Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Alim24157


Effect of gum arabic concentrations on drying kinetics, anthocyanin degradation and product qualities of purple rice bran extract dried by foam-mat technique

L.T.K. Loan, B.T. Vinh, N.V. Tai

https://doi.org/10.24275/rmiq/Alim24157


 

Abstract

This investigation aimed to study the effect of gum arabic on the drying characteristics, degradation rate of anthocyanin, and quality of foam-mat product from purple rice bran. Four different levels of gum arabic (GA) were applied (5-20%), with the control sample (without using gum arabic) for the foaming process. Foaming properties, including foam expansion, foam stability, and foam density, were determined and showed that the fluctuation was found when different contents of gum arabic were used. In particular, the highest value of foam expansion (386.75±9.35%) and foam stability (94.44±0.09%) was found at a level of usage GA of 10%, while the lowest foam density (0.278±0.021%) was observed. Empirical models were applied to predict the change of moisture content during the drying process, showing that the Page model was the fittest and gave the best prediction (R2 > 0.98) at various concentrations of gum arabic. Besides that, following first-order kinetic, the lowest rate of anthocyanin degradation occurred when the concentration of GA was used at the level of 10%. Pearson’s correlation showed the negative effect between anthocyanin degradation rate and drying rate of the constant of the Page model. Moreover, dried purple rice bran extract was added 10% of GA, which presented a high level of anthocyanin (20.34±0.82 mg/100 g), moisture content of 4.26±0.12%, water activity of 0.33±0.11, hygroscopicity of 19.82±0.11 g/100 g, and high acceptance by panelists.

Keywords: rice bran, foam-mat drying, kinetics, degradation, dehydration.

 


References

  • Abbasi, E., & Azizpour, M. (2016). Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT - Food Science and Technology, 68, 105-110. https://doi.org/10.1016/j.lwt.2015.12.004
  • Asokapandian, S., Venkatachalam, S., Swamy, G. J., & Kuppusamy, K. (2016). Optimization of foaming properties and foam mat drying of Muskmelon using soy protein. Journal of Food Process Engineering, 39(6), 692-701. https://doi.org/10.1111/jfpe.12261
  • Azeez, L., Adebisi, S. A., Oyedeji, A. O., Adetoro, R. O., & Tijani, K. O. (2019). Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. Journal of the Saudi Society of Agricultural Sciences, 18(2), 120-126. https://doi.org/10.1016/j.jssas.2017.03.002
  • Bag, S. K., Srivastav, P. P., & Mishra, H. N. (2011). Optimization of process parameters for foaming of Bael (Aegle marmelos L.) fruit pulp. Food and Bioprocess Technology, 4(8), 1450-1458. http://doi.org/10.1007/s11947-009-0243-6
  • Çalışkan Koç, G., Tekgül, Y., Yüksel, A. N., Khanashyam, A. C., Kothakota, A., & Pandiselvam, R. (2022). Recent development in foam-mat drying process: Influence of foaming agents and foam properties on powder properties. Journal of Surfactants and Detergents, 25(5), 539-557. https://doi.org/10.1002/jsde.12608
  • Darniadi, S., Ho, P., & Murray, B. S. (2018). Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: evaluation of foam and powder properties. Journal of the Science of Food and Agriculture, 98(5), 2002-2010. https://doi.org/10.1002/jsfa.8685
  • Deng, W., Li, X., Ren, G., Bu, Q., Ruan, Y., Feng, Y., & Li, B. (2023). Stability of purple corn anthocyanin encapsulated by maltodextrin, and its combinations with gum arabic and whey protein isolate. Foods, 12(12), 2393. https://doi.org/10.3390/foods12122393
  • Franco, T. S., Perussello, C. A., Ellendersen, L. N., & Masson, M. L. (2016). Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder. LWT - Food Science and Technology, 66, 503-513. https://doi.org/10.1016/j.lwt.2015.11.009
  • Güldane, M. (2023). Optimizing foam mat drying process for cornelian cherry pulp using response surface methodology and artificial neural networks. Revista Mexicana de Ingeniería Química, 22(3), Alim2386. https://doi.org/10.24275/rmiq/Alim2386
  • Jang, Y., & Koh, E. (2023). Characterisation and storage stability of aronia anthocyanins encapsulated with combinations of maltodextrin with carboxymethyl cellulose, gum Arabic, and xanthan gum. Food Chemistry, 405, 135002. https://doi.org/10.1016/j.foodchem.2022.135002
  • Jaya, S., & Das, H. (2004). Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties. Journal of Food Engineering, 63(2), 125-134. https://doi.org/10.1016/S0260-8774(03)00135-3
  • Kaushal, M., Sharma, P. C., & Sharma, R. (2013). Formulation and acceptability of foam mat dried seabuckthorn (Hippophae salicifolia) leather. Journal of Food Science and Technology, 50(1), 78-85. https://doi.org/10.1007/s13197-011-0236-0
  • Le Loan, T. K., Thuy, N. M., Le Tri, Q., & Sunghoon, P. (2021). Characterization of gluten-free rice bread prepared using a combination of potato tuber and ramie leaf enzymes. Food Science and Biotechnology, 30(4), 521-529. https://doi.org/10.1007/s10068-021-00891-2
  • Le, T. K. L., & Nguyen, M. T. (2019). Optimization of germination process of “Cam” brown rice by response surface methodology and evaluation of germinated rice quality. Food Research, 4, 459-467. https://doi.org/10.26656/fr.2017.4(2).307.1
  • Loan, L. T. K., & Tai, N. V. (2023). Process of foam-mat drying of purple rice bran extract and evaluation of product properties. Revista Mexicana de Ingeniería Química, 22(3), Alim23148. https://doi.org/10.24275/rmiq/Alim23148
  • Loan, L. T. K., Tai, N. V., & Thuy, N. M. (2023a). Microwave-assisted extraction of “Cẩm” purple rice bran polyphenol: A kinetic study. Acta Scientiarum Polonorum Technologia Alimentaria, In press. http://dx.doi.org/10.17306/J.AFS.2023.1140
  • Loan, L. T. K., Thuy, N. M., & Tai, N. V. (2023b). Mathematical and artificial neural network modeling of hot air-drying kinetics of instant “Cẩm” brown rice. Food Science and Technology, 43, e027623. https://doi.org/10.1590/fst.027623
  • Loan, L. T. K., Vinh, B. T., & Tai, N. V. (2024). Recent important insight into nutraceuticals potential of pigmented rice cultivars: A promising ingredient for future food. Journal of Applied Biology & Biotechnology, In press.
  • Mazuco, R. A., Cardoso, P. M. M., Bindaco, É. S., Scherer, R., Castilho, R. O., Faraco, A. A. G., Ruas, F. G., Oliveira, J. P., Guimarães, M. C. C., de Andrade, T. U., Lenz, D., Braga, F. C., & Endringer, D. C. (2018). Maltodextrin and Gum Arabic-Based Microencapsulation Methods for Anthocyanin Preservation in Juçara Palm (Euterpe edulis Martius) Fruit Pulp. Plant Foods for Human Nutrition, 73(3), 209-215. https://doi.org/10.1007/s11130-018-0676-z
  • Ngo, T. V., Kunyanee, K., & Luangsakul, N. (2023). Insight Into Recent Updates on Possible Factors, Mechanism Effects andTechnologies to Modulate Glycemic Index of Rice Products. Foods, 12(19), 3659. https://doi.org/10.3390/foods12193659
  • Ngo, T. V., Kusumawardani, S., Kunyanee, K., & Luangsakul, N. (2022). Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods, 11(21), 3384. https://doi.org/10.3390/foods11213384
  • Pandiselvam, R., Tak, Y., Olum, E., Sujayasree, O. J., Tekgül, Y., Çalışkan Koç, G., Kaur, M., Nayi, P., Kothakota, A., & Kumar, M. (2022). Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of Texture Studies, 53(6), 737-762. https://doi.org/10.1111/jtxs.12643
  • Rajkumar, P., Kailappan, R., Viswanathan, R., Raghavan, G. S. V., & Ratti, C. (2007). Foam Mat Drying of Alphonso Mango Pulp. Drying Technology, 25(2), 357-365. https://doi.org/10.1080/07373930601120126
  • Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2017). Development of cantaloupe (Cucumis melo) pulp powder using foam-mat drying method: Effects of drying conditions on microstructural of mat and physicochemical properties of powder. Drying Technology, 35(15), 1897-1908. https://doi.org/10.1080/07373937.2017.1291518
  • Sánchez-Mesa, N., Sepúlveda-Valencia, J., Ciro-Velásquez, H., & Meireles, M. (2020). Bioactive compounds from mango peel (Mangifera indica L. var. Tommy Atkins) obtained by supercritical fluids and pressurized liquids extraction. Revista Mexicana de Ingeniería Química, 19(2), 755-766. https://doi.org/10.24275/rmiq/Alim657
  • Santhalakshmy, S., Don Bosco, S. J., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37-43. https://doi.org/10.1016/j.powtec.2015.01.016
  • Sarpong, F., Yu, X., Zhou, C., Amenorfe, L. P., Bai, J., Wu, B., & Ma, H. (2018). The kinetics and thermodynamics study of bioactive compounds and antioxidant degradation of dried banana (Musa ssp.) slices using controlled humidity convective air drying. Journal of Food Measurement and Characterization, 12(3), 1935-1946. https://doi.org/10.1007/s11694-018-9809-1
  • Schuck, P., Jeantet, R., & Dolivet, A. (2012). Analytical methods for food and dairy powders. John Wiley & Sons. https://doi.org/https://doi.org/10.1002/9781118307397
  • Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., & Al-Mulla, Y. A. (2018). Effect of carrier agents on physicochemical properties of foam-mat freeze-dried date powder. Drying Technology, 36(11), 1292-1303. https://doi.org/10.1080/07373937.2017.1400557
  • Shameena Beegum, P. P., Manikantan, M. R., Anju, K. B., Vinija, V., Pandiselvam, R., Jayashekhar, S., & Hebbar, K. B. (2022). Foam mat drying technique in coconut milk: Effect of additives on foaming and powder properties and its economic analysis. Journal of food processing and preservation, 46(11), e17122. https://doi.org/10.1111/jfpp.17122
  • Suet Li, T., Sulaiman, R., Rukayadi, Y., & Ramli, S. (2021). Effect of gum Arabic concentrations on foam properties, drying kinetics and physicochemical properties of foam mat drying of cantaloupe. Food Hydrocolloids, 116, 106492. https://doi.org/10.1016/j.foodhyd.2020.106492
  • Süfer, Ö., Pandiselvam, R., & Kaya, Y. Y. (2023). Drying kinetics, powder properties, and bioactive components of bitter orange (Citrus aurantium L.) dried by microwave-assisted foam-mat approach. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04477-2
  • Susanti, D. Y., Sediawan, W. B., Fahrurrozi, M., & Hidayat, M. (2021). Foam-mat drying in the encapsulation of red sorghum extract: Effects of xanthan gum addition on foam properties and drying kinetics. Journal of the Saudi Society of Agricultural Sciences, 20(4), 270-279. https://doi.org/10.1016/j.jssas.2021.02.007
  • Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of Water Activity (a w ) on Microbial Stability as a Hurdle in Food Preservation. In Water Activity in Foods (pp. 323-355). https://doi.org/https://doi.org/10.1002/9781118765982.ch14
  • Thuy, N. M., Chi, N. T. D., Huyen, T. H. B., & Tai, N. V. (2020). Orange-fleshed sweet potato grown in Viet Nam as a potential source for making noodles. Food Research, 4(3), 712-721. http://doi.org/10.26656/fr.2017.4(3).390
  • Thuy, N. M., Ha, H. T. N., & Tai, N. V. (2022a). Lactic Acid Fermentation of Radish and Cucumber in Rice Bran Bed. Agriculturae Conspectus Scientificus, 87(3), 245-252. https://doi.org/10.17306/J.AFS.0944
  • Thuy, N. M., Hiep, L. H., Tai, N. V., Huong, H. T. T., & Minh, V. Q. (2022b). Impact of drying temperatures on drying behaviours, energy consumption and quality of purple sweet potato flour. Acta Scientiarum Polonorum Technologia Alimentaria, 21(4), 379-387. https://doi.org/10.17306/J.AFS.2022.1061
  • Thuy, N. M., Nhu, P. H., Tai, N. V., & Minh, V. Q. (2022c). Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis)Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae, 8(12), 1199. http://doi.org/10.3390/horticulturae8121199
  • Thuy, N. M., Tien, V. Q., Tuyen, N. N., Giau, T. N., Minh, V. Q., & Tai, N. V. (2022d). Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules, 27(23), 8570. http://doi.org/10.3390/molecules27238570
  • Thuy, N. M., Tien, V. Q., Van Tai, N., & Minh, V. Q. (2022e). Effect of Foaming Conditions on Foam Properties and Drying Behavior of Powder from Magenta (Peristropheroxburghiana) Leaves Extracts. Horticulturae, 8(6), 546. http://doi.org/10.3390/horticulturae8060546
  • Tlatelpa-Becerro, A., Rico-Martínez, R., Cárdenas-Manríquez, M., Urquiza, G., Castro-Gómez, L., Alarcón-Hernández, F., Torres, C., & Montiel, E. (2022). Drying kinetics of Cecina from Yecapixtla using a forced flow indirect solar dryer. Revista Mexicana de Ingeniería Química, 21(2), Alim2750. https://doi.org/10.24275/rmiq/Alim2750
  • Van Tai, N., Minh, V. Q., & Thuy, N. M. (2023). Food processing waste in Vietnam: Utilization and prospects in food industry for sustainability development. Journal of microbiology, biotechnology and food sciences, 13(1), e9926. https://doi.org/10.55251/jmbfs.9926
  • Yüksel, A. N., & Pandiselvam, R. (2023). Mathematical Modeling of Microwave-Assisted Foam-Mat Drying of Kefir. Journal of food processing and preservation, 2023, 3917292. https://doi.org/10.1155/2023/3917292