq/Alim2802
  • Serna-Fadul, T. (2022). Desarrollo de una premezcla en polvo para pandebono con incorporación de harina modificada de yuca (Manihot esculenta) y componentes bioactivos de harina nativa de ahuyama (Cucurbita spp.). Tesis de maestría en Ingeniería Agroindustrial, Universidad Nacional de Colombia, Colombia.
  • Shi, M., Wang, F., Lan, P., Zhang, Y., Zhang, M., Yan, Y., & Liu, Y. (2021). Effect of ultrasonic intensity on structure and properties of wheat starch-monoglyceride complex and its influence on quality of norther-style Chinese steamed bread. LWT, 138, 110677. https://doi.org/10.1016/j.lwt.2020.110677
  • Sun, S., Jin, Y., Hong, Y., Gu, Z., Cheng, L., Li, Z., & Li, C. (2021). Effects of fatty acids with various chain lengths and degrees of unsaturation on the structure, physicochemical properties and digestibility of maize starch-fatty acid complexes. Food Hydrocolloids, 110, 106224. https://doi.org/10.1016/j.foodhyd.2020.106224
  • Tang, J., Liang, Q., Ren, X., Raza, H., & Ma, H. (2022). Insights into ultrasound-induced starch-lipid complexes to understand physicochemical and nutritional interventions. International Journal of Biological Macromolecules, 222(PA), 950–960. https://doi.org/10.1016/j.ijbiomac.2022.09.242
  • Tufvesson, F., Wahlgren, M., & Eliasson, A.-C. (2003). Formation of Amylose-Lipid Complexes and Effects of Temperature Treatment. Part 2. Fatty Acids. Starch - Stärke, 55(34), 138–149. https://doi.org/10.1002/star.200390028
  • Vasiliadou, E., Raphaelides, S. N., & Papastergiadis, E. (2015). Effect of heating time and temperature on partially gelatinized starch-fatty acid interactions. LWT - Food Science and Technology, 60(2), 698–707. https://doi.org/10.1016/j.lwt.2014.10.026
  • Wang, H., Xu, K., Ma, Y., Liang, Y., Zhang, H., & Chen, L. (2020). Impact of ultrasonication on the aggregation structure and physicochemical characteristics of sweet potato starch. Ultrasonics Sonochemistry, 63, 104868. https://doi.org/10.1016/j.ultsonch.2019.104868
  • Wang, L., Wang, W., Wang, Y., Xiong, G., Mei, X., Wu, W., Ding, A., Li, X., Qiao, Y., & Liao, L. (2018). Effects of fatty acid chain length on properties of potato starch–fatty acid complexes under partially gelatinization. International Journal of Food Properties, 21(1), 2121–2134. https://doi.org/10.1080/10942912.2018.1489842
  • Wang, S., Chao, C., Cai, J., Niu, B., Copeland, L., & Wang, S. (2020). Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1056–1079. https://doi.org/10.1111/1541-4337.12550
  • Wang, S., Wang, J., Yu, J., & Wang, S. (2016). Effect of fatty acids on functional properties of normal wheat and waxy wheat starches: A structural basis. Food Chemistry, 190, 285–292. https://doi.org/10.1016/j.foodchem.2015.05.086
  • Wu, X., Jiang, Y., Wang, X., Fang, Y., Lin, Q., & Ding, Y. (2022). Structural and in vitro starch digestion properties of starch‐fatty acid nanocomplexes: effect of chain lengths and degree of unsaturation of fatty acids. Journal of the Science of Food and Agriculture, 102(15), 7239–7248. https://doi.org/10.1002/jsfa.12089
  • Xiao, Y., Wu, X., Zhang, B., Luo, F., Lin, Q., & Ding, Y. (2021). Understanding the aggregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. International Journal of Biological Macromolecules, 189, 1008–1019. https://doi.org/10.1016/j.ijbiomac.2021.08.163
  • Zabar, S., Lesmes, U., Katz, I., Shimoni, E., & Bianco-Peled, H. (2010). Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method. Food Hydrocolloids, 24(4), 347–357. https://doi.org/10.1016/j.foodhyd.2009.10.015
  • Zhang, J., Ran, C., Jiang, X., & Dou, J. (2021). Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch. Lwt, 152(June), 112320. https://doi.org/10.1016/j.lwt.2021.112320
  • Zhong, Y., Bertoft, E., Li, Z., Blennow, A., & Liu, X. (2020). Amylopectin starch granule lamellar structure as deduced from unit chain length data. Food Hydrocolloids, 108, 106053. https://doi.org/10.1016/j.foodhyd.2020.106053
  • Zhou, Z., Liang, Z., Zhang, Y., Hu, H., Gan, T., & Huang, Z. (2023). Facile solid-phase synthesis of starch-fatty acid complexes via mechanical activation for stabilizing curcumin-loaded Pickering emulsions. Food Research International, 166, 112625. https://doi.org/10.1016/j.foodres.2023.112625TT