Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Bio24136


Enhanced denitrification in Paracoccus denitrificans PD1222 by electrical field application

J.C. Ríos-Guzmán, M. Alonso-Vargas, A. Cadena-Ramírez, K. Juárez-López, L.A. Portillo-Torres

https://doi.org/10.24275/rmiq/Bio24136


 

Abstract

Denitrification is an anaerobic respiratory process in which nitrogen oxides, generally nitrates, act as electron acceptors replacing oxygen. Among the many denitrifying bacteria, there is Paracoccus denitrificans; a gram-negative, non-fermentative coccoid microorganism who’s denitrifying respirome has great similarity to the mitochondrial respiratory chain. The present work evaluated the effect of different electrical potentials imposed on the denitrifying process of P. denitrificans using a rotating cylinder electro-bioreactor whose design allowed a homogeneous electrical potential distribution. An electrochemical characterization of the culture medium was carried out to define the potentials where REDOX reactions of an electrochemical nature are despicable (0, 100, 150 and 200 mV), so the results obtained are attributed to the influence of the generated electric field on P. denitrificans. The consumption of N and C sources (nitrate NO3- and succinate C4H6O4= respectively), the production of the intermediate (nitrite NO2-) and gas (nitrogen N2) were monitored. The findings suggest membrane and enzymatic alterations that bolster the overall process, with a notable increase in gaseous nitrogen production under the influence of electrical potentials. This novel approach offers promising implications for enhancing biological denitrification processes.

Keywords: Paracoccus denitrificans, denitrification, electric fields, bioelectrochemical reactor.

 


References

  • Albina, P., Durban, N., Bertron, A., Albrecht, A., Robinet, J.C., and Erable, B. (2019). Influence of Hydrogen Electron Donor, Alkaline pH, and High Nitrate Concentrations on Microbial Denitrification: A Review. International Journal of Molecular Sciences 20, 5163. https://doi.org/10.3390/ijms20205163
  • Azziz, G., Illarze, G., and Irisarri, P. (2016). Heterotrophic Denitrification and Paracoccus spp. as Tools for Bioremediation. In: Microbial Models: From Environmental to Industrial Sustainability. Microorganism for Sustainability (S. Castro eds.), Pp. 209–216. Springer, Singapore.
  • Bergaust, L., Mao, Y., Bakken, L. R., and Frostegård, A. (2010). Denitrification Response Patterns during the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrogen Oxide Reductase in Paracoccus denitrificans. Applied and Environmental Microbiology 76, 6387–6396. https://doi.org/10.1128/AEM.00608-10  
  • Berks, B. C., Ferguson, S. J., Moir, J. W. B., and Richardson, D. J. (1995). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1232, 97–173. https://doi.org/10.1016/0005-2728(95)00092-5
  • Boogerd, F. C., Van Verseveld, H. W., and Stouthamer, A. H. (1983). Dissimilatory nitrate uptake in Paracoccus denitrificans via a Δ\̃gmH+-dependent system and a nitrate-nitrite antiport system. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 723, 415–427. https://doi.org/10.1016/0005-2728(83)90049-X  
  • Cadena-Ramírez, A., Texier, A. C., González, I., Cervantes, F. J., and Gomez, J. (2007). Qualitative and quantitative determination of a humic model compound in microbial cultures by cyclic voltammetry. Environmental Technology, 28, 1035-1044. https://doi.org/10.1080/09593332808618862
  • Cadena-Ramírez, A. (2018). Efectos del Potencial Redox en la Oxidación de Compuestos Fenólicos por un Lodo Desnitrificante. Tesis de doctorado en Biotecnología, Universidad Autonóma Metropolitana, México.
  • Cadena-Ramírez, A., Texier, A. C., Martínez, I. G. and Hernández, J. G. (2019a). Inhibitory effects of quinoid redox mediators on a denitrifying culture. Environmental Technology, 40, 1306-1315. https://doi.org/10.1080/09593330.2017.1421264
  • Cadena-Ramírez, A., Texier, A. C., González, I. and Gómez, J. (2019b). Implications of electric potentials applied on a denitrifying process. Environmental Technology, 40, 2747–2755. https://doi.org/10.1080/09593330.2018.1450447  
  • Feng, Y., Yang, L., Liu, J., and Logan, B. E. (2016). Electrochemical technologies for wastewater treatment and resource reclamation. Environmental Science: Water Research & Technology, 2, 800–831. https://doi.org/10.1039/C5EW00289C
  • Gabe, D. R. and Walsh, F. C. (1983). The rotating cylinder electrode: a review of development. Journal of Applied Electrochemistry, 13, 3-21. https://doi.org/10.1007/BF00615883  
  • Galliazzi, A. (2017). Aislamiento y caracterización de bacterias desnitrificantes antárticas con potencial uso en biorremediación de diésel. Tesis de ingeniería en biotecnología, Universidad ORT, Uruguay.
  • Gao, D.W., Peng, Y.Z., Liang, H., and Wang, P. (2003). Using Oxidation–Reduction Potential (ORP) and pH Value for Process Control of Shortcut Nitrification–Denitrification. Journal of Environmental Science and Health, Part A, 38, 2933–2942. https://doi.org/10.1081/ESE-120025842  
  • Garsia, M. M., and Maruthamuthu, S. (2012). Redox potential measurements in microbial electrochemistry. In: Microbial Electrochemical and Fuel Cells (H. Scott and E. Hao, eds.), Pp. 167–191. Woodhead publishing, Reino Unido.
  • Giwa, A., Dindi, A., and Kujawa, J. (2019). Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. Journal of Hazardous Materials, 370, 172–195. https://doi.org/10.1016/j.jhazmat.2018.06.025  
  • Glass, C., and Silverstein, J. (1998). Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Research, 32, 831–839. https://doi.org/10.1016/S0043-1354(97)00260-1  
  • Griffiths, D. and College, R. (1999). Introduction to Electrodynamics. Prentice Hall. Estados Unidos.
  • Guerra-Hühne, J., Bola, S., Calzia, D., Alexopoulou, D., Funk, R. H. W., Mühlen, S. and Roehlecke, C. (2022). Effect of Direct Current Electric Fields on Cone Like Retinal Photoreceptor Cells. Front. Biosci. (Landmark Ed), 27, 273. https://doi.org/10.31083/j.fbl2709273
  • Hassan, J., Bergaust, L. L., Wheat, I. D. and Bakken, L. R. (2014). Low probability of initiating nirS transcription explains observed gas kinetics and growth of bacteria switching from aerobic respiration to denitrification. PLoS computational biology, 10, e1003933. https://doi.org/10.1371/journal.pcbi.1003933
  • Kolosnjaj-Tabi, J., Gibot, L., Fourquauz, I., Golzio, M. and Rols, M.P. (2019). Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Advanced Drug Delivery Reviews, 138, 56-67. https://doi.org/10.1016/j.addr.2018.10.017
  • Joy, J., Stuyver, T., and Shaik, S. (2020). Oriented External Electric Fields and Ionic Additives Elicit Catalysis and Mechanistic Crossover in Oxidative Addition Reactions. Journal of the American Chemical Society, 142, 3836–3850. https://doi.org/10.1021/jacs.9b11507  
  • Kucera, I., Dadak, V., and Dobry, R. (1983). The Distribution of Redox Equivalents in the Anaerobic Respiratory Chain of Paracoccus denitrificans. European Journal of Biochemistry, 130, 359–364. https://doi.org/10.1111/j.1432-1033.1983.tb07161.x  
  • Léonard, N. G., Dhaoui, R., Chantarojsiri, T., and Yang, J. Y. (2021). Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catalysis, 11, 10923–10932. https://doi.org/10.1021/acscatal.1c02084  
  • Martínez-Gutierrez. E., González-Márquez, S., Martínez-Hernández, S., Texier, A. C.; Cuervo-López, F. M. and Gómez, J. (2012) Effect of phenol and acetate addition on 2-chlorophenol consumption by a denitrifying sludge. Environmental Technology, 33, 1375-1382. https://doi.org/10.1080/09593330.2011.627882
  • Martínez, J. M., Abad, V., Quílez, J., Raso, J., Cebrián, G. and Álvarez-Lanzarote. (2023). Pulsed Electric Fields (PEF) applications in the inactivation of parasites in food. Trends in Food Science & Technology, 138, 470-479. https://doi.org/10.1016/j.tifs.2023.06.030
  • Nevi, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., and Lovely, D. (2010). Microbial Electrosynthesis: Feeding Microbes Electricity to Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds. MBio, 1. https://doi.org/10.1128/mbio.00103-10  
  • Ohshima, T., Tamura, T., and Sato, M. (2007). Influence of pulsed electric field on various enzyme activities. Journal of Electrostatics, 65, 156–161. https://doi.org/10.1016/j.elstat.2006.07.005  
  • Olaya-Abril, A., Hidalgo-Carrillo, J., Luque-Almagro, V. M., Fuentes-Almargo, C., Urbano, F. J., Moreno-Vivián, C., Richardson, D. J., and Roldán, M. D. (2018). Exploring the denitrification proteome of Paracoccus denitrificans PD1222. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.01137  
  • Parvanova-Mancheva, T., and Beschkov, V. (2009). Microbial denitrification by immobilized bacteria Pseudomonas denitrificans stimulated by constant electric field. Biochemical Engineering Journal, 44, 208–213. https://doi.org/10.1016/J.BEJ.2008.12.005  
  • Pataro, G., Ferrari, G., and Donsi, F. (2011). Mass Transfer Enhancement by Means of Electroporation. In: Mass Transfer in Chemical Engineering Processes (J. Markos, ed.), Pp. 151–176. IntechOpen. Reino Unido.
  • Paul, R., Kaler, K. V. I. S., and Jones, T. B. (1993). A Nonequilibrium Statistical Mechanical Calculation of the Surface Conductance of the Electrical Double Layer of Biological Cells and Its Application to Dielectrophoresis. J. Phys. Chem, 97, 4745-4755. https://doi.org/10.1021/j100120a600  
  • Peña-Calva, A., Olmos-Dichara, A., Viniegra-González, G., Cuervo-López, F. M., and Gómez, J. (2004). Denitrification in presence of benzene, toluene, and m-xylene: Kinetics, mass balance, and yields. Applied biochemistry and biotechnology, 119, 195-208. https://doi.org/10.1007/s12010-004-0002-0
  • Qian, J., Zhou, J., Zhang, Z., Liu, R. and Wang, Q. (2016). Biological Nitrogen Removal through Nitration coupled with Thiosulfate-Driven Denitrification. Scientific Reports, 6, 27502. https://doi.org/10.1038/srep27502
  • Qin, S., Zhang, Z., Yu, L., Yuan, H., Clough, T. J., Wrage-Mönnig, N., Luo, J., and Zhou, S. (2017). Enhancement of subsoil denitrification using an electrode as an electron donor. Soil Biology and Biochemistry, 115, 511–515. https://doi.org/10.1016/j.soilbio.2017.09.020   
  • Revelo, D. M., Hurtado, N. H., and Ruiz, J. O. (2013). Celdas de combustible microbianas (CCMs): Un reto para la remoción de materia orgánica y la generación de energía eléctrica. Informacion Tecnologica, 24, 17–28. https://doi.org/10.4067/S0718-07642013000600004  
  • Romualdo-Martínez. I. V., Hernández, R. A. I., González, B. G., and Beristain, C. R. (2022). Metabolic and Kinetics changes of activated sludge because of failures in the aireation system in a WWTP. Revista Mexicana de Ingeniería Quimica, 21, IA2914. https://doi.org/10.24275/rmiq/IA2914
  • Sazanov, L. A. (2007). Respiratory Complex I:  Mechanistic and Structural Insights Provided by the Crystal Structure of the Hydrophilic Domain. Biochemistry, 46, 2275–2288. https://doi.org/10.1021/bi602508x
  • Stamler, J. S., and Meissner, G. (2001). Physiology of Nitric Oxide in Skeletal Muscle. Physiological Reviews, 81, 209–237. https://doi.org/10.1152/physrev.2001.81.1.209
  • Soto-Vázquez, A., Sánchez-Galindo, P., Barraza-Madrigal, J. A. and Guzmán-Castañeda, J. I. (2023). Electrocoagulation as a possible treatment for wastewater polluted with industrial lubricant oils. Revista Mexicana de Ingeniería Quimica, IA2313. https://doi.org/10.24275/rmiq/IA2313
  • Thomsen, J. K., Geest, T., and Cox, R. P. (1994). Mass Spectrometric Studies of the Effect of pH on the Accumulation of Intermediates in Denitrification by Paracoccus denitrificans. Applied and Environmental Microbiology, 60, 536-541. https://doi.org/10.1128/aem.60.2.536-541.1994 .  
  • Tinajero-Vargas, S. A. (2020). Estudios estructurales de ATP sintasa de Paracoccus denitrificans. Tesis de Maestría en ciencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México.
  • Vaessen, E. M. J., Timmermans, R. A. H., Tempelaars, M. H., Schutyser, M. A. I., and den Besten, H. M. W. (2019). Reversibility of membrane permeabilization upon pulsed electric field treatment in Lactobacillus plantarum WCFS1. Nature, 9. https://doi.org/10.1038/s41598-019-56299-w  
  • van Genuchten, C. M., Bandaru, S. R. S., Surorova, E., Amrose, S. E., Gadgil, A. J., and Peña, J. (2016). Formation of macroscopic surface layers on Fe (0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere, 153, 270–279. https://doi.org/10.1016/j.chemosphere.2016.03.027  
  • van Spanning, R. J. M., Richardson, D. J., and Ferguson, S. J. (2007). Introduction to the Biochemistry and Molecular Biology of Denitrification. In: Biology of the Nitrogen Cycle, (H. Bothe, S. J. Ferguson and W. E. Newton, eds.), Pp 3–20, Elsevier. Estados Unidos.
  • Vanegas-Acosta J. C. (2015). Electric fields and biological cells: numerical insight into possible interaction mechanisms. Tesis de doctorado en ingeniería eléctrica. Eindhoven University of Technology, Alemania.
  • Venturini, M., Rossen, A., Bucci, P. and Silva-Paulo, P. (2022). Applying the Nernst Equation to Control ORP in Denitrification Process for Uranium-Containing Nuclear Effluent with High Loads of Nitrogen and COD. Water, 14, 227. https://doi.org/10.3390/w14142227
  • Walsh, F. C., Kear, G., Nahlé, A. H., Wharton, J. A. and Arenas, L. F. (2017). The rotating cylinder electrode for studies of corrosion engineering and protection of metals—An illustrated review. Corrosion science, 123, 1-20. https://doi.org/10.1016/j.corsci.2017.03.024
  • Zhang, Y., Dong, W., Li, C., Wang, H., Wang, H., Ling, Y., Yan, G. and Chang, Y. (2023). Effects of antibiotics on corncob supported solid-phase denitrification: Denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes. Journal of Environmental Sciences, 130, 24-36. https://doi.org/10.1016/j.jes.2022.10.020