Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Bio24101


Genes involved in an antibiotic resistance system in Streptomyces clavuligerus

V. Sicairos-Díaz, P. Liras,  A. G. Reyes,  F.J. Calderón-de la Sancha, J. Barrios-González, C. Millán-Pacheco, A. Mejía

https://doi.org/10.24275/rmiq/Bio24101


 

Abstract

The cephamycin C gene cluster in Streptomyces clavuligerus contains the genes cmcT, bla and pbp74, which have been suggested to be involved in antibiotic resistance. To evaluate the role of these genes, mutants of S. clavuligerus ATCC 27064 deleted in pbp74 and cmcT have been constructed. The resistance of these mutant strains as well as S. clavuligerus Dbla::aphII, a bla-deleted mutant, to cephalosporin and penicillin G have been analyzed. A 11% increase in resistance to penicillin G was detected when the cmcT gene was deleted compared to parental strain. Disruption of bla and pbp74 increased penicillin G sensitivity. Cephamycin C production was 83% lower in the cmcT-deleted mutant, however, bla-deleted mutant, the production was enhanced 193% compared to the parental strain. Genes expression was measured by qRT-PCR. In addition, the CmcT, Bla and Pbp74 proteins were modeled and their affinity for antibiotics was assessed. Based on our results, these three genes present in S. clavuligerus are suggested to be part of a self-defense system. Enhancement of cephamycin C production with the interruption of the bla gene was an interesting discovery which could be applied to improve the production of this antibiotic.

Keywords: Actinobacteria, β-lactam antibiotics resistance, Cephamycin, clavulanic acid, beta-lactam antibiotics

 


References

  • Aslam, M., Iqtedar, M., Saeed, H., Abdullah, R., and Kaleem, A. (2022). Formulation and characterization of Ciprofloxacin encapsulated liposomes: In vitro antimicrobial activity against multi drug resistant Salmonella typhi. Revista Mexicana de Ingeniería Química, 21(2), 1-12. https://doi.org/10.24275/rmiq/Bio2734
  • Gust, B., Challis, G. L., Fowler, K., Kieser, T., and Chater, K. F. (2003). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1541–1546. https://doi.org/10.1073/pnas.0337542100  
  • Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr, Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., … Karplus, M. (2009). CHARMM: the biomolecular simulation program. Journal of computational chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M. (1983), CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4: 187-217. https://doi.org/10.1002/jcc.540040211
  • Brown, N. G., Chow, D. C., Sankaran, B., Zwart, P., Prasad, B. V., and Palzkill, T. (2011). Analysis of the binding forces driving the tight interactions between beta-lactamase inhibitory protein-II (BLIP-II) and class A beta-lactamases. The Journal of biological chemistry, 286(37), 32723–32735. https://doi.org/10.1074/jbc.M111.265058
  • Chen, Y., Zhang, W., Shi, Q., Hesek, D., Lee, M., Mobashery, S., and Shoichet, B. K. (2009). Crystal structures of penicillin-binding protein 6 from Escherichia coli. Journal of the American Chemical Society, 131(40), 14345–14354. https://doi.org/10.1021/ja903773f
  • Coque, J. J., Liras, P., and Martín, J. F. (1993). Genes for a beta-lactamase, a penicillin-binding protein and a transmembrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. The EMBO journal, 12(2), 631–639. https://doi.org/10.1002/j.1460-2075.1993.tb05696.x
  • Folcher, M., Morris, R. P., Dale, G., Salah-Bey-Hocini, K., Viollier, P. H., and Thompson, C. J. (2001). A transcriptional regulator of a pristinamycin resistance gene in Streptomyces coelicolor. The Journal of biological chemistry, 276(2), 1479–1485. https://doi.org/10.1074/jbc.M007690200
  • Guilfoile, P. G., and Hutchinson, C. R. (1992). The Streptomyces glaucescens TcmR protein represses transcription of the divergently oriented tcmR and tcmA genes by binding to an intergenic operator region. Journal of bacteriology, 174(11), 3659–3666. https://doi.org/10.1128/jb.174.11.3659-3666.1992  
  • Hu, W. S., Braña, A. F. and Demain, A. L. (1984) Carbon source regulation of cephem antibiotic production by resting cells of Streptomyces clavuligerus and its reversal by protein synthesis inhibitors. Enzyme Microbiology Technology 6:155–160. https://doi.org/10.1016/0141-0229(84)90023-1
  • Huang, J. and MacKerell, A. D., Jr (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of computational chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33–28. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ishida, K., Hung, T. V., Liou, K., Lee, H. C., Shin, C. H., and Sohng, J. K. (2006). Characterization of pbpA and pbp2 encoding penicillin-binding proteins located on the downstream of clavulanic acid gene cluster in Streptomyces clavuligerus. Biotechnology letters, 28(6), 409–417. https://doi.org/10.1007/s10529-005-6071-5  
  • Jo, S., Kim, T., Iyer, V. G., and Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of computational chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kaur P. (1997). Expression and characterization of DrrA and DrrB proteins of Streptomyces peucetius in Escherichia coli: DrrA is an ATP binding protein. Journal of bacteriology, 179(3), 569–575. https://doi.org/10.1128/jb.179.3.569-575.1997
  • Kimura, H., Miyashita, H., and Sumino, Y. (1996). Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Applied microbiology and biotechnology, 45(4), 490–501. https://doi.org/10.1007/BF00578461
  • Kumar, V., de la Fuente, J. L., Leitão, A. L., Liras, P., and Martín, J. F. (1996). Effect of amplification or targeted disruption of the beta-lactamase gene of Nocardia lactamdurans on cephamycin biosynthesis. Applied microbiology and biotechnology, 45(5), 621–628. https://doi.org/10.1007/s002530050739  
  • Kurt, A., Álvarez-Álvarez, R., Liras, P., and Özcengiz, G. (2013). Role of the cmcH-ccaR intergenic region and ccaR overexpression in cephamycin C biosynthesis in Streptomyces clavuligerus. Applied microbiology and biotechnology, 97(13), 5869–5880. https://doi.org/10.1007/s00253-013-4721-4
  • López-Alcántara, R., Borges-Cu, J.L., Ramírez-Benítez, J.E., Garza-Ortiz, A., Núñez-Oreza, L.A., and Hernández-Vázquez, O.H. (2022). Importance of the C/N-ratio on biomass production and antimicrobial activity from marine bacteria Pseudoalteromonas sp. Revista Mexicana de Ingeniería Química. 21(1), 1-16. https://doi.org/10.24275/rmiq/Bio2695
  • Lv, H., Li, J., Wu, Y., Garyali, S., and Wang, Y. (2016). Transporter and its engineering for secondary metabolites. Applied microbiology and biotechnology, 100(14), 6119–6130. https://doi.org/10.1007/s00253-016-7605-6
  • Martínez-Burgo, Y., Álvarez-Álvarez, R., Pérez-Redondo, R., and Liras, P. (2014). Heterologous expression of Streptomyces clavuligerus ATCC 27064 cephamycin C gene cluster. Journal of biotechnology, 186, 21–29. https://doi.org/10.1016/j.jbiotec.2014.06.002
  • Nijland, J. G., Kovalchuk, A., van den Berg, M. A., Bovenberg, R. A., and Driessen, A. J. (2008). Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal genetics and biology, 45(10), 1415–1421. https://doi.org/10.1016/j.fgb.2008.07.008
  • Paradkar, A. S., Aidoo, K. A., Wong, A., and Jensen, S. E. (1996). Molecular analysis of a beta-lactam resistance gene encoded within the cephamycin gene cluster of Streptomyces clavuligerus. Journal of bacteriology, 178(21), 6266–6274. https://doi.org/10.1128/jb.178.21.6266-6274.1996
  • Paulsen, I. T., Brown, M. H., and Skurray, R. A. (1996). Proton-dependent multidrug efflux systems. Microbiological reviews, 60(4), 575–608. https://doi.org/10.1128/mr.60.4.575-608.1996
  • Pérez Llarena, F. J. (1997). Caracterización de la agrupación de genes de cefamicina C en Streptomyces clavuligerus. Tesis. Universidad de León, España.
  • Pérez-Llarena, F., Martín, J. F., Galleni, M., Coque, J. J., Fuente, J. L., Frère, J. M., and Liras, P. (1997). The bla gene of the cephamycin cluster of Streptomyces clavuligerus encodes a class A beta-lactamase of low enzymatic activity. Journal of bacteriology, 179(19), 6035–6040. https://doi.org/10.1128/jb.179.19.6035-6040.1997
  • Pérez-Llarena, F. J., Rodríguez-García, A., Enguita, F. J., Martín, J. F., and Liras, P. (1998). The pcd gene encoding piperideine-6-carboxylate dehydrogenase involved in biosynthesis of alpha-aminoadipic acid is located in the cephamycin cluster of Streptomyces clavuligerus. Journal of bacteriology, 180(17), 4753–4756. https://doi.org/10.1128/JB.180.17.4753-4756.1998
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Putman, M., Van Veen, H. W., Degener, J. E., and Konings, W. N. (2000). Antibiotic resistance: era of the multidrug pump. Molecular microbiology, 36(3), 772–773. https://doi.org/10.1046/j.1365-2958.2000.01871.x
  • Romero, J., Liras, P., and Martín. J.F. (1984) Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Applied Microbiology and Biotechnology, 20, 318–325. https://doi.org/10.1007/BF00270593
  • Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Schrödinger L (2019) Maestro. Schrödinger Release. Available at: https://www.schrodinger.com/products/maestro Accessed: December, 2021.
  • Seeliger, D., and de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of computer-aided molecular design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Severi, E., and Thomas, G. H. (2019). Antibiotic export: transporters involved in the final step of natural product production. Microbiology, 165(8), 805–818. https://doi.org/10.1099/mic.0.000794
  • Sletta, H., Borgos, S. E., Bruheim, P., Sekurova, O. N., Grasdalen, H., Aune, R., Ellingsen, T. E., and Zotchev, S. B. (2005). Nystatin biosynthesis and transport: nysH and nysG genes encoding a putative ABC transporter system in Streptomyces noursei ATCC 11455 are required for efficient conversion of 10-deoxynystatin to nystatin. Antimicrobial agents and chemotherapy, 49(11), 4576–4583. https://doi.org/10.1128/AAC.49.11.4576-4583.2005
  • Srinivasan, P., Palani, S. N., and Prasad, R. (2010). Daunorubicin efflux in Streptomyces peucetius modulates biosynthesis by feedback regulation. FEMS microbiology letters, 305(1), 18–27. https://doi.org/10.1111/j.1574-6968.2010.01905.x
  • Tahlan, K., Ahn, S. K., Sing, A., Bodnaruk, T. D., Willems, A. R., Davidson, A. R., and Nodwell, J. R. (2007). Initiation of actinorhodin export in Streptomyces coelicolor. Molecular microbiology, 63(4), 951–961. https://doi.org/10.1111/j.1365-2958.2006.05559.x
  • Tercero, J. A., Lacalle, R. A., and Jimenez, A. (1993). The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin. European journal of biochemistry, 218(3), 963–971. https://doi.org/10.1111/j.1432-1033.1993.tb18454.x
  • Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ullán, R. V., Liu, G., Casqueiro, J., Gutiérrez, S., Bañuelos, O., & Martín, J. F. (2002). The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Molecular genetics and genomics, 267(5), 673–683. https://doi.org/10.1007/s00438-002-0702-5
  • Ullán, R. V., Teijeira, F., and Martín, J. F. (2008). Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter. Current genetics, 54(3), 153–161. https://doi.org/10.1007/s00294-008-0207-9
  • Wang, L., Tian, X., Wang, J., Yang, H., Fan, K., Xu, G., Yang, K., and Tan, H. (2009). Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proceedings of the National Academy of Sciences of the United States of America, 106:8617–8622. https://doi.org/10.1073/pnas.0900592106
  • Xu, Y., Willems, A., Au-Yeung, C., Tahlan, K., & Nodwell, J. R. (2012). A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor. mBio, 3(5), e00191-12. https://doi.org/10.1128/mBio.00191-12
  • Yin Y, He X, Szewczyk P, et al (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science, 312:741–744. https://doi.org/10.1126/science.1125629
  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9:40. https://doi.org/10.1186/1471-2105-9-40