Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Bio24170


Optimization of copper removal through spherical agglomeration: Effect of pH precipitation and the use of Agave spp. leaf extracts as biosurfactants

F.A. Alcázar-Medina, S. Valle-Cervantes, T.L. Alcazar-Medina, M.D.J. Rodríguez Rosales

https://doi.org/10.24275/rmiq/Bio24170


 

Abstract

This study investigated the feasibility and efficacy of calcium hydroxide as an alternative to NaOH in the spherical agglomeration process for copper removal in aqueous solutions. This research aimed to evaluate the effectiveness of Ca(OH)2 in precipitation stage by evaluating different pH levels (8.0 and 9.0), surfactant type (Extracts of leaf of A. tequilana and A. lechuguilla), dosages (0.3, 0.5 and 1.0 g/gCu), and initial copper concentrations (2.0, 5.0 and 10.0 mg/L), on Cu2+ removal through spherical agglomeration. The results showed that Ca(OH)2 is an effective alternative to NaOH, achieving high copper removal percentages in various experimental conditions (with an efficiency range of 54.63 to 98.73%). That is particularly relevant in contaminated water treatment applications where cost reduction and sustainability are necessary. The optimal operating conditions were identified (pH0 9.0, A. tequilana leaf extract as biosurfactant and a dose of 0.3g/gCu), such as a specific pH and an adequate dosage of surfactant, which maximized copper removal efficiency (98.73% of copper removal). These results provide valuable guidelines for the wastewater treatment industry and environmental management, where efficient removal of heavy metals is essential.

Keywords: Spherical agglomeration, copper removal, Agave spp., surfactant, pH process.

 


References

  • Abbiw, E. (2021). Removing Heavy Metals from Mine-Polluted Waters Using Agricultural Waste Materials. Master Thesis in Program of Environmental Studies at George V. Voinovich School of Leadership and Public Service of Ohio University.
  • Alcázar-Medina, F., Proal-Nájera, J., Gallardo-Velázquez, T., Cháirez-Hernández, I., Antileo-Hernández, C., and Alvarado-De La Peña, A. (2014). Aplicación de extractos de lechuguilla (Agave lechuguilla Torr.) en la remoción de Cobre (II) en modelos de agua por aglomeración esférica. Revista mexicana de ingeniería química 13, 605-617.
  • Apfel, H. (1992). Untersuchungen zum Anwendbarkeit der Umbenetzungsagglomeration zur Reinigung Schwermetallhaltiger Abwasser. Diplomarbeit. Institut f¨ur Mechanische Verfahrenstechnik der Universit¨at Karlsruhe (TH), Germany.
  • Armenante, P. M. (1997). Precipitation of heavy metals from wastewaters. Ed. New Jersey Institute of Technology, USA.
  • Asencios, Y. J. O., Parreira, L. M., Perpetuo, E. A., & Rotta, A. L. (2022). Characterization of seaweeds collected from Baixada Santista litoral, and their potential uses as biosorbents of heavy metal cations. Revista Mexicana de Ingeniería Química 21, IA2600-IA2600. https://doi.org/10.24275/rmiq/IA2600
  • Bailón-Salas, A. M., Ordaz-Díaz, L. A., Cháirez-Hernández, I., Alvarado-de la Peña, A., and Proal-Nájera, J. B. (2018). Lead and copper removal from groundwater by spherical agglomeration using a biosurfactant extracted from Yucca decipiens Trel. Chemosphere 207, 278-284. https://doi.org/10.1016/j.chemosphere.2018.05.103
  • Barros, G. K. G. C., Melo, R. P. F., and de Barros Neto, E. L. (2018). Removal of copper ions using sodium hexadecanoate by ionic flocculation. Separation and purification technology 200, 294-299. https://doi.org/10.1016/j.seppur.2018.01.062
  • Bashir, M., Mohan, C., Tyagi, S., and Annachhatre, A. (2022). Copper removal from aqueous solution using chemical precipitation and adsorption by Himalayan Pine Forest Residue as Biochar. Water Science and Technology 86, 530-554. https://doi.org/10.2166/wst.2022.222
  • Bermúdez-Bazán, M., Castillo-Herrera, G. A., Urias-Silvas, J. E., Escobedo-Reyes, A., and Estarrón-Espinosa, M. (2021). Hunting bioactive molecules from the Agave genus: An update on extraction and biological potential. Molecules 26, 6789. https://doi.org/10.3390/molecules26226789
  • Canul-Chan, M., Rodas-Junco, B. A., Uribe-Riestra, E., & Houbron, E. (2023). Biodegradation of crude oil present in wastewaters: evaluation of biosurfactant production and catechol 2, 3 dioxygenase activity. Revista Mexicana de Ingeniería Química 22, 2932. https://doi.org/10.24275/rmiq/Bio2932
  • Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., and Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from the aquatic environment: A review. Journal of Environmental Chemical Engineering 5, 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029
  • Chafi, M., Byadi, S., Barhoumi, A., Limouni, W., Tizliouine, A., Jama, C., and Omari, L. E. H. (2022). Study of copper removal by modified biomaterials using the response surface methodology, DFT Calculation, and molecular dynamic simulation. Journal of Molecular Liquids 363, 119799. https://doi.org/10.1016/j.molliq.2022.119799
  • Chanthapon, N., Sarkar, S., Kidkhunthod, P., and Padungthon, S. (2018). Lead removal by a reusable gel cation exchange resin containing nano-scale zero valent iron. Chemical Engineering Journal 331, 545-555. https://doi.org/10.1016/j.cej.2017.08.133
  • Conant, J., and Fadem, P. (2011). Guía comunitaria para la salud ambiental. Hesperian.
  • Conway, J. R., Adeleye, A. S., Gardea-Torresdey, J., and Keller, A. A. (2015). Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environmental Science and Technology 49, 2749-2756. https://doi.org/10.1021/es504918q
  • Darweesh, M. A., Elgendy, M. Y., Ayad, M. I., Ahmed, A. M., Elsayed, N. K., and Hammad, W. (2022). Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon. South African Journal of Chemical Engineering 40, 10-20. https://doi.org/10.1016/j.sajce.2022.01.002
  • de Souza, A. C., Silva, M. S., Simões, L. A., Fernandes, N. A. T., Schwan, R. F., & Dias, D. R. (2024). Advantages of biosurfactants over petroleum-based surfactants. Industrial Applications of Biosurfactants and Microorganisms, 371-393. https://doi.org/10.1016/B978-0-443-13288-9.00002-4
  • Elskus, A. A., Ingersoll, C. G., Kemble, N. E., Echols, K. R., Brumbaugh, W. G., Henquinet, J. W., and Watten, B. J. (2015). An evaluation of the residual toxicity and chemistry of a sodium hydroxide‐based ballast water treatment system for freshwater ships. Environmental Toxicology and Chemistry 34, 1405-1416. https://doi.org/10.1002/etc.2943
  • Eroglu, M., Mutluoglu, M., Uzun, G., and Ay, H. (2012). Caustic skin burn caused by sodium hydroxide. BMJCase Reports 2012, 1. http://dx.doi.org/10.1136/bcr-2012-007103
  • Forey, N., Atteia, O., Omari, A., and Bertin, H. (2021). Use of saponin foam reinforced with colloidal particles as an application to soil remediation: Experiments in a 2D tank. Journal of Contaminant Hydrology 238, 103761. https://doi.org/10.1016/j.jconhyd.2020.103761
  • García Arámbula, C. G. (2011). Aplicación de sapogenina como agente surfactante, en la remoción de metales Cd y Ni en modelos de agua. Tesis de Maestría en Ciencias en Gestion Ambiental, Instituto Politécnico Nacional CIIDIR Unidad Durango, México.
  • Gonzalez-Valdez, L. S., Almaraz-Abarca, N., Proal-Nájera, J. B., Robles-Martinez, F., Valencia-Del-Toro, G., and Quintos-Escalante, M. (2013). Surfactant properties of the saponins of Agave durangensis, application on arsenic removal. International Journal of Engineering 4, 8269.
  • Grzywaczyk, A., Smułek, W., Smułek, G., Ślachciński, M., and Kaczorek, E. (2021). Application of natural surfactants for improving the leaching of zinc and copper from different soils. Environmental Technology and Innovation 24, 101926. https://doi.org/10.1016/j.eti.2021.101926
  • Herbert-Doctor, L. A., Saavedra-Aguilar, M., Villarreal, M. L., Cardoso-Taketa, A., and Vite-Vallejo, O. (2016). Insecticidal and Nematicidal Effects of Agave tequilana Juice against Bemisia tabaci1 and Panagrellus redivivus2. Southwestern Entomologist 41, 27-40. https://doi.org/10.3958/059.041.0105
  • Hernández, R., Lugo, E. C., Díaz, L., and Villanueva, S. (2005). Extracción y cuantificación indirecta de las saponinas de Agave lechuguilla Torrey. e-Gnosis 3, 1-9
  • Hong, K.-J., Tokunaga, S., and Kajiuchi, T. (2002). Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 49, 379-387. https://doi.org/10.1016/S0045-6535(02)00321-1
  • Hoyos-Montilla, A. A., Tobón, J. I., and Puertas, F. (2023). Role of calcium hydroxide in the alkaline activation of coal fly ash. Cement and Concrete Composites 137, 104925. https://doi.org/10.1016/j.cemconcomp.2022.104925
  • Hu, H., Li, X., Huang, P., Zhang, Q., and Yuan, W. (2017). Efficient removal of copper from wastewater by using mechanically activated calcium carbonate. Journal of Environmental Management 203, 1-7. https://doi.org/10.1016/j.jenvman.2017.07.066
  • Jahan, R., Bodratti, A. M., Tsianou, M., & Alexandridis, P. (2020). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Advances in colloid and interface science 275, 102061. https://doi.org/10.1016/j.cis.2019.102061
  • Jia, K., Yi, Y., Ma, W., Cao, Y., Li, G., Liu, S., An, N. (2022). Ion flotation of heavy metal ions by using biodegradable biosurfactant as collector: Application and removal mechanism. Minerals Engineering 176, 107338. https://doi.org/10.1016/j.mineng.2021.107338
  • Juarez, D. S., Flores, L., Sánchez-Robles, J. H., De la Cerda, S., Rodríguez, C., and Jiménez, D. (2014). Variability of saponins concentration in guishe collected in different geographical areas and weather conditions. Journal of Chemistry 2, 105-115. http://dx.doi.org/10.15640/jcb.v2n2a5
  • Keleşoğlu, S. (2007). Comparative adsorption studies of heavy metal ions on chitin and chitosan biopolymers. Master Thesis in Chemistry, Izmir Institute of Technology, Turkía.
  • Kregiel, D., Berlowska, J., Witonska, I., Antolak, H., Proestos, C., Babic, M., Zhang, B. (2017). Saponin-based, biological-active surfactants from plants. Application and characterization of surfactants 6, 184-205.
  • LaGrow, A. P., Sinatra, L., Elshewy, A., Huang, K.-W., Katsiev, K., Kirmani, A. R., Bakr, O. M. (2014). Synthesis of copper hydroxide branched nanocages and their transformation to copper oxide. The Journal of Physical Chemistry C 118, 19374-19379. https://doi.org/10.1021/jp503612k
  • Li, Z., Cheng, H., Fu, Y., Zuo, K., Gao, P., and Han, Y. (2023). Dissolution Property of Serpentine Surface and the Effect on Particle–Particle Interaction Behavior in Solution. Minerals 13, 799. https://doi.org/10.3390/min13060799
  • Liang, W., Zhan, L., Piao, L., and Rüssel, C. (2011). Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite. Materials Science and Engineering: B 176, 1010-1014. https://doi.org/10.1016/j.mseb.2011.05.036
  • Lupa, L., and Cocheci, L. (2023). Heavy Metals Removal from Water and Wastewater. IntechOpen. https://doi.org/10.5772/intechopen.110228
  • Luttrell, W. E. (2010). Toxic tips: Potassium hydroxide. Journal of Chemical Health and Safety 17, 54-55. https://doi.org/10.1016/j.jchas.2009.11.005
  • Mireles Martínez, A. (2011). Determinación de la eficiencia de extractos de Agave durangensis en la remoción de arsénico en agua. Tesis de Maestría en Ciencias en Gestión Ambiental, Instituto Politécnico Nacional CIIDIR Unidad Durango, México.
  • Mohammmadi-Manesh, H., Shahidizandi, S., and Loghavi, M. M. (2023). Chemical Co-precipitation Synthesis of Manganese Ferrite (MnFe2O4) and Evaluation of Its Applications in Copper Removal from Aqueous Solutions. Journal of Nanostructures 13, 16-28. https://doi.org/10.22052/JNS.2023.01.003
  • Morreeuw, Z. P., Castillo-Quiroz, D., Ríos-González, L. J., Martínez-Rincón, R., Estrada, N., Melchor-Martínez, E. M.,Reyes, A. G. (2021). High throughput profiling of flavonoid abundance in Agave lechuguilla residue-valorizing under explored mexican plant. Plants 10, 695. https://doi.org/10.3390/plants10040695
  • Orlewski, P. M., Ahn, B., and Mazzotti, M. (2018). Tuning the particle sizes in spherical agglomeration. Crystal Growth and Design 18, 6257-6265.
    https://doi.org/10.1021/acs.cgd.8b01134
  • Pérez‐Zavala, M. d. L., Hernández‐Arzaba, J. C., Bideshi, D. K., and Barboza‐Corona, J. E. (2020). Agave: a natural renewable resource with multiple applications. Journal of the Science of Food and Agriculture 100, 5324-5333.
  • Proal-Najera J. B. Patent IMPI MX/E/2011/053602, 2011
  • Proal-Nájera, J. B., Tabche, L. M., and Mueller, M. (1997). Estudio sobre el tratamiento de aguas residuales industriales altamente concentradas en metales pesados bajo aglomeración esférica. Journal of the mexican chemical society 41, 51-56.
  • Qasim, M., Islam, W., Ashraf, H. J., Ali, I., and Wang, L. (2020). Saponins in insect pest control. Co-evolution of secondary metabolites, 897-924. https://doi.org/10.1007/978-3-319-96397-6_39
  • Quiton, K. G. N., Huang, Y. H., and Lu, M. C. (2022). Recovery of cobalt and copper from single-and co-contaminated simulated electroplating wastewater via carbonate and hydroxide precipitation. Sustainable Environment Research 32, 1-22. https://doi.org/10.1186/s42834-022-00140-z
  • Rai, A. K., Singh, S. P., Pandey, A., Larroche, C., & Soccol, C. R. (Eds.). (2021). Current Developments in Biotechnology and Bioengineering: Technologies for Production of Nutraceuticals and Functional Food Products. Editorial Elsevier, Netherlands. https://doi.org/10.1007/978-3-031-21682-4_23
  • Rai, S., Acharya-Siwakoti, E., Kafle, A., Devkota, H. P., and Bhattarai, A. (2021). Plant-derived saponins: a review of their surfactant properties and applications. Science 3, 44. https://doi.org/10.3390/sci3040044
  • Reyes-Agüero, J. A., Aguirre-Rivera, J. R., and Peña-Valdivia, C. B. (2000). Biología y aprovechamiento de Agave lechuguilla Torrey. Botanical Sciences 67, 75-88. https://doi.org/10.17129/botsci.1626
  • Rodrigues, C. I. S., Jackson, J. J., and Montross, M. D. (2016). A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Industrial Crops and Products 92, 165-173. https://doi.org/10.1016/j.indcrop.2016.08.010
  • Schlebusch, I., Pott, R. W. M., and Tadie, M. (2023). The ion flotation of copper, nickel, and cobalt using the biosurfactant surfactin. Discover Chemical Engineering 3, 7. https://doi.org/10.1007/s43938-023-00023-8
  • Secretaría de Economía. (2001). NMX-AA-051- SCFI-2001. Análisis de agua -determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas - Método de prueba. Diario Oficial de  la Federación.
  • SEMARNAT, M. (2007). ¿Y el medio ambiente? Problemas en México y el mundo. SEMARNAT. Mexico.
  • SEMARNAT. (1997). NOM-001-ECOL-1996. Límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales. Diario Oficial de la Federación.
  • Sharma, J., Sundar, D., & Srivastava, P. (2023). Advantages and Disadvantages of Biosurfactants over Other Synthetic Surfactants. In:  Advancements in Biosurfactants Research, (Aslam, R., Mobin, M., Aslam, J., Zehra, S, eds) Pp. 505-523. Springer Cham. https://doi.org/10.1007/978-3-031-21682-4_23
  • Sidana, J., Singh, B., and Sharma, O. P. (2016). Saponins of Agave: Chemistry and bioactivity. Phytochemistry 130, 22-46. https://doi.org/10.1016/j.phytochem.2016.06.010
  • SSA. (2021). Modificación a la norma oficial Mexicana NOM-127-SSA1-2021. Salud ambiental, agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Diario Oficial de la Federación.
  • Vashist, U., Sadri, F., Choi, Y., and Ghahreman, A. (2022). Systematic study of critical parameters on magnesium saturated thiosulfate gold leaching process; part A: Effect of ammonia and lime for pH adjustments and concentration of magnesium and copper (II). Hydrometallurgy 213, 105943. https://doi.org/10.1016/j.hydromet.2022.105943
  • Velázquez Ríos, I. O., González-García, G., MelladoMojica, E., Veloz-García, R. A., Dzul-Cauich, J. G., López, M. G., and García-Vieyra, M. I. (2019). Phytochemical profiles and classification of Agave syrups using 1H-NMR and chemometrics. Food Science and Nutrition 7, 3-13. https://doi.org/10.1002/fsn3.755
  • Vivas, E. L., Alfafara, C. G., Migo, V. P., Cho, K., Detras, M. C. M., Trinidad, L. C., ... and Lee, S. (2019). Comparative evaluation of alkali precipitation and electrodeposition for copper removal in artisanal gold smelting wastewater in the Philippines. Desalination and water treatment, r 150, 396-405. . https://doi.org/10.5004/dwt.2019.23790
  • Wang, L. K., Wang, M. H. S., Shammas, N. K., and Hahn, H. H. (2021). Physicochemical treatment consisting of chemical coagulation, precipitation, sedimentation, and flotation. Integrated natural resources research, 265-397. https://doi.org/10.1007/978-3-030-61002-9_6
  • Wen, T., Zhao, Y., Zhang, T., Xiong, B., Hu, H., Zhang, Q., and Song, S. (2019). Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate. Chemosphere 230, 127-135.  https://doi.org/10.1016/j.chemosphere.2019.04.213
  • World Health Organization. (2011). Guidelines for drinking-water quality, Editorial WHO Press, Switzerland.
  • Wołowicz, A., Staszak, K., and Hubicki, Z. (2023). Effect of anionic surfactants on the heavy metal ions removal by adsorption onto ion exchangers-batch and column studies. Journal of Water Process Engineering 53, 103792. https://doi.org/10.1016/j.jwpe.2023.103792
  • Ye, L., Chai, L., Li, Q., Yan, X., Wang, Q., and Liu, H. (2016). Chemical precipitation granular sludge (CPGS) formation for copper removal from wastewater. RSC advances 6, 114405-114411. https://doi.org/10.1039/C6RA11165C
  • Yoon, R. H., and Salman, T. (1971). Zero point of charge of cupric hydroxide and surface area determination by dye adsorption. Canadian Metallurgical Quarterly 10, 171-177. https://doi.org/10.1179/cmq.1971.10.3.171
  • Yu, X. L., and He, Y. (2018). Tea saponins: Effective natural surfactants beneficial for soil remediation, from preparation to application. RSC advances 8, 24312-24321. https://doi.org/10.1039/C8RA02859