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Production of reducing sugars from leaves crown of pineapple, corn stalk and rose stalk
using phosphoric acid: Kinetics and thermodynamics

Producción de azúcares reductores a partir de coronilla de piña, olote de maíz y tallo de
rosa utilizando ácido fosfórico: cinética y termodinámica
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Abstract
The kinetics and thermodynamics of hydrolysis of diluted H3PO4 with three residual lignocellulosic materials (leaves crown
of pineapple, LC; Zea mays rachis, CC; and rose stalk, RS) were used to study the production of reducing sugars. Three acid
concentrations (1, 1.5, and 2M) and three temperatures (105, 120, and 150 °C) were tested for each material. An increase in acid
concentration and temperature was conducive to sugar production. LC and the CC showed good capacity to produce reducing
sugars in compared to RS. For LC and CC better conditions were 120 °C and 2.0 M; however, similar results were observed at 105
°C and 2.0 M. The best hydrolysis reaction time was 120 minutes to produce the greatest amount of reducing sugars. Hydrolysis
kinetics showed that production exceeded the decomposition of sugars (k1 > k2,kr > 1) with LC and CC. Thermodynamics
analysis indicated that endothermic and non-spontaneous processes were involved for the production and decomposition of
sugars. The magnitude of activation energy of RS was the highest of all three materials, this shows that RS was the most difficult
material to hydrolyze. .
Keywords: hydrolysis, reducing sugars, thermodynamics, lignocellulosic materials, kinetics.

Resumen
Mediante la cinética y la termodinámica de la hidrólisis con H3PO4 diluido se estudió la producción de azucares reductores de
tres materiales lignocelulósicos residuales (hojas de la corona de piña, LC; olote de maíz, CC; y tallo de rosa, RS). Se probaron
tres concentraciones de ácido (1, 1,5 y 2M) y tres temperaturas (105, 120 y 150 °C) para cada material. La temperatura y
concentración mejoraron ligeramente la producción de azúcares. La LC y la CC mostraron una mejor producción de azúcares
reductores en comparación con el RS. Las mejores condiciones de operación para LC y el CC fueron 120 °C y 2 M; sin embargo,
se observaron resultados similares a 105 °C y 2 M. El tiempo de reacción al que la hidrólisis produjo la mayor cantidad de
azucares reductores fue de 120 minutos. La cinética de hidrólisis mostró que la rapidez de producción predominó sobre la
descomposición de los azúcares (k1 > k2,kr > 1) con la LC y el CC. El análisis termodinámico mostró un proceso endotérmico y
no espontáneos para la producción y descomposición de azúcares. La energía de activación fue mayor para el RS que para la LC
y el CC, lo que indica que el RS es un material recalcitrante ante el proceso de hidrólisis acida.
Palabras clave: hidrólisis, azúcares reductores, termodinámica, materiales lignocelulósicos, cinética.
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1 Introduction

The need of energy supply led to search for
environmentally friendly alternative sources to reduce
the atmospheric pollution due to the use of fossil fuels
(Antonio-Narcizo, et al., 2023). The geographical
location of the State of Mexico allows for a wide
diversity of climates and soil types that allows
the production of seeds, legumes, vegetables, fruits,
agave, herbs (including medicinal ones) and, varied
flower production, all these products generate residues
such as shells, stems, leaves and petals that are
not properly disposed causing soil erosion and the
emission of polluting gases into the atmosphere due
to their natural decomposition (Hernández-Teyssier,
et al., 2023). This is the case of residues such
as corn cob stalks (Zea mays rachis), pineapple
crown leaves and rose stems. These residues are
the most abundant sources of renewable biomass
globally (Contreras-Zarazúa et al., 2022). They
have a complex structure consisting of carbohydrate
polymers, cellulose (35-50%), hemicellulose (15-
25%) and a phenolic polymer, lignin (20-25%).
The process of conversion of lignocellulose to
reducing sugars consists of three stages, a pre-
treatment stage by physical, chemical, physico-
chemical processes that involve thermal and non-
thermal effects, biological or enzymatic media that
helps to alter the cellulose structure by releasing and
extracting the hemicellulose from the lignocellulosic,
in order to allow access to acid molecules. the
cellulose structure by releasing and extracting the
hemicellulose from the lignocellulosic material, to
later allow the access of acid molecules and in
a second stage of saccharification or hydrolysis,
where simple sugars are obtained for later use in a
third stage where the transformation of hexoses and
pentoses to bioethanol takes place (Alvira et al., 2010).
Monomers, such as glucose, can be obtained from
these polymers, and lignocellulosic biomass has great
potential as a raw material for obtaining reducing
sugars, which can be used in different industries
(Cortes et al., 2013).

Zea mays rachis (CC), rose stalk (RS), and
leaves crown of pineapple (LC) were considered as
residues which are disposed into the environment,
burned or used to feed farm animals (Fritsch et
al., 2017). The energy potential of agricultural
residues can be harvested and used industrially. It
is, therefore, necessary to develop methods to extract
their maximum energy potential, for this reason,
the hydrolytic capacity of agricultural residues (CC,
RS, LC) was evaluated in the present work using
phosphoric acid at three concentrations (1, 1.5 and 2
M) and three temperatures (100, 110 and 150 °C).

2 Materials and methods

2.1 Substrate from agricultural residues

The residues were obtained from local producers in
Toluca, a state of Mexico, they were subjected to
rinsing using distilled water, dried in a recirculation
oven until constant weight, and sieved to a mesh
size of 100 mesh. The extracts (chlorophyll, resins,
and terpenes) were eliminated as follows: 4 g of dry
residue was placed in contact with a mixture of ethanol
and benzene (1:2) for 4 h, followed by hot water in a
soxhlet extraction apparatus, then the solids were dried
until constant weight. Finally, the substrates (samples)
were dried for 24 h at 50 °C. The amount of extract
present in the sample was determined from the weight
difference (Zheng et al., 2014).

2.2 Substrate characterization

The contents of lignin and holocellulose present in
each sample were determined and the residues were
performed using FTIR spectroscopy, using a Varian
640 instrument in the waverange 500-4000 cm−1 and
a JEOL JSM-590-LD low-vacuum scanning electron
microscope (SEM).

2.3 Holocellulose and lignin

The substrates were refluxed with a mixture of
acetylketone, 1,4-dioxane and HCl for 30 min (6, 2
and 1.5 mL respectively). The mixture was filtered and
washed with 10 mL of each one next solvent: ether,
dioxane, methanol and finally with distilled water.
After that they were dried at 103 °C for a period of 16
hours, and the final weight was assumed to be cellulose
(TAPPI T17/ m-55). Separately, another sample was
contacted by 15 mL of 72% sulfuric acid and stirred
for 2 h, then was diluted to 3% by distilled water (350
mL), was kept in reflux for 4 h and the solid was dried
at 103 °C using an oven in 16 h. The weight of this
residue was taken as acid-insoluble lignin (Bagby et
al., 1971).

2.4 Kinetics of the acid hydrolysis
experiments

Acid hydrolysis was carried out using three
concentrations of H3PO4 (1.0, 1.5 and 2.0 M) at three
temperatures (105, 120 and 150 °C). The kinetics
of sugar production were determined in duplicate
for each material and samples were taken every 30
min for 5 h. In each run, 20 test tubes with screw
caps were put in a Hanna brand COD digester at
the desired temperature. Each tube contained 0.5 g
of residue with 7.5 mL of solution at the desired
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concentration. At the end of the reaction, each
sample was cooled at 20°C (local temperature) and
separated by filtration the solid and liquid phases
(hydrolyzed). The dinitrosalicylic acid method (DNS)
was used to determine the reducing sugar content
in the hydrolysates (Miller, 1959). The furfural was
measured as follows: 200 µL of each hydrolysate
was diluted with distilled water to a volume of 10
mL, subsequently the samples were homogenized and
analyzed on a Thermo Scientific Evolution Array Uv-
Vis spectrometer using a wavelength of 277 nm (Saien
et al., 2017). The solid phase was characterized using
FTIR and SEM.

2.5 Kinetic and thermodynamic calculations

Sugar production data were adjusted to the Saeman
(1945) kinetic model, which was the first kinetic
model applied to the sulfuric acid hydrolysis of
wood. It has been used satisfactorily with other
residues (Tizazu & Moholkar, 2018; Sarkar &
Aikat, 2013), considering that the process involves
a series of reactions related to the production of
monomeric sugars and their transformation into
aldehyde inhibitors (Equation 1):

hollocellulose
k1
−−→ reducing sugars
k2
−−→ degradation products (1)

According to Saeman (1945) the reactions presented in
Equation 1 were first-order, irreversible and proposed
a kinetic model to predict the concentration of
monosaccharides as a function of the reaction time
(Equation 2):

M =
[

k1P0

k2 − k1

] (
e−tk1 − etk2

)
, (2)

where M represents the weight (g) of sugar per
100 g of raw material, P0 the initial weight (g) of
holocellulose per 100 g of raw material, t is the
reaction time (min), k1 and k2 represents the kinetic
constants in min−1.

According with Saeman (1945) and Ranganathan
et al., (1985), the kinetic constants obtained from
the Saeman model can be used to calculate the
relationship between the two constants (kr), which
shows the effect of temperature and acid concentration
and can be used to determine the reaction time at
which the production of sugars reaches a maximum
(Equation 3).

tm =
1

k2(kr − 1)
ln(kr) (3)

The experimental sugar production data were fitted to
the kinetic model using nonlinear regression in Origin
8.1 software.

The rate constants determined from the kinetic
model were used to determine the thermodynamic
parameters: Ea (activation energy), ∆H (enthalpy),
∆S (entropy) and ∆G (Gibbs free energy). They
were calculated to know the energetic changes at
the molecular level and elucidate the process of
the acid hydrolysis of agricultural residues. The
Arrhenius equation was used to calculate Ea and
A. Equations 4 and 5 are exponential and linear
equations, respectively.

k = Ae−Ea/(RT ) (4)

ln(k) = ln(A)−
Ea

RT
, (5)

where k is the kinetic constant (min−1), A factor of
frequency (min−1), Ea the activation energy (J mol−1),
T temperature (K) and R the constant of ideal gas
(8.3144 J mol−1 K−1). The thermodynamic parameters
were calculated from the plot of T−1 vs ln(k).

The calculation of ∆H and ∆S was carried out
using the Eyring equation:

ln
(

k
T

)
= ln

kB

hp
+
∆S
R
−
∆H
RT
, (6)

where k is in s−1, hp the Planck constant
(6.6261×10−34 J s), ∆S the entropy (J mol−1 K−1), ∆H
the enthalpy (J mol−1), kB is the Boltzmann constant
(1.3807 ×10−23 J K−1) and R and T are the same in
the Arrhenius equation.
∆S and ∆H were calculated from the graph of

ln(k/T ) vs 1/T and ∆G was determined by using the
Equation 7 (Saratale et al., 2008).

∆G = ∆H −T∆S (7)

2.6 Factorial analysis

Factorial analysis by using Minitab 17 software was
carried out with a confidence level of 95% for the
production of reducing sugars using three factors at
three levels. The factors (with two replicates) were the
type of material (LC, CC and RS), concentration (1,
1.5 and 2M) and temperature (105, 120 and 150 °C).
The significance of each factor and the interactions
between them were determined.

3 Results and discussion

3.1 Substrate characterization

The percentages of holocellulose in CC, LC and RS
were 70.17, 69.36 and 63.80% and the lignin contents
were 17.61, 17.85 and 20.14 %w, respectively. These
values were similar to those reported by Ventura-Cruz
& Tecante, (2019), 71.08% holocellulose, and 16.36%
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Figure 1. Micrographs of lignocellulosic materials,
before (left) or after (right) hydrolysis a) CC, b) LC
and c) RS.

of lignin from rose stem, besides Sun & Cheng, (2002)
reports 45% of cellulllose, 35 % hemicellulose and 15
% of lignin for corn cobs. According to these values,
the highest yield of sugars can be expected for CC and
LC because it had a higher holocellulose content and
the lower percentage of lignin than RS.

3.2 SEM analysis

The morphology of each non-hydrolyzed material
(Figure 1, right) shows a surface with an organized,
smooth, and uniform structure; lignocellulosic
materials (lignin and hemicellulose), provide rigidity
and protection to cellulose fibers. After hydrolysis
(Figure 1, left) at 150 °C with 2 M acid concentration,
pores were evident in CC as a result of chemical and
thermal attack on the cell wall. A rough and scaly
surface was evident in LC and RS (b and c) due to the
partial rupture of the lignin and hemicellulose chains.
Similar results have been reported by Imman et al.,
(2021) with pineapple leaves at 143.2 °C and 0.61 M
of sulfuric acid, Adeogun et al., (2019) using sulfuric
acid at 5% and 121 °C, and Brígida et al., (2010) with
green coconut fiber, H2O2 solutions at 30% v/v and 85
°C.

The micrographs of CC and RS after
hydrolysis with H3PO4 shows porous surface of
the material, possibly due to the decomposition
of the holocellulosic fraction. Hydrolysis causes
the rupture of the carbohydrate fibers, exposing
the material for subsequent transformation. This
suggests that the sugars produced came mainly
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Figure 2. Infrared spectra for lignocellulosic material
before (B) and after (A) hydrolysis at 150 °C and 2 M
concentration.

from carbohydrate fibers that were not intertwined,
i.e., from the amorphous phase of cellulose. To
make most of the RS and LC for the production of
reducing sugars, hydrolysis with concentrated acid or
subsequent enzymatic treatment could be a promising
alternative (Jang & Choi, 2018). The results show that
phosphoric acid interacted preferably with cellulose
and hemicellulose, rather than lignin.

The morphological and structural changes shown
in the micrographs in Figure 1 are similar to those
previously reported by Boontum et al., (2019), Li
et al., (2016), Sahoo et al., (2018) and Sun et al.,
(2015), who observed the rupture and rearrangement
of carbohydrate microfibrils due to acid or alkaline
hydrolysis, in addition to an increase in the pore size,
which favors subsequent enzymatic hydrolysis.

3.3 FTIR analysis

The FTIR spectra for the three materials before (B)
and after (A) the hydrolysis process under the most
severe operating conditions (2 M, 150 °C, 300 min)
are shown in Figure 2.

The bands between 3312 and 3338 cm−1 were
ascribed to vibrations of the -OH groups in cellulose
(Coates, 2006). The peaks at 2919-2923 cm−1 and
2847-2851 cm−1 were attributed to C-H bond by
stretching vibrations (Lu & Hsieh, 2010). The bands
between 2339 and 2359 cm−1 suggested the presence
of silanes (Si-H), which are typical of the nutrient
adsorption processes of plants. The band at 1729 cm−1

was assigned to the C=O bonds of non-conjugated
ketones found in the hemicellulose, and the peaks
at 1635 were assigned to the bending of the O-H
bond of adsorbed water (Dai & Fan, 2010). The 1043
cm−1 peak may be due to the OH bond of the C-OH
groups, corresponding to hemicellulose and lignin.
Finally, band at 900 cm−1 was for C-H bond, which
corresponds to the aromatic hydrogens of the lignin.
As can be seen in the IR spectrum after hydrolysis,
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Figure 3. Production of reducing sugars using H3PO4
at three temperatures a) 105°C, b) 120°C and c)
150°C.

some bands intensified, possibly due to the breaking
of the chains of the lignocellulose components (Figure
2).

3.4 Reducing sugars after acid hydrolysis

The production of reducing sugars from agricultural
residues was performed under different experimental
conditions. Figure 3 shows the curves for each residue
tested with H3PO4 at three concentrations (1M, 1.5 M,
2 M) and three temperatures (105 °C, 120 °C, 150 °C).
The highest amount of sugar was 50.14 g/100 g from
LC at 120 °C, at 2 M and after 120 min of reaction.

In general, the lowest quantity of sugars was
obtained from RS (Figure 3) in comparison to LC
(17.85%) and CC (17.61%), which can be attributed
to the higher content of lignin present in the RS
(20.14%). This inhibits the hydrolysis process of the
cellulosic fraction. The reaction time using H3PO4
was lower than 180 and 500 minutes reported by
Gutiérrez-Lopez et al., (2022) using H2SO4. Using
sulfuric acid involves the use of corrosion resistant
material for construction of reactors, which increases
the cost of the process (Woiciechowski et al., 2020).
The best temperatures for acid hydrolysis were
observed at 105 °C and 120 °C.

The production of reducing sugars predominates
up to a reaction time of 120 min., after the degradation
of these sugars predominates. The best conditions
for the three materials were found at 120 °C and
2M of H3PO4. The maximum yields were 50.14,
44.48 and 21.54 g sugar/100 g of LC, CC or
RS, respectively (Table 1). The quantities of sugar
produced were similar to those obtained at the same
acid concentration and 105 °C at the same reaction
times (LC 48.10, CC 40.60 and RS 16.98 g/100 g
of material). Rising temperatures require an increased
energy supply, it would be better to consider this last
temperature of 105 °C. Sugar production decreased
slightly for the three materials with the increase
in temperature from 120 °C to 150 °C, because
sugar degradation increases at higher temperatures and
longer reaction times (Saha et al., 2018).

Table 1. Reducing sugars production (g /100 g) with a reaction time of 120 min.

Molar concentration 1 M 1.5 M 2 M

Temperature and material H3PO4, 120 minutes

105°C LC 42.16 44.56 48.10
CC 37.50 38.74 40.60
RS 14.76 14.89 16.98

120°C LC 44.48 47.75 50.14
CC 40.26 41.89 44.48
RS 15.43 16.85 21.54

150°C LC 41.58 45.35 45.29
CC 37.36 39.49 42.15
RS 12.52 14.45 17.4

www.rmiq.org 5
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Díaz-Blanco et al., (2018), reported that the
production of sugars from Agave using sulfuric acid
increase with the rise of acid concentration. This
behavior was similar to that reported by Cao et al.,
(2018), who observed the same trend at 120 ºC.
However, in the current study, the sugar production
yield increased when the temperature increased from
105 to 120 ºC. Saha et al., (2018) reported that the
production of sugars from fruit residues using acetic
acid was higher at low temperature (62.5 ºC), with
a time of 30 min and an acid concentration of 0.2
M. Castro et al., (2014) reported that for hydrolysis
of Eucalyptus benthamii with H3PO4, the highest
production of sugars was obtained at 200 ºC and the
average level of acid concentration of 0.75 %w/w.
Jung et al., (2013), evaluated the production of sugars
using acid hydrolysis of fruit bunches and concluded
that an increase in both the acid concentration and
the temperature were associated with a decrease in
operation times, favoring yield. Both behaviors were
observed in the current study. The differences in sugar
production between the aforementioned investigations
and the present study can be attributed mainly to the
nature of the biomass, type of acid and hydrolysis
conditions used.

A decrease in furfural production was observed
using H3PO4 in LC and CC at 105 and 120 °C.
Gutiérrez-Lopez et al., (2022) used sulfuric acid; the
yield of sugars, the decrease in the reaction time, and
the decrease in the decomposition of the produced
sugars confirmed that H3PO4 has a higher potential for
the hydrolysis process than sulfuric acid (Table 2).

However, when the temperature was increased to
150 °C, furfural production increases substantially,
possibly due to the degradation of sugars at this
temperature. A slight increase in furfural production
was observed in RS with the addition of phosphoric
acid, which was associated with a decrease in sugar
production (Figure 3).

3.5 Kinetic and thermodynamic parameters
of acid hydrolysis

The kinetic parameters and hydrolysis time to produce
the reducing sugars with H3PO4 were calculated
using the Saeman model (Table 3). The Saeman
kinetic model (Equation 2) was used to study the
production of sugars from lignocellulosic biomass,
with a correlation coefficient (R2) above 0.98. The two
kinetic constants of the model were associated with the
formation of hexoses and pentoses from cellulose and
hemicellulose (k1), and to the thermal decomposition
of sugars into aldehydes and low-molecular-weight
organic acids (k2) (Fan et al., 2010; Kumar et al.,
2015).

The values of the kinetic constant, k1, increased
as a function of temperature, with a minimum value of
4.91×10−3 min−1 for RS at 2M and 105 °C; the highest
value was 18.76 ×10−3 min−1 for LC at 2M H3PO4
and 120 °C. The relationship between temperature and
the kinetic constant of sugar production was studied
by Sarkar & Aikat (2013) and Zhang et al., (2011),
who observed an increase in the kinetic constant at
higher temperatures. Guerra-Rodríguez et al., (2012)
conducted the hydrolysis of wheat straw using diluted
H2SO4 and observed an increase in the rate constant
as a function of temperature. The same response was
observed in the current study.

The kr factor observed in Table 3 is defined
as the numerical relationship (k1/k2) between the
kinetic constants and denotes the reactions (formation
or decomposition) that predominate during the
hydrolysis process. If kr > 1, the production of
sugars predominates over decomposition (Thakur et
al., 2013).

The production of reducing sugars predominated
under all the temperature and concentration conditions
for LC and CC but improves with the increase of
temperature for LC. This also occurred for CC,
suggesting that the best conditions using H3PO4 were
2M and 105 °C for both materials.

Table 2. Production of furfural (g of furfural/100 g of material) at three temperatures and three concentrations.

Temperature 1 M 1.5 M 2 M
and material 60 min 120 min 300 min 60 min 120 min 300 min 60 min 120 min 300 min

105°C
LC 0.09 0.45 0.84 0.1 0.6 0.95 0.12 0.76 1
CC 0.07 0.4 1.06 0.11 0.76 0.98 0.13 0.85 0.74
RS 0.05 0.12 0.21 0.05 0.18 0.3 0.08 0.25 0.45

120°C
LC 0.12 0.75 1.1 0.12 0.79 1.11 0.12 0.8 1.16
CC 0.1 0.7 1.12 0.13 0.9 1.21 0.11 1 1.14
RS 0.05 0.3 0.5 0.06 0.35 0.4 0.1 0.5 1.25

150°C
LC 0.15 1.59 1.69 0.13 1.41 1.78 0.19 1.5 1.69
CC 0.14 1.3 1.45 0.13 1.25 1.65 0.15 1.35 1.48
RS 0.06 0.6 0.8 0.08 0.48 0.6 0.13 0.5 0.7

6 www.rmiq.org



Flores-Alamo / Revista Mexicana de Ingeniería Química Vol. 23, No. 1(2024) IA24159

Table 3. Acid hydrolysis kinetic parameters calculated.

Experimental Lignocellulosic k1 k2 kr tm (min)
concentration material (min−1) ×10−3

and temperature

(1M, 105°C) LC 13.69 1.82 7.52 169.9
CC 10.91 2.58 4.23 173.1
RS 6.85 3.75 1.83 194.3

(1.5M,105°C) LC 16.32 1.68 9.71 155.3
CC 11.5 2.41 4.77 171.9
RS 5.54 3.17 1.75 235.5

(2M,105°C) LC 12.96 2.41 5.38 159.4
CC 10.46 2.58 4.05 177.6
RS 4.91 3.67 1.34 234.7

(1M, 120°C) LC 15.67 2.43 6.45 140.7
CC 11.64 2.32 5.02 173
RS 7.31 3.71 1.97 188.4

(1.5M,120°C) LC 17.66 1.86 9.49 142.4
CC 12.73 2.49 5.11 159.3
RS 7.57 4.66 1.62 166.7

(2M,120°C) LC 18.76 1.69 11.1 141
CC 14.86 2.46 6.04 145
RS 5.16 4.21 1.23 214.2

(1M, 150°C) LC 13.85 2.79 4.96 144.9
CC 10.23 2.61 3.92 179.3
RS 6.79 2.76 2.46 223.4

(1.5M,150°C) LC 15.89 2.15 7.39 145.6
CC 10.56 2.8 4.09 162.7
RS 8.32 3.89 2.14 171.6

(2M,150°C) LC 17.23 1.97 8.75 142.1
CC 13.66 2.8 4.88 145.9
RS 5.2 3.68 1.41 227.5

The highest values of the kinetic constants were
observed at 120 ºC with phosphoric acid, and in
the case of CC and LC, for each temperature and
type of acid, the constant, k1, was higher than the
constant k2, suggesting that the proposed hydrolysis
conditions favored the production of sugars over their
decomposition.

The kinetic constants were used to calculate
the thermodynamic parameters (Table 4) for sugar
production (k1) and decomposition (k2), and the linear
Arrhenius and Eyring equations were used. Ea values
were relatively low in the case of LC (0.37 to 6.96
kJ/mol) and CC (2.38 to 6.50 kJ/mol). This indicates
that the hydrolysis may have occurred more easily in
comparison with the Ea values of RS between 10.63
to 11.53 kJ/mol (Figure 3). With low production of
sugars in the temperature range used, this phenomenon
was also indicated by the enthalpy values both for the
production and decomposition process. This indicated
a relatively high energy required for RS, compared to

LC and CC (Lavarack et al., 2002).

These results suggest that LC and CC can be
hydrolyzed at temperatures below 105 °C and acid
concentrations lower than 1 M (Ajala et al., 2020).
For CC the results were like those of Adeogun et al.,
(2019) who reported an Ea of 6.12 kJ/mol for CC
treated with NaOH and 19.19 kJ/mol for CC minus
pretreatment; both were hydrolyzed by H2SO4 at a
concentration of 0.5 to 5%, between 70 and 95 °C.
The positive values of ∆H and ∆G of acid hydrolysis
for the production of sugars from the residues
indicated that the processes were endothermic and
non-spontaneous (Adeogun et al., 2019). The entropy
values obtained for the experimental conditions
showed that the formation process predominates over
decomposition for hydrolysis (Sarma et al., 2014).

The ∆G magnitude for degradation shows that this
process was minus favorable than the reducing sugars
production (Adeogun et al., 2019; Gurgel et al., 2012).
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Table 4. Acid hydrolysis of LC, CC and RS; thermodynamic parameters.

Acid concentration and T (°C) Production (kJ/mol) Decomposition (kJ/mol)
material Ea ∆H ∆S ∆G Ea ∆H ∆S ∆G

1.0M, LC 105 0.37 3.69 -0.33 119.5 -11.8 -8.56 -0.31 125.8
120 124.4 130.5
150 134.2 139.8

1.5M, LC 105 1.27 4.60 -0.33 119.0 -7.22 3.89 -0.32 126.3
120 123.9 131.1
150 133.7 140.8

2.0M, LC 105 6.96 3.64 -0.31 119.5 -4.43 -7.76 -0.35 125.5
120 124.1 130.8
150 133.3 141.4

1.0M, CC 105 2.38 5.71 -0.33 120.3 -0.94 -2.40 -0.34 125.1
120 125.3 130.1
150 135.3 140.2

1.5M, CC 105 3.24 6.57 -0.33 120.1 -4.55 -1.22 -0.33 125.2
120 125.3 130.1
150 135.3 140.2

1.5M, CC 105 3.24 6.57 -0.33 120.1 -4.55 -1.22 -0.33 125.2
120 125.0 130.1
150 135.0 139.9

2.0M, CC 105 6.50 3.17 -0.31 120.2 -2.83 0.50 -0.33 125.0
120 124.8 130.0
150 134.2 140.0

1.0M, RS 105 10.63 3.96 -0.33 121.8 9.60 12.93 -0.36 123.6
120 126.8 129.0
150 136.8 139.9

1.5M, RS 105 11.12 7.80 -0.30 122.4 4.36 1.02 -0.32 123.9
120 127.0 128.7
150 136.0 138.5

2.0M, RS 105 11.53 1.79 -0.33 123.0 0.66 3.99 -0.34 123.6
120 127.9 128.7
150 137.8 138.8

Table 5. Factorial ANOVA to obtain the reducing sugars.

Source of variation Degree of freedom Sum of squares Mean square F value P value

Model 26 18442.7 709.34 29.72 0
Lineal 6 16767.8 2794.63 117.08 0

Material (A) 2 16524.8 8262.42 346.14 0
Concentration (B) 2 224.9 112.46 4.71 0.012
Temperature (C) 2 18 9.02 0.38 0.686

2 interactions 12 948.8 79.07 3.31 0.001
AB 4 546.5 136.63 5.72 0
AC 4 359.1 89.76 3.76 0.007
BC 4 43.3 10.82 0.45 0.77

3 interactions 8 726.1 90.76 3.8 0.001
ABC 8 726.1 90.76 3.8 0.001
Error 81 1933.5 23.87
Total 107 20376.2
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The Ea and ∆H were positive for the degradation
of RS, in contrast with the values obtained using
LC and CC, what may be due to the lack of sugar
degradation in LC and CC (Figure 3). Degradation
can be considered as a simultaneous process to
the production of sugars (Saeman, 1945; Tizazu &
Moholkar, 2018).

3.6 Analysis of factorial variance of acid
hydrolysis

A factorial variance analysis was performed for the
production of reducing sugars at a confidence level of
95%, considering three factors, each at three different
levels. The factors were the type of material (LC,
CC and RS), acid concentration (1, 1.5 and 2M) and
temperature (105, 120 and 150 °C), each with two
replicates (18 experiments). The maximum amount
of reducing sugars (Table 1) was selected as the
dependent variable or response (Table 5 and Figure 4).

Temperature (C) had the least influence (P >
0.05) on the production of reducing sugars within the
interval in which the work was performed, whereas the
type of lignocellulosic material (A) and concentration
of acid (B) were significant (P < 0.05). AB and AC
interactions were present (P < 0.05; Figure 4).

Conclusions

The yield of reducing sugars was favored with the
raise in the H3PO4 concentration (1 to 1.5M) and
temperature (from 105 to 120 °C). At these conditions,
hydrolysis times were reduced. The results at 150 °C
were similar to those obtained at 120 °C. LC and CC
showed a higher capacity to produce reducing sugars
in comparison to RS. The best conditions for produce
sugars from LC and CC were 120 °C and 2.0M of
phosphoric acid. Similar results were achieved with
less severe conditions (105 °C and 2.0M), so a cost-
benefit analysis should be performed to establish the
most appropriate operating conditions.

Comparing the results with those reported using
sulfuric acid, a decrease in furfural production was
observed using H3PO4 for LC and CC. H3PO4
improved the sugar yield and decreased the reaction
times and is more effective than sulfuric acid for the
hydrolysis of the residues treated in this study.

According to the production profiles,
decomposition of reducing sugars predominates over
production after 120 min with H3PO4. The hydrolysis
kinetic data were analyzed by the Saeman model;
k1 and k2 showed that the production of sugars
predominated over the decomposition of sugars
(k1 > k2,kr > 1) using LC and CC.

The process for production and decomposition
of reducing sugars were endothermic and not
spontaneous for the three materials. For RS the
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Ea was higher than LC and CC, showing that RS
is a recalcitrant material causing a low production
of reducing sugars. The thermodynamics indicated
that temperature influence more on the production
and decomposition of sugars than phosphoric acid
concentration for LC and CC; but to RS the influence
was similar.
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