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Abstract
In this work the physical characteristics and in vitro digestibility of breads made from blends of wheat flour and potato peel flour
(PPF), with weight percentage of PPF of 0, 5, 10, 15 and 20 g/100 g were studied. Thermal gravimetric analysis (TGA) showed
that the PPF addition accelerated the weight loss with the temperature. Fourier transform infrared (FTIR) analysis revealed
PPF induced changes in the bread molecular organization, with an increase of cluster-like water structures, a decrease of the
β-sheet protein structures and an increase of amorphous starch arrangements. PPF addition also led to bread with decreased
relative volume and increased hardness, which was linked to the disruption of the starch and protein structures. In contrast, starch
digestibility showed a marked decrease, of the rapidly digestible starch fraction. A multivariate Principal Component Analysis
(PCA) showed that the in vitro starch digestibility is linked to the water and starch structures. Overall, the results showed that the
addition of up to 10 g of PPF/100 g wheat flour is a viable option for obtaining a bread with decreased starch digestibility and
similar overall quality properties of a full wheat bread control.
Keywords: Bread; FTIR; in vitro digestibility; potato peel flour.

Resumen
En este trabajo se estudiaron las características físicas y digestibilidad in vitro de pan hecho a partir de mezclas de harina de
trigo y harina de cáscara de papa (PPF), con porcentajes de PPF de 0, 5, 10, 15 y 20 g/100 g. El análisis termogravimétrico
(TGA) mostró que la adición de PPF aceleró la pérdida de peso con la temperatura. El análisis infrarrojo por transformada de
Fourier (FTIR) reveló cambios inducidos por PPF en la organización molecular del pan, con un aumento de estructuras de agua
en forma de racimos, una disminución de las estructuras de proteínas de la hoja β y un aumento de disposiciones amorfas de
almidón. La adición de PPF también dio lugar a un pan con un volumen relativo reducido y una mayor dureza, lo que se relacionó
con la alteración de las estructuras de almidón y proteínas. Por el contrario, la digestibilidad del almidón mostró una marcada
disminución, principalmente de la fracción de almidón rápidamente digerible. Un Análisis de Componentes Principales (PCA)
multivariado mostró que la digestibilidad del almidón in vitro está ligada a las estructuras del agua y del almidón. En general, los
resultados mostraron que la adición de hasta 10 g de PPF/100 g de harina de trigo es una opción viable para obtener un pan con
una digestibilidad reducida del almidón y propiedades de calidad general similares a las de un pan control hecho con solo harina
de trigo.
Palabras clave: Pan; FTIR; digestibilidad in vitro; harina de cáscara de papa.
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1 Introduction

Potato (Solanum tuberosum L.) is one of the
most important vegetable crops worldwide with a
production of about 376 million metric tons in
2021. Potato is consumed in most countries and is
eaten in a large diversity of forms, including boiled,
cooked, crisped and fried. Commonly, the processing
of the raw tuber, particularly the processing chips
industry, generates an enormous volume of potato
peel (PP) waste, whose improper handling can lead
to contamination of soils and water sources due to its
microbiological spoilage (Wu, 2016).

Several approaches have been proposed to give
a solution to the generation of potato peel (PP)
residues. Arapoglou et al. (2010) reported that PP
wastes have a high potential for ethanol production via
enzymatic fermentation. Recently, Ebrahimian et al.
(2022) showed that PP waste is a reliable alternative to
fossil-based products. Awogbemi et al. (2022) made
a critical review of the usage of PP waste as a low-
cost and readily available catalyst and feedstock for
biofuel synthesis. Mushtaq et al. (2017) noted that PP
can be an important source for amylase production.
Diverse reports have drawn attention to the rich
bioactive compounds of PP waste (Wu, 2016; Sampaio
et al., 2020). Elkahoui et al. (2018) reported that
the relative high contents of proteins (11-18 g/100 g)
and relatively low content of fats (non-higher than 2
g/100 g) make the PP an affordable by-product for
food and pharmaceutical applications. The content
of phenolic compounds in PP, mainly chlorogenic,
caffeic and coumaric acids, can be up to ten times
higher than in the potato flesh (Rytel et al., 2014;
Akyol et al., 2016). Sampaio et al. (2020) and Makori
et al. (2022) highlighted that PP is rich in dietary fiber,
phenolic compounds and glycoalkaloids, making the
PP waste quite suitable for incorporation in a wide
range of food products. Perez-Chabela et al. (2022)
explored the feasibility of PP flour as a bioactive
ingredient for the yogurt production. Fradinho et al.
(2020) found that potato peel autohydrolysis is a
viable way to improve the nutritional characteristics
of gluten-free pasta. Azizi et al. (2021) proposed
the incorporation of PP in the preparation of low-
fat and high-fiber potato snacks. Durmaz and Yuksel
(2021) incorporated PP flour (PPF) in the formulation
of deep-fried wheat chips, finding that total dietary
fiber content increased, and the in vitro glycemic
index decreased. Jacinto et al. (2020) reported that
PPF is a viable alternative for improving the sensory
and nutritional characteristics of gluten-free bread.
Ghorbani et al. (2022) investigated the incorporation
of PPF on biscuit dough rheology and properties.
They found that the protein content and color indices
increased with the PPF addition, although the cohesion

of the biscuit was decreased. Soltan et al. (2023)
reported that bread fortified by PPF improved lipid
profiles in hyperlipidemia.

Despite the proven potential of PP to provide
nutritional improvements, studies on the use of PP as a
food additive are still scarce. Results in this line should
assess the real potential of PP within a sustainable
economy plagued by food price inflation in the recent
years. In this way, the present work aims to supplement
wheat bread with PPF, assessing its impact on the
molecular organization, in vitro starch digestibility,
texture, color and protein content in comparison to a
wheat bread control made with only wheat flour.

2 Materials and methods

2.1 Materials

Soft wheat flour (13.1 g moisture, 10.2 g protein,
0.5 g dietary fiber, 0.4 g lipids, 0.8 g ash, and 75
g carbohydrate by difference per 100 g flour), sugar,
salt, baking dry yeast (TradiPan S.A. de C.V., CDMX,
Mexico) were purchased at a local supermarket
(Walmart, CDMX, Mexico). Mature and uniformly
sized potatoes (Solanum tuberasum, Alpha variety)
were collected at a farm located at Metepec, State
of Mexico, Mexico. All reagents used were analytical
grade. Distilled water was used in all experiments.

2.2 Potato flour preparation

Potatoes were washed with tap water, ensuring that
sticking soil and dirt were removed by rubbing with
a cloth the potato surface. A Victorinox potato peeler
(Ibach, Switzerland) was used for manually peeling
the potatoes. The potato peels were washed and
soaked in a sodium hypochlorite solution (250 mg/L)
for 12 minutes. Afterwards, the peels were dried in
a static convection oven (Rational AG, Landsberg,
Germany) at 65 ºC for 12 hours to constant weight,
and subsequently ground into a fine powder and sieved
(Jaipan CM/L-7360065 grinding machine, Japan) to
obtain a potato peel flour (PPF) with a particle size
of less than 0.2 mm) (Akter et al., 2023). The
proximal analysis of the potato peel flour gave the
following results: 12.8 g moisture, 6.17 g ashes, 60.06
g total carbohydrates, 13.18 g protein, 2.05 g fat
and 5.74 g raw fiber per 100g. The sieved PPF was
packed in high-density polyethene (HDPE) bags in an
airtight condition and kept in the desiccator at room
temperature (25 °C) until required for experiments.

2.3 Bread preparation

Bread preparation was carried out by mixing
ingredients in a single step according to the methods of
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analysis 10-09.01 and 10-10.03 (AACC International,
2010). A homogeneous dry mix made up by 1000 g
of flour blend made of wheat and potato peel flours,
75 g of sugar, 15 g of salt and 45 g of bread yeast,
were added to 600 g of water was used for obtaining
the dough. The ingredients were mixed (Laboratory
Spiral Mixer, SP-800-J Alpha Simet Group, Germany)
at low speed for 5 min and kneaded for 10 minutes.
The dough was allowed to stand for 5 minutes, divided
into 300 g portions, placed in silicone containers
and leavened in a fermenting chamber for 1 h at
28 °C and 85% relative humidity (Alvarez-Ramirez
et al., 2019). Afterwards, the leavened dough was
distributed in silicone containers (size 25×10×10 cm)
and placed into the aforementioned static convection
oven (Rational AG, Landsberg, Germany) at 210 °C,
20% relative humidity for 25 min. After baking, the
bread was allowed to cool down at room temperature
and stored in hermetic bags. The resulting bread was
coded as Bx, where the sub-index “x” denotes the
weight percentage of potato peel flour (0, 5, 10, 15 and
20 g/100 g) used to form the flour blend. All breads
were made by duplicate.

2.4 Specific volume and moisture content

The breads (Bx) were weighed before being stored
in the hermetic bags and had their volume estimated
via the rapeseed displacement AACC method 10-
05.01. The specific volume was obtained from the
ratio between the volume and the weight of the
bread. Experiments were performed on three breads
of each batch. Moisture content of bread samples was
determined before being stored in the hermetic bags
using the AACC-method 44-15.02 (González et al.,
2021).

2.5 Thermogravimetric analysis (TGA)

TGA analysis was carried out with a TGA Q-50 (TA
Instruments, Dallas, TX, USA). The measurements
were performed on samples of 10 mg, using a ramp
temperature of 5 ºC/min were used for each sample.
Weight measurements were made from 25 to 175 °C
under a nitrogen flux of 60 mL/min.

2.6 Fourier-transform infrared

Fourier-transform infrared (FTIR) measurements
of Bx samples were carried out by following
the procedure Reyes et al. (2023), with some
modifications. A Perkin Elmer spectrophotometer
(Spectrum 100, Perkin Elmer, Waltham, MA, USA)
endowed with a crystal diamond universal ATR
sampling accessory was used. The FTIR spectrum was
reported as the mean value of five measurements for
each sample. A numerical deconvolution procedure

with Gaussian functions (half-width of 15 cm−1,
resolution enhancement 1.5) was carried out to obtain
individual contributions for distinctive bands.

2.7 Color

The color parameters L*, a* and b*, which
are measures of lightness, redness/greenness and
yellowness/blueness, respectively, were measured
directly on crust samples of Bx with a portable
colorimeter in reflectance mode (CR 300, Konica
Minolta, Osaka, Japan). Instrument calibration was
carried out with a ceramic white tile (L* = 92.49, a*
= 1.25, b*= -1.92) and set for illuminant D65, and 2º
observer angle (Casas-Godoy et al., 2023).

2.8 Texture

The textural characteristics of hardness, chewiness and
adhesiveness of the different Bx were assessed by
using a Brookfield CT3-4500 texturometer (AMETEK
Brookfield, Middleborough, MA, US) coupled to a
TA25/1000 acrylic cylinder probe with size 50.8 mm
diameter and 20 mm length. Cylindrical samples of
2.0 cm diameter were obtained from the geometrical
center of the bread loaves and were compressed to
reach 50% deformation in two cycles (González et al.,
2021).

2.9 Starch in vitro digestibility

The in vitro digestibility of the Bx was done as
described by Alvarez-Ramirez et al. (2020). The
rapidly digestible starch (RDS), slowly digestible
starch (SDS) and resistant starch (RS) contents were
analyzed based on the following formula:

RDS =
G20 − FG

TS
× 0.9 (1a)

S DS =
G120 −G20

TS
× 0.9 (1b)

RS =
TS −RDS − S DS

TS
× 100 (1c)

Here, G20 and G120 denote the content of glucose
released at 20 and 120 min, respectively, FG is the free
glucose content and TS is the total glucose released
after complete (i.e., very long times) hydrolysis.

2.10 Statistical analysis

Experimental data was analyzed by means of one-way
analysis of variance (ANOVA) and a Tukey’s test for
a statistical significance (p < 0.05). The analysis was
obtained with the aid of the package SPSS Statistics
19.0. All the experimental measurements were done
in triplicate, unless otherwise stated.

www.rmiq.org 3



Godoy-Ramirez / Revista Mexicana de Ingeniería Química Vol. 23, No. 1(2024) Alim24201

Table 1. Relative volume, moisture content and color parameters of the bread with different potato peel flour
contents.

Bread Code (Bx) Relative Volume Moisture (%) L* a* b*

B0 1.0 ± 0.00a 17.83 ± 1.25a 28.99 ± 1.98a 28.59 ± 0.23a 24.38 ± 2.16a

B5 0.96 ± 0.03b 16.82 ± 1.47a 26.73 ± 1.75b 26.44 ± 0.27b 23.74 ± 1.51a

B10 0.94 ± 0.02c 16.59 ± 1.38a 24.98 ± 1.67c 22.42 ± 0.77bc 22.34 ± 1.27ab

B15 0.91 ± 0.02c 16.28 ± 1.14a 22.59 ± 0.64c 22.01 ± 0.91bc 20.34 ± 0.33b

B20 0.87 ± 0.02c 14.76 ± 1.26b 21.26 ± 0.29cd 20.15 ± 1.09c 19.15 ± 0.24b

Values are reported as means ± standard deviation. Column with different lower-case letters in columns indicate
significant differences (p<0.05). Bx means bread with “x” % of potato peel flour (PPF).

3 Results

3.1 Specific volume, moisture content and
color

As the content of PPF in the Bx increased the specific
volume decreased (Table 1), with B20 experimenting
a decrease of about 13%. This effect may be due to
the de facto reduction of the gluten content in the
blended flour, as potato starch is gluten free (Ali et
al., 2023), causing a relative weaking of the network
formed between proteins and carbohydrates. Although
the PPF contains a relatively high content of proteins
(13.18 g/100 g), its characteristics are not as those
of gluten, such that the resulting ability for bread
expansion during baking is negatively affected. The
moisture content also decreased with the PPF addition,
ranging from of 17.83 g/100 g for B0 to 14.76 g/100 g
for B20. The moisture content and the specific volume
were strongly correlated (0.91, significance = 0.031),
which suggests that the decrement of the specific
volume is likely linked to the loss of moisture in the
bread structure. The color parameters of the bread
crust of Bx are given in Table 1. The color parameters
L*, a* and b* tended to exhibit significant decreases as
the PPF content in Bx increased. The decrease in the
color parameters between B0 and B20 was of 28.99 to
26.73 for L*, 28.59 to 26.44 for a*, and 24.38 to 23.74
for b*, respectively. This shift in the color parameters
towards lower values can be ascribed to the relatively
large fraction of ashes (6.17 g/100 g) contained by
PPF. The ash content for all purpose wheat flour has
been reported as being on average much lower (0.4
g/100 g) than for potato flour (3.6 g/100 g) (Pu et al.,
2017).

3.2 TGA

The weight loss profile of the Bx in the temperature
range from 25 to 175 ºC is presented in Figure 1.a. The
weight loss showed an exponential-like decay, with a
faster decay when the PPF was incorporated in the
bread formulation. The weight loss trajectory reflects
the loss of moisture during the baking process (Fessas
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Figure 1. Weight loss of breads (Bx) for a heating rate of 5 °C/min (a). First derivative of the weight 4 
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Figure 1. Weight loss of breads (Bx) for a heating
rate of 5 °C/min (a). First derivative of the weight loss
profile (b). Bx means bread with “x” % of potato peel
flour (PPF).

and Schiraldi, 2001). Water molecules are bound to the
bread structure, where the gluten plays an important
role. The reduction of the effective content of gluten
by dilution in the flour blends, weakened the ability of
the doughs obtained from them to retain the moisture
as the temperature was increased. Zhou et al. (2016)
identified three different regimens of water loss in
the TGA profile of wheat bread. The first one takes
place at relatively low temperatures of 40-60 ºC and
is attributed to the loss of easily removable water. The
second regime is at about 80-100 ºC and is ascribed
to more physically entrapped water, whereas a third
regime at 100-140 ºC is linked to water that is more
tightly combined with gluten and therefore requires
more energy to be removed (Fessas and Schiraldi,
2001; Vodovotz et al., 1996). The first derivative of
the weight loss profile (Figure 1.b) indicates that the
higher moisture content loss was exhibited in the first
baking stage, at relatively low temperatures, and that
the weight loss was more pronounced as the PPF
content was increased.
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Table 2. Texture parameters for the bread with different potato peel flour contents.

Bread Code (Bx) Hardness (N) Chewiness (mJ) Adhesiveness (mJ)

B0 4.12 ± 0.20d 15.74 ± 1.25cd 0.22 ± 0.01d

B5 4.32 ± 0.16cd 16.73 ± 1.47c 0.24 ± 0.01cd

B10 4.72 ± 0.21b 18.46 ± 1.38b 0.28 ± 0.01c

B15 4.86 ± 0.22ab 19.22 ± 1.14ab 0.39 ± 0.01b

B20 5.09 ± 0.21a 23.76 ± 1.26a 0.47 ± 0.02a

Values are reported as means ± standard deviation. Column with different lower-
case letters in columns indicate significant differences (p<0.05). Bx means bread
with “x” % of potato peel flour (PPF).

2 
 

 10 

 11 

 12 

 13 

 14 
Figure 2. FTIR spectra of the breads (Bx) with different potato peel flour contents (a). Illustrative 15 

example of the numerical deconvolution of the control bread (B0) made with only wheat flour: (b) 16 

the OH, (c) the Amide I, and (d) the starch regions. Bx means bread with “x” % of potato peel flour 17 

(PPF). 18 

 19 

  20 

3500 3000 1600 1400 1200 1000

 

 

Ab
so

rb
an

ce
 (a

.u
.)

Wavenumber (cm-1)

 B0
 B5
 B10
 B15
 B20

OH

Amide I

Starch

C-H

(a)

3700 3600 3500 3400 3300 3200 3100 3000

 

 

Wavenumber (cm-1)

(b)

Liquid-like

Clusters
Ice-like

1700 1680 1660 1640 1620 1600 1580

 

 

Ab
so

rb
an

ce
 (a

.u
.)

Wavenumber (cm-1)

b-turns

Random Coils

b-sheets

(c)

1060 1040 1020 1000 980

 

 

Wavenumber (cm-1)

Ordered

Amorphous

Hydrated

(d)

Figure 2. FTIR spectra of the breads (Bx) with different potato peel flour contents (a). Illustrative example of the
numerical deconvolution of the control bread (B0) made with only wheat flour: (b) the OH, (c) the Amide I, and (d)
the starch regions. Bx means bread with “x” % of potato peel flour (PPF).

3.3 Texture

Hardness, chewiness, and adhesiveness (Table 2)
increased significantly as PPF content in the Bx
was higher. This behavior may be attributed to the
decreasing moisture content and relative volume loss
undergone by the Bx as PPF content was increased.
Hardness was correlated (0.87, significance = 0.032)
with the moisture content. Meral and Karaoğlu (2020)
found that the addition of stale bread flour increased
bread hardness due to the aggregation of flour particles
with the concomitant reduction of moisture content. In
our case, we hypothesized that the decreased value in
the measured textural properties is more likely to be
associated with the reduced gluten content in the flour

blends, which resulted in a less homogeneous network
formation and a decreased moisture content (Wang et
al., 2015).

3.4 FTIR analysis

The FTIR spectrum of the crumb for the Bx are
presented in Figure 2.a. The band 3750-3000 cm−1

is linked to the OH band and reflects the interaction
of water molecules with bread components (proteins
and carbohydrates). The region 1700-1600 cm−1

corresponds to the Amide I band caused by the
stretching of the C=O group. The fingerprint region
with a large peak at about 1020 cm−1 is commonly
considered a fingerprint region of the starch molecular
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organization. The above-mentioned bands provide
valuable insights on the molecular organization and
the impact of the PPF addition of the bread, as is
discussed in more detail below.

3.4.1 Water structure

Water molecules interact with the bread components,
largely determining the properties of the bread. Water
molecules in hydrogels can be present in different
forms, and can be classified as free, freezing bound
and non-freezing bound structures (Garcia et al.,
2004). Walrafen et al. (1986) proposed a model
structure of water molecules, which can be detected
by an analysis of the OH band in the FTIR spectrum.
It was considered that the OH-band was composed
of five overlapping individual factors detected at
about 3090, 3220, 3393, 3540 and 3625 cm−1. The
band at 3090 cm−1 was linked to a Fermi resonance
of the overtone of OH-in-plane bending with the
OH-vibration of strongly hydrogen-bonded structured
water. The presence of the peak at this band reflects
the existence of highly structured water, and the
reduction of its intensity reflects the decomposition
of such structures in smaller ones with weakened
hydrogen binding. Figure 2.b illustrates the results
for B0 of the numerical deconvolution of the OH
band in five contributions having Gaussian shape. The
band at 3220 cm−1 was ascribed to fully bonded
water of low density exhibiting an ice-like structure
(coordination number close to four), while the band
at 3400 cm−1 was linked to water clusters displaying
an average degree of connection greater than for
dimers and trimers. The contribution at 3540 cm−1

reflects the presence of water molecules with a poor
binding to their surrounding liquid-like structures.
Finally, the peak at the highest wavenumber of 3625
cm−1 indicates disorganized molecules with a vapor-
like structure (Baumgartner et al., 2019). Figure 3.a
presents the variations of the water structure for
the different bread formulations incorporating PPF.
The PPF addition decreased the strongly structured
water molecules (ice-like structures) and increased
the formation of clusters. Significant differences (p
< 0.05) were exhibited among the different bread
formulations, which suggests that PPF impacted
the molecular organization of water probably via
disruptions of the gluten organization and to the
interaction of the PPF components with the starch.
The liquid-like structures vanished for relatively high
fractions (B15 and B20) of PPF. A strong correlation
(0.943, significance = 0.004) was found between bread
hardness and cluster relative content.

3.4.2 Protein secondary structure

The secondary structure of proteins has an important
impact in the properties of wheat bread (Sivam et
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Figure 3. Molecular organization of the breads (Bx)
with different content of potato peel flour. Bx means
bread with “x” % of potato peel flour (PPF).

al., 2012). The Amide I band located at 1700-1600
cm−1 can be numerically deconvoluted to extract
information on the protein secondary structure. Figure
2.c shows that the Amide I band can decomposed in
three contributions linked to β-structures and random
coils. Bock et al. (2013) observed that the β-structures
are determinants of the bread quality. Figure 3.b shows
that the addition of the PPF decreased the content of
β-structures while increasing the presence of random
coils. Bread containing PPF exhibited increased values
of hardness and chewiness (Table 2), which were
negatively correlated (-0.876, significance = 0.008)
with the decrease of the β-structures. Wang et al.
(2001) and Miñarro et al. (2012) reported that the β-
structures have a positive impact in the elasticity of
gluten. The decrease of these structures with the PPF
addition could be linked to the increased values of
bread hardness. On the other hand, the increase of the
random structures may be related to the reduced water
mobility during the baking process and weakened
gluten structure. In this way, the addition of PPF had
the effect of weaking the gluten structure, resulting
in compact bread morphologies like that exhibited by
bread made with gluten-free flours (Singh et al., 2016).

3.4.3 Starch structure

The FTIR band with a large peak at about 1020 cm−1

is commonly considered a fingerprint of the molecular
organization of starch chains. van Soest et al. (1995)
postulated that the starch band reflects the overlapped
contribution of three different structures.
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Table 3. In vitro starch digestibility of the bread with different potato peel flour contents.

Bread Code (Bx) Total Starch (g/100 g) RDS (%) SDS (%) RS (%)

B0 63.24 ± 1.54a 53.74 ± 0.34a 24.12 ± 0.27c 22.14 ± 0.18b

B5 61.45 ± 1.72a 52.19 ± 0.37ab 24.23 ± 0.28c 23.58 ± 0.22ab

B10 59.32 ± 1.33ab 51.14 ± 0.36b 25.64 ± 0.25c 23.22 ± 0.36ab

B15 57.78 ± 1.06b 46.32 ± 0.44c 27.88 ± 0.22b 23.70± 0.28a

B20 55.14 ± 1.15c 46.51 ± 0.47cd 29.48 ± 0.25a 24.01 ± 0.31a

Values are reported as means ± standard deviation. Column with different lower-case letters in columns
indicate. RDS: Rapidly digestible starch, SDS: Slowly digestible starch; RS: Resistant starch. Bx means bread
with “x” % of potato peel flour (PPF).

The band at 995 cm−1 is ascribed to the presence
of hydrated amylose domains, the shoulder at 1022
cm−1 is due to amorphous and poorly ordered
starch arrangements, and the band at about 1047
cm−1 indicates the presence of ordered (e.g., double-
and triple-helix) structures. Figure 2.d illustrates
the deconvolution of the large peak into the three
mentioned individual peaks. van Soest et al. (1995)
proposed that, rather than the individual contribution
of these bands, the starch structure can be better
represented by the ratios 995/1022 (RHyd) and
1047/1022 (ROrd), which represent the fraction of
hydrated and ordered structures relative to amorphous
ones. Figure 3.c shows that both ratios RHyd and ROrd
decreased with the PPF content. That is, the addition
of PPF disrupted the molecular organization of starch
by increasing the relative content of amorphous and
poorly ordered structures. It was found that the ratios
RHyd and ROrd were positively correlated (0.923,
significance = 0.002) with the content of protein
random structures. That is, the addition of PPF
deteriorated the organization of both proteins and
starch in the bread formulations. The formation of
such complex structures limits the accessibility of
amylolytic enzymes to the starch chains, reducing in
this form the starch digestibility (Giuberti et al., 2020).

3.5 Starch in vitro digestibility

The total starch showed a slight decrease with the
addition of PPF (Table 3), from values of 63.24
g for B0 to about 55.14 for B20 per 100 g. This
result was expected since the starch content of PFF
is relatively low. The RDS content also decreased,
from 53.74% for B0 to about 46.51% for B20.
In contrast, the SDS fraction increased with the
PFF content. However, the RS fraction was scarcely
impacted by the addition of the PFF. The results
in Table 3 show that the PFF interfered with the
digestibility of starch in the bread formulations by
slowing enzymatic hydrolysis. The components of the
PFF acted as fiber additives, which acted as physical
barrier that inhibited starch digestion limiting enzyme
mobility. Zhu et al. (2022) reported that cellulose
acts as a fiber that inhibits the access of amylolytic
enzymes to starch chains, leading to a moderate

decrease of the starch digestibility in wheat bread.
On the other hand, PP has a rich content of phenolic
compounds, which interact with amylose to form
inclusion complexes (Zhu, 2015). Recently, Chen et
al. (2019) reported that mango peel had the ability
of reducing the digestibility of bread, ascribing this
effect to the relative high content of polysaccharides
and polyphenols of mango peel. Giuberti et al. (2020)
stated that starch digestibility of products derived
from flours with high polyphenol contents could be
modulated either by direct inhibition of amylolytic
enzymes and/or the formation of inclusion and non-
inclusion complexes with starch.

3.6 Multivariate analysis

The results described above indicated that the addition
of PFF impacted textural and digestibility properties
of wheat bread. A Principal Component Analysis
(PCA) was carried out to gain insights on how
the different response variables were correlated.
Seventeen response variables were considered: ice-
like (IL) and cluster (CL) water structures, β-sheets
(BS) and coils (CO) protein secondary structures,
hydrated (RH) and ordered (OR) starch FTIR ratios,
relative volume (RV), moisture (MO), lightness (L),
redness (A) and yellowness (B), hardness (HA),
chewiness (CH) and adhesiveness (AD), total starch
(TS), rapidly digestible (RDS) and slowly digestible
(SDS) starch. Some variables were not considered,
for instance the resistant starch (RS) fraction, as it
was obtained as RS = 100 - RDS - SDS, such
that its impact in the multivariate analysis is already
considered in the RDS and SDS variables. The
first and second principal components accounted for
71.65 and 12.74% of the total variance, and together
represented 84.39% of the total variance (Figure 4.a).
This means that the seventeen response variables
are strongly correlated and the impact of the PPF
addition can be assessed by few response variables.
For instance, ice-like water structures, lightness, total
starch, relative volume, and hydrated starch structures
are strongly aligned with the rapidly digestible starch
fraction. This suggests that water molecules in the
hydrated starch structures are arranged in the form of
ice-like structures. On the other hand, adhesiveness,
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Figure 4. Principal component analysis of the response
variables for the breads (Bx). (a) Score plot of
the response variables. (b) Score plot of the bread
formulations. Bx means bread with “x” % of potato
peel flour (PPF).

protein coils and chewiness are aligned with the
slowly digestible starch fraction. Hardness is aligned
with water cluster structures. Three clusters can be
observed in the bread formulations (Figure 4.b).
B5 which contained a relatively small PPF content
exhibited properties that were very close to those
exhibited by the wheat control bread (B0). Breads with
intermediate PPF contents (B10 and B15) exhibited
properties that were significantly (84.39%) different
from that of the control bread (B0) The characteristics
of the bread B20 exhibited important deviations from
the other four formulations.

Conclusions

This work studied the impact of PPF on the
characteristics and digestibility of wheat bread. The
results showed that low additions (5 g/100 g) of PPF
produced a bread with texture, color and digestibility
similar to the whole-wheat bread. Higher addition
of PPF led to bread with marked differences with
the control bread, which was ascribed to the several
factors which included a lower gluten content in the
flour blends which resulted in the formation of a
relative weaker bread microstructure, which resulted
in breads with lower moisture content. This on turn
affected the way in which water interacted with the

bread components, inducing changes in the secondary
structure of proteins and the molecular organization
of starch, impacting the bread properties such as the
textural characteristics and starch in vitro digestibility.
In addition to this, the relative high content of
polyphenols of PPF, may contribute to modulate starch
digestibility by either inhibiting directly the action
amylolytic enzymes and/or by forming inclusion
and non-inclusion complexes with starch. In general,
the PPF addition increased hardness, chewiness and
adhesiveness, but decreased total starch and increased
the relative content of slowly digestible starch fraction
at the expense of the rapidly digestible starch fraction.
Overall, this study demonstrated that PPF has a good
potential for its use as a nutritional improver in the
preparation of bakery products.
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