Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Bio24160


Stimulation of morphometric parameters and zinc content of native maize by priming with zinc oxide phytonanoparticles

S.J. Reyes-Zambrano, C.A. Lecona-Guzmán, M.C. Luján-Hidalgo, F.A Gutiérrez-Miceli

https://doi.org/10.24275/rmiq/Bio24160


 

Abstract

Nanotechnology has been a promising tool for the improvement of various crops of agricultural importance. Maize cultivation in Mexico is one of the most important activities of national interest. However, little attention has been given to the cultivation of native maize. Therefore, the objective of this work was to evaluate different treatments with ZnO-NPs on olotillo maize seeds to find out whether variations occurred on germination percentage, morphometric parameters, and zinc content. In this research, olotillo maize seeds were used, and three priming treatments were tested (nanopriming 3 h, nanopriming 3 h + hydropriming 24 h and nanopriming 24 h) with different concentrations of ZnO-NPs (0, 50, 100, 150 and 200 ppm). The parameters that were evaluated comprised germination percentage, vigor index, amylase activity, shoot and root length, and zinc content. It was observed that nanoparticles increase the percentage of germination in seeds as well as a beneficial effect on morphometric parameters, where the best treatment was nanopriming 3h + hydropriming 24 h at 50 and 100 ppm. As for zinc content in shoots and roots, the best treatment was nanopriming 24 h with 150 and 200 ppm. This indicated that ZnO-NPs in olotillo corn seeds can be an alternative for bio-fortifying this crop.

Keywords: Zea mays, olotillo native maize, germination, ICP, biofortification.

 


References

  • Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L. and Patil, B.S. (2020). Nanoparticle mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports 10:5037. https://doi.org/10.1038/s41598-020-61696-7
  • Agarwal, H., Kumar, S.V. and Rajesh kumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resource-Efficient Technologies 3, 406–413.  https://doi.org/10.1016/j.reffit.2017.03.002
  • Ahmed, B., Dwivedi, S., Abdin, M., Azam A., Al-Shaeri, M., Khan S., Saquib, Q., Al-Khedhairy, A. and Musarrat, J. (2017). Mitochondrial and Chromosomal Damage Induced by Oxidative Stress in Zn2+ Ions, ZnO-Bulk and ZnO-NPs treated Allium cepa roots. Scientific Reports 7, 40685. https://doi.org/10.1038/srep40685
  • Anand, K. V., Anugraga, A. R., Kannan, M., Singaravelu, G., and Govindaraju, K. (2020). Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and shoot vigor of green gram (Vigna radiata L.). Materials Letters. 8:127792. https://doi.org/10.1016/j.matlet.2020.127792
  • Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. and Lux, A. (2007). Zinc in plants. New Phytologist 173, 677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x
  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302, 1–17. https://doi.org/10.1007/s11104-007-9466-3
  • Chandrasekaran, U., Luo, X., Wang, Q. and Shu, K. (2020). Are there unidentified factors involved in the germination of nano-primed seeds? Frontiers in Plant Science 11:832. https://doi.org/10.3389/fpls.2020.00832
  • Del Buono, D., Di Michele, A., Costantino, F., Trevisan, M. and Lucini, L. (2021). Biogenic ZnO Nanoparticles Synthesized Using a Novel Plant Extract: Application to Enhance Physiological and Biochemical Traits in Maize. Nanomaterials 11:1270. https://doi.org/10.3390/nano11051270
  • FAOSTAT, Organización de las Naciones Unidas para la Alimentación y la Agricultura (2020). Producción. Cultivos. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Roma.
  • Guillén-De la Cruz P, Velázquez-Morales R, de la Cruz-Lázaro E, Márquez-Quiroz C. and Osorio-Osorio R (2018). Germinación y vigor de semillas de poblaciones de maíz con diferente proporción de endospermo vítreo. Chilean journal of agricultural & animal sciences, ex Agro-Ciencia 34(2):108-117. http://dx.doi.org/10.4067/S0719-38902018005000304
  • Gugelminetti, L., J. Yamaguchi, P. Perata and A. Alpi (1995). Amilolytic Activities in Cereal Seeds Under Aerobic And Anaerobic Conditions. Plant Physiology. 109(1):1069-1076. https://doi.org/10.1104/pp.109.3.1069
  • Gutierrez-Miceli, F.A., Oliva-Llavan, M.A., Lujan-Hidalgo, M.C., Velazquez-Gamboa, M.C., Gonzalez-Mendoza, D.G. and Sanchez-Roque, Y. (2021). Zinc oxide phytonanoparticles’ effects of yield and mineral contents in fruits of tomato (Solanum lycopersicum L. cv. cherry) under field conditions. Scientific World Journal. 5561930.47. https://doi.org/10.1155/2021/5561930
  • Hacisalihoglu, G. (2020). Zinc (Zn): The Last Nutrient in the Alphabet and Shedding Light on Zn Efficiency for the Future of Crop Production under Suboptimal Zn. Plants. 9:1471.
  • Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., Dervishi, E., Biris, A.S., Shashkov, E. V., Galanzha, E.I. and Zharov, V.P. (2011). Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences U.S.A. 108, 1028–1033. https://doi.org/10.1073/pnas.1008856108
  • Kohno, A. and Nanmori, T. (1992). Changes in α- and β-amylase activities during seed germination of clover (Trifolium repens). Botanical Magazine, Tokyo 105:167–70
  • Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J., and Alvarez, P. J. J. (2010). Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry 29(3), 669–675. doi:10.1002/etc.58
  • Liu, R. and Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514, 131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104
  • Mahakham, W., Piyada, T., Santi, M., Santi, P. and Sarmah, A. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination.Science of the Total Environment 573, 1089–1102. https://doi.org/10.1016/j.scitotenv.2016.08.120
  • Mahakham, W., Sarmah, A.K., Maensiri, S. and Theerrakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports 7, 8263. https://doi.org/10.1038/s41598-017-08669-5
  • Narendhran, S., Rajiv, P. and Sivaraj, R. (2016). Toxicity of ZnO nanoparticles on germinating Sesamum indicum (Co-1) and their antibacterial activity. Bulletin of Materials Science 39, 415–421. https://doi.org/10.1007/s12034-016-1172-4
  • Ozturk, L., Yazicia, M.A., Yucelb, C., Torunb, A., Cekicc, C., Bagcid, A., Ozkanb, H., Braune, H., Sayersa, Z. and Cakmaka, I. (2006). Concentration and localization of zinc during seed development and germination in wheat. Physiology Plantarum 128, 144–152. https://doi.org/10.1111/j.1399-3054.2006.00737.x
  • Paparella, S., Araújo, S.S., Rossi, G. and Wijayasinghe, M. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports 34, 1281–1293. https://doi.org/10.1007/s00299-015-1784-y
  • Prakash, M. G., and Chung, I. M. (2016). Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings. Acta Biologica Hungarica 67, 286-296. https://doi.org/10.1556/018.67.2016.3.6
  • Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K., Samad. A., M. J. Khan., Z. Shah and Jan. M.T. (2014). Determination of optimal duration and concentration of zinc and phosphorus for priming wheat seed. Sarhad Journal of Agriculture 30(1): 27-34.
  • Prerna, D.I., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K. and Subramanian, K.S. (2020). Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). Journal of Plant Growth Regulation 39, 717–728. https://doi.org/10.1007/s00344-019-10012-3
  • Raja, K., Sowmya, R., Sudhagar, R., Moorthy, P. S., Govindaraju, K., & Subramanian, K. S. (2019). Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Materials Letters 235, 164-167. https://doi.org/10.1016/j.matlet.2018.10.038
  • Sarkhosh, S., Kahrizi, D., Darvishi, E., Tourang, M., Haghighi-Mood, S., Vahedi, P. and Ercisli, S. (2022). Effect of zinc oxide nanoparticles (ZnO-NPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. Journal of Nanomaterials 1-15. https://doi.org/10.1155/2022/1892759
  • Singh, A., Singh, N. B., Afzal, S., Singh, T. and Hussain, I. (2018). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science 53, 185-201. https://doi.org/10.1007/s10853-017-1544-1
  • Singh, A., Singh, N.B., Hussain, I., Singh, H., Yadav, V. and Singh, S.C. (2016). Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. Journal of Biotechnology 233, 84–94. https://doi.org/10.1016/j.jbiotec.2016.07.010
  • Sreeprasad, T.S., Sajanlal, P.R. and Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35, 905–927. https://doi.org/10.1080/01904167.2012.663443
  • Stałanowska, K., Szablińska-Piernik, J., Okorski, A., Lahuta, L.B. (2023) Zinc Oxide Nanoparticles Affect Early Seedlings' Growth and Polar Metabolite Profiles of Pea (Pisum sativum L.) and Wheat (Triticum aestivum L.). International Journal of Molecular Sciences. 24(19):14992. doi: 10.3390/ijms241914992.
  • Takahashi, M., Nozoye, T., Kitajima, N., Fukuda, N., Hokura, A., Terada, Y. and Nishizawa, N.K. (2009). In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant and Soil 325(1-2), 39. https://doi.org/10.1007/s11104-009-0045-7.
  • Upadhyaya, H., Roy, H., Shome, S., Tewari, S., Bhattacharya, M.K. and Panda, S.K. (2017).  Physiological impact of Zinc nanoparticle on germination of rice (Oryza sativa L) seed. Journal of Plant Science and Phytopathology 1:062-070. https://www.heighpubs.org/jpsp/jpsp-aid1008.php
  • Velázquez-Gamboa, M.C., Rodríguez-Hernández, L., Abud-Archila, M., Gutiérrez-Miceli, F.A., González-Mendoza, D., Valdez-Salas, B., González-Terreros, E. and Luján-Hidalgo, M.C. (2021). Agronomic biofortification of Stevia rebaudiana with zinc oxide (ZnO) Phytonanoparticles and Antioxidant Compounds. Sugar Tech 23, 453–460. https://doi.org/10.1007/s12355-020-00897-w
  • Wellhausen, E.J., Roberts, L.M. Hernández, E. and Mangelsdorf, X.P.C. (1951). Razas de Maíz en México. Su Origen, Características y Distribución. In: Xolocotzia, Obras de Efraim Hernández Xolocotzi. Rev. Geografía Agríc. Tomo II, 1987. Universidad Autónoma Chapingo. Pp:609-732.
  • Zafar, H., Alli, A., Ali, J.S., Haq, I.U. and Zia, M. (2016). Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Frontiers in Plant Science 7, 1–8. https://doi.org/10.3389/fpls.2016.00535.
  • Zhu, J., Zou, Z., Shen, Y., Li, J., Shi, S., Han, S. and Zhan, X. (2019).  Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene. Environmental Pollution 247:108–17. https://doi.org/10.1016/j.envpol.2019.01.046.