Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Alim24142


Isolation and characterization of epiphytic, fructanolytic, homofermentative lactic acid bacteria from Agave salmiana

D. Gallardo-Martínez, G. Viniegra-González, F. Figueroa-Martínez, J. Rocha, A. Cruz-Guerrero

https://doi.org/10.24275/rmiq/Alim24142


 

Abstract

Lactic acid is a chemical compound that plays important functions in various biochemical processes and has different applications in industries such as food, cosmetics, among others. Therefore, there is a constant search for this compound which can be obtained by lactic fermentation. Here a collection of Agave epiphytic lactic acid bacteria is presented with the purpose to use them for direct homo lactic fermentation of fructans, as an alternative process for silage and industrial fermentations, based on Agave plants prevalent in semi desertic lands, instead of the conventional starch crops of temperate weather. This way, abundant Agave residues can be used to support cattle and lactic acid production. A set of 260 isolates were screened in Petri dishes and test tubes for fructan homolactic fermentation. Best strains were able to transform more than 70% of a 20 g/L fructan solution in lactic acid solutionith little or negligible fermentation by-products. Analysis of 16S DNA segments allowed the identification of most productive strains belonging to genus Enterococcus, Lacticaseibacillus and Bacillus. Direct lactic acid fermentation of fructans, extracted from Agave biomass, seems to be an interesting alternative to decrease upstream expenses for industrial lactic acid production as compared to conventional glucose fermentation.

Keywords: Epiphytic bacteria, Agave salmiana, agave fructans, lactic acid.

 


References

  • Abdel-Rahman, M.A., Tashiro, Y. and Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31(6), 877–902. doi:10.1016/j.biotechadv.2013.04.002
  • Aldrete-Herrera, P.I., López, M.G., Medina-Torres, L., Ragazzo-Sánchez, J.A., Calderón-Santoyo, M., González-Ávila, M. and Ortiz-Basurto, R.I. (2019). Physicochemical Composition and Apparent Degree of Polymerization of Fructans in Five Wild Agave Varieties: Potential Industrial Use. Foods, 8(9), 404. doi:10.3390/foods8090404
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. doi:10.1016/s0022-2836(05)80360-2
  • Álvarez-Fuentes, G., García-López, J.C., Pinos-Rodríguez J.M., Jasso-Pineda Y., Tristán-Patiño, F.M. and González-Garduño R. (2015). Maguey (Agave spp.) silage production with either alfalfa or mesquite pod meal as protein sources. Journal of Animal &Plant Sciences, 24 (1), 3714-3719.
  • Ávila-Fernández, A., Rendón-Poujol, X., Olvera, C., González, F., Capella, S., Peña-Álvarez, A. and López-Munguía, A. (2009). Enzymatic hydrolysis of fructans in the tequila production process. Journal of Agricultural and Food Chemistry, 57(12), 5578–5585. doi:10.1021/jf900691r
  • Cai, Y., Benno, Y., Ogawa, M., Ohmomo, S., Kumai, S. and Nakase, T. (1998). Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Applied and Environmental Microbiology, 64(8), 2982–2987. doi:10.1128/aem.64.8.2982-2987.1998
  • Carranza, C.O., Fernandez, A.Á., Bustillo A.G.R. and López-Munguía, A.   (2015). Processing of fructans and oligosaccharides from agave plants. Processing and Impact on Active Components in Food, 121–129. doi:10.1016/b978-0-12-404699-3.00015-9
  • Chen, Y.L., Lee, C.C., Lin, Y.L., Yin, K.M., Ho, C.L. and Liu, T. (2015). Obtaining long 16S rDNA sequences using multiple primers and its application on dioxin-containing samples. BMC Bioinformatics, 16, 1-11. doi:10.1186/1471-2105-16-s18-s13
  • Chi, Z., Chi, Z., Zhang, T., Liu, G. and Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211–220. doi:10.1007/s00253-008-1827-1
  • Chi, Z., Zhang, T., Cao, T.S., Liu, X.Y., Cui, W. and Zhao, C.H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresource Technology, 102(6), 4295–4303. doi:10.1016/j.biortech.2010.12.08
  • Coleman-Derr, D., Desgarennes, D., Fonseca-Garcia, C., Gross, S., Clingenpeel, S., Woyke, T. and Tringe, S.G. (2015). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 209(2), 798–811. doi:10.1111/nph.13697
  • Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8(3):92, doi:10.3390/foods8030092.
  • Dien, B. S., Nichols N.N., Bothast, R.J., (2001). Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars. Journal of Industrial Microbiology and Biotechnology, 27(4): 259–264, doi: 10.1038/sj.jim.7000195
  • Escalante, A., Rodríguez, M., Martínez, A., López-Munguía, A., Bolívar, F. and Gosset, G. (2004). Characterization of bacterial diversity in pulque, a traditional mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiology Letters, 235(2), 273–279. doi:10.1016/j.femsle.2004.04.045
  • Frank, J.A., Reich, C.I., Sharma, S., Weisbaum, J.S., Wilson, B.A. and Olsen, G.J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461–2470. doi:10.1128/aem.02272-07
  • García-Gamboa, R., Gradilla-Hernández, M.S., Ortiz-Basurto, R.I., García-Reyes, R.A., González-Ávila, M. (2020). Assessment of intermediate- and long- chains agave fructan fermentation on the growth of intestinal bacteria cultured in a gastrointestinal tract simulator. Revista Mexicana de Ingeniería Química. 19(2). 827-838, doi:10.24275/rmiq/Bio842.
  • García-Mendoza, A., Ordóñez-Díaz, Briones-Salas. (2004). Biodiversidad de Oaxaca. Instituto de Biología, UNAM. 605. ISBN: 970-32-2045-2
  • Good-Avila, S.V., Souza, V., Gaut, B S. and Eguiarte, L.E. (2006). Timing and rate of   speciation in Agave (Agavaceae). Proceedings of the National Academy of Sciences, 103(24), 9124–9129. doi:10.1073/pnas.0603312103
  • Gschaedler, A.C., Mora, A.G., Contreras-Ramos, S.M., Davila-Vazquez, G. and Gallardo-Valdez, J. (2017). Panorama del aprovechamiento de los agaves en México. CIATEJ. 215-240. http://ciatej.repositorioinstitucional.mx/jspui/handle/1023/646
  • Iñiguez-Covarrubias, G., Dı́az-Teres, R., Sanjuan-Dueñas, R., Anzaldo-Hernández, J. and Rowell, R.M. (2001). Utilization of by-products from the tequila industry. Part 2: potential value of Agave tequilana Weber azul leaves. Bioresource Technology, 77(2), 101–108. doi:10.1016/s0960-8524(00)00167-x
  • Madigan, M. T., Martinko, J. M., Stahl, D., Clark, D. P. (2010). Brock Biology of Microorganisms (13th Edition). Benjamin Cummings. ISBN: 032164963X
  • Maidak, B. (1996). The Ribosomal Database Project (RDP). Nucleic Acids Research, 24(1), 82–85. doi:10.1093/nar/24.1.82
  • de Man, J.C.; Rogosa, M.; Sharpe, M.E. (1960). "A Medium for the Cultivation of Lactobacilli". Journal of Applied Bacteriology, 23, 130–135. doi:10.1111/j.1365-2672.1960.tb00188.x
  • Mancilla-Margalli, N.A. and López, M.G. (2006). Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. Journal of Agricultural and Food Chemistry, 54(20), 7832–7839. doi:10.1021/jf060354v
  • Pang, H., Qin, G., Tan, Z., Li, Z., Wang, Y. and Cai, Y. (2011). Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis. Systematic and Applied Microbiology, 34(3), 235–241. doi:10.1016/j.syapm.2010.10.003
  • Pinos-Rodríguez, J.M., Aguirre-Rivera, J.R., García-López, J.C., Rivera-Miranda, M.T., González-Muñoz, S., López-Aguirre, S. and Chávez-Villalobos, D. (2006). Use of “Maguey” (Agave salmiana Otto ex. Salm-Dick) as forage for ewes. Journal of Applied Animal Research, 30(2), 101–107. doi:10.1080/09712119.2006.9706596
  • Pinos-Rodríguez, J., Zamudio, M. and González, S. (2008). The effect of plant age on the chemical composition of fresh and ensiled Agave salmiana leaves. South African Journal of Animal Science, 38(1), 43-50. doi:10.4314/sajas.v38i1.4108
  • Romero-López, M.R., Osorio-Díaz, P., Flores-Morales, A., Robledo, N. and Mora-Escobedo, R. (2015). Chemical composition, antioxidant capacity and prebiotic effect of aguamiel (Agave atrovirens) during in vitro fermentation. Revista Mexicana de Ingeniera Quimica, 14, 281-292.
  • Sanger, F., Nicklen, S. and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. doi:10.1073/pnas.74.12.5463
  • Tenover, F.C., Williams, P.P., Stocker, S., Thompson, A., Clark, L.A., Limbago, B. and McGowan, J.E. (2007). Accuracy of six antimicrobial susceptibility methods for testing linezolid against Staphylococci and Enterococci. Journal of Clinical Microbiology, 45(9), 2917–2922. doi:10.1128/jcm.00913-07
  • Velázquez-De Lucio, B.S., Téllez-Jurado, A., Hernández-Domínguez, E.M., Tovar-Jiménez, X., Castillo-Ortega, L.S., Mercado-Flores, Y. and Álvarez-Cervantes, J. (2022). Evaluation of bagasse Agave salmiana as a substrate for the cultivation of Pleurotus djamor. Revista Mexicana de Ingeniería Química, 21(1), Bio2735. doi.org/10.24275/rmiq/Bio2735
  • Vink, E.T. and Davies, S. (2015). Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Industrial Biotechnology, 11(3), 167–180. doi:10.1089/ind.2015.0003
  • Wang, S., Zhu, Y., Yang, Y., Li, J. and Hoffmann, M.R. (2020). Electrochemical cell lysis of gram-positive and gram-negative bacteria: DNA extraction from environmental water samples. Electrochimica Acta, 338, 135864. doi:10.1016/j.electacta.2020.135864
  • Zúñiga, M., Pardo, I. and Ferrer, S. (1993). An improved medium for distinguishing between homofermentative and heterofermentative lactic acid bacteria. International Journal of Food Microbiology, 18(1), 37–42. doi:10.1016/0168-1605(93)90005-2