Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Bio24139


Secondary structure by circular dichroism spectroscopy of β-N-acetylglucosaminidase from Lecanicillium lecanii and its relationship with hydrolytic and transglycosylation activities at different pH values

J. Rojas-Osnaya, S. R. Tello-Solis, K. Shirai

https://doi.org/10.24275/rmiq/Bio24139


 

Abstract

N-acetylglucosaminidase produced and purified from Lecanicillium lecanii was analyzed using circular dichroism spectroscopy. The enzyme is mainly an (α + β)-type protein, having 76 % α-helix, 4 % parallel β-sheet, 2 % antiparallel β-sheet, 8 % β-turns, and 10 % unordered structure at pH 10 (condition leading to the highest secondary structure content, 100% ellipticity). The circular dichroism spectra analysis as a function of pH shows a decrease in α-helix content at pH < 8. The structure-activity relationship as a function of pH to hydrolytic or transglycosylation reactions was studied. The maximum transglycosylation activity for four donor substrates was at pH 7, while hydrolytic activity was at pH 6. The highest activity pH values do not correspond to the maximum percentage of ellipticity for both. The maximum hydrolytic or transglycosylation activity observed is associated with conformational changes in the enzyme when pH diminishes.

Keywords: N-acetylglucosaminidase, Lecanicillium lecanii, circular dichroism, hydrolytic, transglycosylation.

 


References

  • Adrangi, S., Faramarzi, M. A. (2013). From bacteria to human: a journey into the world of chitinases. Biotechnology Advances, 31(8), 1786-1795. https://doi.org/10.1016/j. biotechadv.2013.09.012
  • Bradford, N. J. A. B. (1976). A rapid and sensitive method for the quantitation of microgram quantities of a protein isolated from red cell membranes. Anal. Biochem, 72(248), e254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876-2890. https:doi.org/10.1038/nprot.2006.202
  • Guo, X. C., Zhang, Y. H., Gao, W. B., Pan, L., Zhu, H. J., Cao, F. (2020). Absolute configurations and chitinase inhibitions of quinazoline-containing diketopiperazines from the marine-derived fungus Penicillium polonicum. Marine Drugs, 18(9), 479. https://doi.org/10.3390/md18090479

 

  • Halder, S. K., Jana, A., Paul, T., Das, A., Ghosh, K., Pati, B. R., Mondal, K. C. (2016). Purification and biochemical characterization of chitinase of Aeromonas hydrophila SBK1 biosynthesized using crustacean shell. Biocatalysis and Agricultural Biotechnology, 5, 211-218. https://doi.org/10.1016/j.bcab.2015.11.003
  • Herrera-González, J.A., Hernández-Sánchez, D.A., Bueno-Rojas, D.A., Ramos-Bell,S., Váelázquez-Estrada, R.M., Bautista-Rosales, P.U., Gutiérrez-Martínez, P. (2022). Effect of commercial chitosan on in vivtro inhibition of Colletotrichum siamense, fruit quality and elicitor effect on postharvest avocado fruit. Revista Mexicana de Ingeniería Química, 21(1), 1-12. https://doi.org/10.24275/rmiq/Bio2706
  • Hou, F., Ma, X., Fan, L., Wang, D., Wang, W., Ding, T., Liu, D. (2019). Activation and conformational changes of chitinase induced by ultrasound. Food Chemistry, 285, 355-362. https://doi.org/10.1016/j.foodchem.2019.01.180
  • Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1751(2), 119-139. https://doi.org/10.1016/j.bbapap.2005.06.005
  • Li, C., Huang, W., Wang, L. X. (2008). Chemoenzymatic synthesis of N-linked neoglycoproteins through a chitinase-catalyzed transglycosylation. Bioorganic & Medicinal Chemistry, 16(18), 8366-8372.https://doi.org/10.1016/j.bmc.2008.08.042
  • Lienemann, M., Boer, H., Paananen, A., Cottaz, S., Koivula, A. (2009). Toward understanding of carbohydrate binding and substrate specificity of a glycosyl hydrolase 18 family (GH-18) chitinase from Trichoderma harzianum. Glycobiology, 19(10), 1116-1126. https://doi.org/10.1093/glycob/cwp102
  • Lobley, A., Whitmore, L., Wallace, B. A. (2002). DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics, 18(1), 211-212. https://doi.org/10.1093/bioinformatics/18.1.211
  • López-Arenas, L., Solís-Mendiola, S., Padilla-Zúñiga, J., Hernández-Arana, A. (2006). Hofmeister effects in protein unfolding kinetics: Estimation of changes in surface area upon formation of the transition state. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1764(7), 1260-1267. https://doi.org/10.1016/j.bbapap.2006.05.006
  • Makshakova, O. N., Bogdanova, L. R., Faizullin, D. A., Ermakova, E. A., Zuev, Y. F., Sedov, I. A. (2021). Interaction-induced structural transformation of lysozyme and kappa-carrageenan in binary complexes. Carbohydrate Polymers, 252, 117181. https://doi.org/10.1016/j.carbpol.2020.117181
  • Mallakuntla, M. K., Vaikuntapu, P. R., Bhuvanachandra, B., Podile, A. R. (2020). Selection and mutational analyses of the substrate interacting residues of a chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) to improve transglycosylation. International Journal of Biological Macromolecules, 165, 2432-2441. https://doi.org/10.1016/j.ijbiomac.2020.10.125
  • Manavalan, P., Johnson Jr, W. C. (1983). Sensitivity of circular dichroism to protein tertiary structure class.Nature, 305(5937), 831-832. https://doi.org/ 10.1038/305831a0
  • Rojas-Osnaya, J., Rocha-Pino, Z., Nájera, H., González-Márquez, H., Shirai, K. (2020). Novel transglycosylation activity of β-N-acetylglucosaminidase of Lecanicillium lecanii produced by submerged culture. International Journal of Biological Macromolecules, 145, 759-767. https://doi.org/10.1016/j.ijbiomac.2019.12.237
  • Seidl, V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22(1), 36-42. https://doi.org/10.1016/j.fbr.2008.03.002
  • Sreerama, N., Venyaminov, S. Y., Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Analytical biochemistry, 287(2), 243-251. https://doi.org/10.1006/abio.2000.4879
  • Taira, T., Fujiwara, M., Dennhart, N., Hayashi, H., Onaga, S., Ohnuma, T., Fukamizo, T. (2010). Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: a study involving site-directed mutagenesis, HPLC, and real-time ESI-MS. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1804(4), 668-675. https://doi.org/10.1016/j.bbapap.2009.10.015
  • Tronsmo, A., Harman, G. E. (1993). Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Analytical Biochemistry, 208(1), 74-79. https://doi.org/10.1006/abio.1993.1010
  • Umemoto, N., Ohnuma, T., Osawa, T., Numata, T., Fukamizo, T. (2015). Modulation of the transglycosylation activity of plant family GH18 chitinase by removing or introducing a tryptophan side chain. FEBS Letters, 589(18), 2327-2333. https://doi.org/10.1016/j.febslet.2015.07.018
  • Wallace, B. A., Janes, R. W. (2001). Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Current Opinion in Chemical Biology, 5(5), 567-571. https://doi.org/10.1016/S1367-5931(00)00243-X
  • Whitmore, L., Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32(suppl_2), W668-W673. https://doi.org/10.1093/nar/gkh371
  • Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers: Original Research on Biomolecules, 89(5), 392-400. https://doi.org/10.1002/ bip.20853
  • Yang, S., Song, S., Yan, Q., Fu, X., Jiang, Z., Yang, X. (2014). Biochemical characterization of the first fungal glycoside hydrolyase family 3 β-N-acetylglucosaminidase from Rhizomucor miehei. Journal of Agricultural and Food Chemistry, 62(22), 5181-5190. https://doi.org/10.1021/jf500912b
  • Zapata-Luna, R.L., Davidov-Pardo, G., Pacheco, N., Ayora-Talavera, T., Espinosa-Andrews, H., García-Márquez, E., Cuevas-Bernardino, J.C. (2023). Structural and physicochemical properties of bio-chemical chitosan and its performing in an active film with quercetin and Phaseolus polyanthus starch.Revista Mexicana de Ingeniería Química, 22(2), 1-7. https://doi.org/10.24275/rmiq/Alim2315