Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), IA24161


Biosorption performance evaluation of azo dyes Reactive Red 2 and Reactive Blue 4 on thermally sterilized biomass of Cladosporium tenuissimum fungus

A. Jiménez-González, E. N. Tec-Caamal, S.A. Medina-Moreno

https://doi.org/10.24275/rmiq/IA24161


 

Abstract

The present study evaluated the performance in the biosorption of the azo dyes reactive red 2 (RDR2) and reactive blue 4 (RDB4) on thermally sterilized biomass of the fungus Cladosporium tenuissimum. A decrease in the initial pH and an increase in the temperature improved the biosorption, reaching the higher removal efficiencies of RDR2 (98.5%) and RDB4 (94.1%) at pH 3 and 40 °C. A pseudo-second-order model explained the biosorption kinetics of RDR2 and RDB4. The intraparticle diffusion model showed that the biosorption process was controlled initially by diffusion rate and, later, by the biomass surface saturation with the dye molecules. The Langmuir isotherm explained well the biosorption equilibrium, achieving the maximum biomass biosorption capacities (qmax) of 76.67 mg g-1 for RDR2 and 70.60 mg g-1 for RDB4 at pH 3 and 40 C. According to the dimensionless separation factor (RL) values and the thermodynamic evaluation, the biosorption process was favorable, reversible, spontaneous, and endothermic. FTIR analysis of unloaded and loaded biomass with the dyes confirmed the interactions between dye molecules and functional groups on the fungal biomass surface. The thermally sterilized biomass of Cladosporium tenuissimum can be used as a biosorbent biomaterial for bioprocess design in removing the azo dyes active red 2 and reactive blue 4 from textile wastewater.

Keywords: Biosorption, fungal biomass, azo dyes, kinetics, isotherms.

 


References

  • Abdel-Aty, A.M., Gad‐Allah, T.A., Ali, M. E. and Abdel‐Ghafar, H.H. (2015). Parametric, equilibrium, and kinetic studies on biosorption of diuron by Anabaena sphaerica and Scenedesmus obliquus. Environmental Progress and Sustainable Energy 34, 504-511. https://doi.org/10.1002/ep.12027
  • Ahluwalia, S. S. and Goyal, D. (2010). Removal of Cr (VI) from aqueous solution by fungal biomass. Engineering in Life Sciences 10, 480-485. https://doi.org/10.1002/elsc.200900111
  • Akar, S. T., Gorgulu, A., Kaynak, Z., Anilan, B. and Akar, T. (2009a). Biosorption of Reactive Blue 49 dye under batch and continuous mode using a mixed biosorbent of macro-fungus Agaricus bisporus and Thuja orientalis cones. Chemical Engineering Journal 148, 26-34. https://doi.org/10.1016/j.cej.2008.07.027
  • Akar, T. and Divriklioglu, M. (2010). Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies. Bioresource technology 101, 7271-7277. https://doi.org/10.1016/j.biortech.2010.04.044
  • Akar, T., Tosun, İ., Kaynak, Z., Kavas, E., Incirkus, G. and Akar, S. T. (2009b). Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye. Journal of Hazardous Materials 171, 865-871. https://doi.org/10.1016/j.jhazmat.2009.06.085
  • Aksu, Z. and Karabayır, G. (2008). Comparison of biosorption properties of different kinds of fungi for the removal of Gryfalan Black RL metal-complex dye. Bioresource Technology 99, 7730-7741. https://doi.org/10.1016/j.biortech.2008.01.056
  • Al-Amrani, W. A., Lim, P. E., Seng, C. E. and Ngah, W. S. W. (2014). Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor. Journal of the Taiwan Institute of Chemical Engineers 45, 609-616. https://doi.org/10.1016/j.jtice.2013.06.032
  • Albadarin, A. B. and Mangwandi, C. (2015). Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: Isotherm study in single and binary systems. Journal of Environmental Management 164, 86–93. https://doi.org/10.1016/j.jenvman.2015.08.040
  • Arslan, S., Eyvaz, M., Gürbulak, E. and Yüksel, E. (2016). A review of state-of-the-art technologies in dye-containing wastewater treatment–the textile industry case. Textile wastewater treatment, 1-29. http://dx.doi.org/10.5772/64140
  • Axelsson J., Nilsson U., Terrazas E., Aliaga T. Alvarez. and Welander U. (2006). Decolorization of the textile dyes Reactive Red 2 and Reactive Blue 4 using Bjerkandera sp. Strain BOL 13 in a continuous rotating biological contactor reactor. Enzyme and Microbial Technology 39, 32-37. https://doi.org/10.1016/j.enzmictec.2005.09.006
  • Azin, E. and Moghimi, H. (2018). Efficient mycosorption of anionic azo dyes by Mucor circinelloides: Surface functional groups and removal mechanism study. Journal of environmental chemical engineering 6, 4114-4123. https://doi.org/10.1016/j.jece.2018.06.002
  • Bagchi, M., Bera, D. and Adhikari, S. (2021). Biosorption of an azo dye Reactive Blue 4 from aqueous solution using dead and CMC immobilized biomass of Rhizopus oryzae (MTCC 262). Bioremediation Journal 25, 326-346. https://doi.org/10.1080/10889868.2021.1884526
  • Bayramoglu, G., Adiguzel, N., Ersoy, G., Yilmaz, M. and Yakup-Arica, M. (2013). Removal of textile dyes from aqueous solution using amine-modified plant biomass of A. caricum: equilibrium and kinetic studies. Water, Air, & Soil Pollution 224, 1-16. https://doi.org/10.1007/s11270-013-1640-z
  • Binupriya, A. R., Sathishkumar, M., Ku, C. S. and Yun, S. I. (2010). Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides. Colloids and Surfaces B: Biointerfaces 76, 179-185. https://doi.org/10.1016/j.colsurfb.2009.10.031
  • Chaudhry, M. T., Zohaib, M., Rauf, N., Tahir, S. S. and Parvez, S. (2014). Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49. Applied microbiology and biotechnology 98, 3133-3141. https://doi.org/10.1007/s00253-013-5306-y
  • Danouche, M., El Arroussi, H., Bahafid, W. and El Ghachtouli, N. (2021). An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells. Environmental Technology Reviews 10, 58-76. https://doi.org/10.1080/21622515.2020.1869839
  • Dave, D. and Dikshit, A. K. (2014). Efficacy of various biosorbents for removal of endosulfan from water environment. International Journal of Environmental Engineering 6, 287-302. https://doi.org/10.1504/IJEE.2014.064304
  • Dávila-Parra, F. A., Plasencia-Jatomea, M., Monge-Amaya, O., Mártin-García, A. R., De La Vega-Olivas, J. and Almendariz-Tapia, F. J. (2022). Influence of initial copper concentration, pH, and cross-linked alginate-chitosan and alginate-chitosan-Aspergillus australensis composite beads on the adsorption capacity and removal efficiency of copper ions. Revista Mexicana de Ingeniera Química 21, IA2892. https://doi.org/10.24275/rmiq/IA2892
  • Diniz, G., Garcia, E. and Cury, J. (2016). Removal of textile dye Novacron Yellow using the fungal biomass based on Cladosporium sp. genus. Scientific Electronic Archives 9, 118-125. https://doi.org/10.36560/942016335
  • Dionel, L. A. S., Santos, B. A. P., Lopes, V. C. P., Vasconcelos, L. G., Soares, M. A. and Morais, E. B. (2019). Biosorption of Azo Dye Reactive Black B onto Nonviable Biomass of Cladosporium cladosporioides LM1: Thermodynamic, Kinetic and Equilibrium Modeling. International Journal of Biotechnology and Bioengineering 13, 78-84. https://doi.org/10.5281/zenodo.2643850
  • Drummond, A.J., Nicholls, G.K., Rodrigo, A.G. and Solomon, W. (2002). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307-1320. https://doi.org/10.1093/genetics/161.3.1307
  • Garza-González, M. T., Ramírez-Vázquez, J. E., García-Hernández, M. D. L. Á., Cantú-Cárdenas, M. E., Liñan-Montes, A. and Villarreal-Chiu, J. F. (2017). Reduction of chromium (VI) from aqueous solution by biomass of Cladosporium cladosporioides. Water Science and Technology 76, 2494-2502. https://doi.org/10.2166/wst.2017.427
  • Gonzales-Condori, E.G., Avalos-López, G., Gonzales-Condori, J., Mujica-Guzmán, A., Terán-Hilares, R., Briceño, G., Quispe-Avilés, J.M., Parra-Ocampo, P.J. and Villanueva-Salas, J.A. (2023). Avocado seed powder residues as a promising bio-adsorbent for color removal from textile wastewater. Revista Mexicana de Ingeniería Química 22, IA2370. https://doi.org/10.24275/rmiq/IA2370
  • Grassi, P., Reis, C., Drumm, F. C., Georgin, J., Tonato, D., Escudero, L. B., Kuhn, R., Jahn, S. L. and Dotto, G. L. (2019). Biosorption of crystal violet dye using inactive biomass of the fungus Diaporthe schini. Water Science and Technology 79, 709-717. https://doi.org/10.2166/wst.2019.091
  • He, S., Sun, W., Wang, J., Chen, L., Zhang, Y. and Yu, J. (2016). Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation. Radiation Physics and Chemistry 124, 203-207. https://doi.org/10.1016/j.radphyschem.2015.11.033
  • Ho, Y.S. and McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection 76, 183–191. https://doi.org/10.1205/095758298529326
  • Juhasz, A. L., Smith, E., Smith, J. and Naidu, R. (2002). Biosorption of organochlorine pesticides using fungal biomass. Journal of Industrial Microbiology and Biotechnology 29, 163-169. https://doi.org/10.1038/sj.jim.7000280
  • Juhasz, A. L., Smith, E., Smith, J. and Naidu, R. (2003). In situ remediation of DDT-contaminated soil using a two-phase cosolvent flushing-fungal biosorption process. Water, Air, and Soil Pollution 147, 263-274. https://doi.org/10.1038/sj.jim.7000280
  • Karmaker, S., Nag, A. J. and Saha, T. K. (2020). Adsorption of reactive blue 4 dye onto Chitosan 10B in aqueous solution: Kinetic modeling and isotherm analysis. Russian Journal of Physical Chemistry A 94, 2349-2359. https://doi.org/10.1134/S0036024420110126
  • Kumar, K., Singh, G. K., Dastidar, M. G. and Sreekrishnan, T. R. (2014). Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulicretention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater. Water Resources and Industry 5, 1–8. https://doi.org/10.1016/j.wri.2014.01.001
  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–39. https://doi.org/10.1007/BF01501332
  • Lavado-Meza, C., Asencios, Y. J. O., Cisneros-Santos, G. and Unchupaico-Payano, I. (2021). Removal of methylene blue dye using Nostoc commune biomass: kinetic, equilibrium and thermodynamic study. Revista Mexicana de Ingeniería Química 20, 941-954. https://doi.org/10.24275/rmiq/IA2291
  • Legorreta-Castañeda, A. J., Lucho-Constantino, C. A., Coronel-Olivares, C., Beltrán-Hernández, R. I. and Vázquez-Rodríguez, G. A. (2022). Biosorption of Precious Metals Present at Dilute Concentrations on Fungal Pellets. Processes 10, 645. https://doi.org/10.3390/pr10040645
  • Liao, C.S., Hung, C.H. and Chao, S.L. (2013). Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemosphere 90, 2109– 2114. https://doi.org/10.1016/j.chemosphere.2012.10.077
  • Liu, Y. (2009). Is the free energy change of adsorption correctly calculated?. Journal of Chemical and Engineering Data 54, 1981-1985. https://doi.org/10.1021/je800661q
  • Medina-Moreno, S.A., Pérez-Cadena, R., Jiménez-González, A., Téllez-Jurado, A. and Lucho-Constantino, C.A. (2012). Modeling wastewater biodecolorization with reactive blue 4 in fixed bed bioreactor by Trametes subectypus: Biokinetic, biosorption and transport. Bioresource Technology 123, 452-462. https://doi.org/10.1016/j.biortech.2012.06.097
  • Mustafa, M. M., Jamal, P., Mahmod, S. S., Jimat, D. N. and Ilyas, N. N. (2017). Panus tigrinus as a potential biomass source for Reactive Blue decolorization: Isotherm and kinetic study. Electronic Journal of Biotechnology 26, 7-11. https://doi.org/10.1016/j.ejbt.2016.12.001
  • Nouri, H., Azin, E., Kamyabi, A. and Moghimi, H. (2021). Biosorption performance and cell surface properties of a fungal-based sorbent in azo dye removal coupled with textile wastewater. International Journal of Environmental Science and Technology 18, 2545-2558. https://doi.org/10.1007/s13762-020-03011-5
  • Praipipat, P., Ngamsurach, P., Saekrathok, C. and Phomtai, S. (2022). Chicken and duck eggshell beads modified with iron (III) oxide-hydroxide and zinc oxide for reactive blue 4 dye removal. Arabian Journal of Chemistry 15, 104291. https://doi.org/10.1016/j.arabjc.2022.104291
  • Rangabhashiyam, S., Sujata, L. and Balasubramanian, P. (2018). Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surfaces and Interfaces 10, 197–215. https://doi.org/10.1016/j.surfin.2017.09.011
  • Rastgordani, M. and Zolgharnein, J. (2021). Simultaneous determination and optimization of titan yellow and reactive blue 4 dyes removal using chitosan@ hydroxyapatite nanocomposites. Journal of Polymers and the Environment 29, 1789-1807. https://doi.org/10.1007/s10924-020-01982-7
  • Renganathan, S., Kalpana, J., Dharmendira Kumar, M. and Velan, M. (2009). Equilibrium and kinetic studies on the removal of Reactive Red 2 dye from an aqueous solution using a positively charged functional group of the Nymphaea rubra biosorbent. CLEAN–Soil, Air, Water 37, 901-907. https://doi.org/10.1002/clen.200900133
  • Renganathan, S., Seenuvasan, M., Selvaraj, S., Gautam, P. and Velan, M. (2008). Equilibrium and kinetic modeling on biosorption of reactive red 2 using Tamarindus indica fruit hulls. Chemical Product and Process Modeling 3. https://doi.org/10.2202/1934-2659.1143
  • Robles-Morales, D. L., Reyes Cervantes, A., Díaz-Godínez, R., Tovar-Jiménez, X., Medina-Moreno, S. A. and Jiménez-González, A. (2021). Design and performance evaluation of a fungi-bacteria consortium to biodegrade organic matter at high concentration on synthetic slaughterhouse wastewater. Water, Air, and Soil Pollution 232, 223. https://doi.org/10.1007/s11270-021-05177-1
  • Said, A. E. A. A., Aly, A. A., Abd El-Wahab, M. M., Soliman, S. A., Abd El-Hafez, A. A., Helmey, V. and Goda, M. N. (2013). Application of modified bagasse as a biosorbent for reactive dyes removal from industrial wastewater. Journal of water resource and protection 5, 10. http://dx.doi.org/10.4236/jwarp.2013.57A003
  • Saleh, T. A. (2022). Isotherm models of adsorption processes on adsorbents and nanoadsorbents. In Interface Science and Technology 34, 99-126. Elsevier. https://doi.org/10.1016/B978-0-12-849876-7.00009-9
  • Saratale, R. G., Saratale, G. D., Chang, J. S. and Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan institute of Chemical Engineers 42, 138-157. https://doi.org/10.1016/j.jtice.2010.06.006
  • Singh, S. and Khajuria, R. (2018). Penicillium enzymes for the textile industry. In New and future developments in microbial biotechnology and bioengineering, 201-215. Elsevier. https://doi.org/10.1016/B978-0-444-63501-3.00011-9
  • Sonai, G. G., de Souza, S. M. G. U., de Oliveira, D. and de Souza, A. A. U. (2016). The application of textile sludge adsorbents for the removal of Reactive Red 2 dye. Journal of environmental management 168, 149-156. https://doi.org/10.1016/j.jenvman.2015.12.003
  • Takam, B., Acayanka, E., Kamgang, G. Y., Pedekwang, M. T. and Laminsi, S. (2017). Enhancement of sorption capacity of cocoa shell biomass modified with non-thermal plasma for removal of both cationic and anionic dyes from aqueous solution. Environmental Science and Pollution Research 24, 16958-16970. https://doi.org/10.1007/s11356-017-9328-3
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997). The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24, 4876–4882. https://doi.org/10.1093/nar/25.24.4876
  • Vakili, M., Rafatullah, M., Ibrahim, M. H., Abdullah, A. Z., Gholami, Z. and Salamatinia, B. (2017). Enhancing reactive blue 4 adsorption through chemical modification of chitosan with hexadecylamine and 3-aminopropyl triethoxysilane. Journal of Water Process Engineering 15, 49-54. https://doi.org/10.1016/j.jwpe.2016.06.005
  • Weber Jr, W. J. and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430
  • Whelan, S. and Goldman, N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular biology and evolution 18, 691-699. https://doi.org/10.1093/oxfordjournals.molbev.a003851
  • Won, S. W., Han, M. H. and Yun, Y. S. (2008). Different binding mechanisms in biosorption of reactive dyes according to their reactivity. Water research 42, 4847-4855. https://doi.org/10.1016/j.watres.2008.09.003
  • Wu, C. H., Kuo, C. Y., Yeh, C. H. and Chen, M. J. (2012). Removal of CI Reactive Red 2 from aqueous solutions by chitin: An insight into kinetics, equilibrium, and thermodynamics. Water Science and Technology 65, 490-495. https://doi.org/10.2166/wst.2012.878
  • Xiong, X. J., Meng, X. J. and Zheng, T. L. (2010). Biosorption of CI Direct Blue 199 from aqueous solution by nonviable Aspergillus niger. Journal of Hazardous Materials 175, 241-246. https://doi.org/10.1016/j.jhazmat.2009.09.155