Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), IA24164


Water treatment applying electrocoagulation and filtration processes with a functionalized membrane of a contaminated water body from San Cayetano de Morelos, Toluca

J. Bastida-Vázquez, G. Roa-Morales, R. M. Gómez-Espinosa, P. Balderas-Hernández, R. Natividad-Rangel

https://doi.org/10.24275/rmiq/IA24164


 

Abstract

Water for human consumption is found on the continents as fresh water in rivers, lakes, reservoirs, and underground aquifers; this water is in decrease due to anthropogenic activity and eutrophication of water bodies. This research evaluates the treatment of contaminated water in a water body in the town of San Cayetano de Morelos, Toluca, combining electrocoagulation and the use of modified membranes. Aluminum electrodes for electrocoagulation were used as the first treatment, followed by a membrane filtration process as the second treatment. The water shows the presence of phosphates and nitrates, with initial values of BOD5, TOC, and COD of 31.7 mg/L, 78.8 mg/L, and 152.3 mg/L, respectively. After 25 minutes of electrocoagulation treatment, a 39.1% reduction in BOD5, 73.7% in TOC, and 86% in COD was achieved. A quantification of aluminum in the water resulting from electrocoagulation was carried out, and a concentration of 0.561 mg/L was found; after filtration, it was reduced to 0.245 mg/L.

Keywords: Electrocoagulation, Total Organic Carbon (TOC), functionalized membranes.

 


References

  • Akansha, J., Nidheesh, P. V., Gopinath, A., Anupama, K. V., & Suresh Kumar, M. (2020). Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, 253, 1-6. https://doi.org/10.1016/j.chemosphere.2020.126652
  • Al-Qodah, Z., & Al-Shannag, M. (2017). Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive review. Separation Science and Technology (Philadelphia), 52(17), 2649–2676. https://doi.org/10.1080/01496395.2017.1373677
  • Almeida, F. B. P. S., Meili, L., Soletti, J. I., Esquerre, K. P. S. O. R., Ribeiro, L. M. O., & de Farias Silva, C. E. (2019). Oil produced water treatment using sugarcane solid residue as biosorbent. Revista Mexicana de Ingeniería Química, 18(1), 27-38. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Almeida
  • Amarine, M., Lekhlif, B., Sinan, M., El Rharras, A., & Echaabi, J. (2020). Treatment of nitrate-rich groundwater using electrocoagulation with aluminum anodes. Groundwater for Sustainable Development, 11, 1-9. https://doi.org/10.1016/j.gsd.2020.100371
  • Asfaha, Y. G., Tekile, A. K., & Zewge, F. (2021). Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: A review. Cleaner Engineering and Technology, 4, 1-10. https://doi.org/10.1016/j.clet.2021.100261.
  • Barrera, C. E., (2014). Aplicaciones electroquímicas al tratamiento de aguas residuales. Editorial Reverte. 1st edition. México.
  • Bazrafshan, E., Alipour, M. R., & Mahvi, A. H. (2016). Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes. Desalination and Water Treatment, 57(20), 9203–9215. https://doi.org/10.1080/19443994.2015.1027960
  • Blancaflor, E. B., Jones, D. L., & Gilroy, S. (1998). Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiology, 118(1), 159–172. https://doi.org/10.1104/pp.118.1.159
  • Bojórquez, E., Escalante, C., Echevarría, I., & Martínez-Estévez, M. (2017). Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8, 1–18. https://doi.org/10.3389/fpls.2017.01767.
  • CFE (Comisión Federal de Electricidad) Consulta tu tarifa. 2023, Available at https://app. cfe.mx/aplicaciones/ccfe/tarifas/tarifas/Tarifas_casa.asp?. Accessed December 19, 2023.
  •  Comninellis, C., & Chen, G. (Eds.). (2010). Electrochemistry for the Environment (Vol. 2015, p. 251). New York: Springer.
  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155.
  • Ebba, M., Asaithambi, P., & Alemayehu, E. (2021). Investigation on operating parameters and cost using an electrocoagulation process for wastewater treatment. Applied Water Science, 11, 1-9. https://doi.org/10.1007/s13201-021-01517- y
  • Elazzouzi, M., Haboubi, K., & Elyoubi, M. S. (2017). Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater. Chemical Engineering Research and Design, 117, 614–626. https://doi.org/10.1016/j.cherd.2016.11.011.
  • Espinoza, E., Soto, G. M., & Pérez, J. de J. (2020). Prospects for the Use of Electrooxidation and Electrocoagulation Techniques for Membrane Filtration of Irrigation Water. Environmental Processes, 7(2), 391–420. https://doi.org/10.1007/s40710-020-00439-2
  • Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., & Du, M. (2010). Electro-coagulation-flotation process for algae removal. Journal of Hazardous Materials, 177(1–3), 336–343. https://doi.org/10.1016/j.jhazmat.2009.12.037
  • García, V. M., Barrera, C. E., Roa, G., & Linares, I. (2016). A Comparative Electrochemical-Ozone Treatment for Removal of Phenolphthalein. Journal of Chemistry, 2016, 1-9. https://doi.org/10.1155/2016/8105128
  • García, V. M., Linares, I., Natividad, R., Balderas, P., Alanis, C., Barrera, C. E., & Roa, G. (2022). Solar-photovoltaic electrocoagulation of wastewater from a chocolate manufacturing industry: Anodic material effect (aluminium, copper and zinc) and life cycle assessment. Journal of Environmental Chemical Engineering, 10, 1-13. https://doi.org/10.1016/j.jece.2022.107969
  • García, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299. https://doi.org/10.1016/j.jelechem.2017.07.047
  • Guzmán, T. M., Pérez, O., & Valdés, O. (2020). Biodegradación de Residuos Sólidos Urbanos Utilizando Cultivos Microbianos y Biofiltro Estático de Eisenia Foetida, Tecnología Química, 40(1), 81–92. ISSN 2224-6185
  • Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., & Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1–21. https://doi.org/10.1016/j.desal.2016.10.011
  • Han, X., Qu, Y., Dong, Y., Chen, D., Liang, D. D., Liu, J., … Feng, Y. (2021). Simultaneous electricity generation and eutrophic water treatment utilizing iron coagulation cell with nitrification and denitrification biocathodes. Science of the Total Environment, 782, 1-6. https://doi.org/10.1016/j.scitotenv.2021.146436
  • Hernández, O. A., Núñez, A., Tapia, M., & Espinosa, R. M. (2016). Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal. Journal of Chemistry, 2016, 1-10. https://doi.org/10.1155/2016/2742013
  • Houbron, E., Cruz, E., Ponciano, A., Rustrián, E., & Canul, M. (2021). Contenido motor oil wastewater treatment in a packed bed bioreactor using immobilized native microbial consortium. Revista Mexicana de Ingeniera Quimica, 20(2), 761–773. https://doi.org/10.24275/rmiq/IA2271
  • López, R., Laines, J. R., Hernández, J. R., & Aparicio, M. A. (2014). Evaluation of taro starches (Colocasia esculenta) as flocculant aids in turbidity removal for water treatment process turbidity removal for water treatment process. Revista Mexicana de Ingeniería Química, 13(3), 855-863. ISSN 1665-2738.
  • Marschner, P. (2012). Marschner's mineral nutrition of higher plants. Elsevier Ltd, 3rd edition. Australia.
  • Massoudinejad, M., Mehdipour-Rabori, M., & Dehghani, M. H. (2015). Treatment of natural rubber industry wastewater through a combination of physicochemical and ozonation processes. Journal of Advances in Environmental Health Research, 3(4), 242–249. https://doi.org/10.22102/jaehr.2015.40208
  •  Palacios, M. L., Cortes, F., González, D. A., & Gómez, R. M. (2012). Surface modification of polypropylene membrane by acrylate epoxidized soybean oil to be used in water treatment. Journal of Applied Polymer Science, 124(S1), E147-E153. https://doi.org/10.1002/app.35269
  • Pendashteh, A. R., Asghari Haji, F., Chaibakhsh, N., Yazdi, M., & Pendashteh, M. (2017). Optimized treatment of wastewater containing natural rubber latex by coagulation-flocculation process combined with Fenton oxidation. Journal of Materials and Environmental Science, 8(11), 4015–4023. ISSN : 2028-2508
  • Puigdomenech, I. (2015), Chemical Equilibrium Diagrams (Java), KTH Royal Institute of Technology, V. 1. Available at: https://www.kth.se/che/medusa/downloads-1.386254. Accessed: December 19, 2023.
  • Rubí, H., Barrera, C. E., Linares, I., Fall, C., & Bilyeu, B. (2015). A combined electrocoagulation-electrooxidation process for carwash wastewater reclamation. International Journal of Electrochemical Science, 10(8), 6754–6767
  • Ruiz, A. A. (2005). La electrocoagulación: una alternativa para el tratamiento de aguas residuales. Revista Lasallista de investigación, 2(1), 49-56. ISSN: 1794-4449.
  • Song, J., Yin, Y., Li, Y., Gao, Y., & Liu, Y. (2020). In-situ membrane fouling control by electrooxidation and microbial community in membrane electro-bioreactor treating aquaculture seawater. Bioresource Technology, 314, 1-17. https://doi.org/10.1016/j.biortech.2020.123701
  • Syam, D., Anantha, T. S., Nidheesh, P. V., & Suresh, M. (2020). Industrial wastewater treatment by electrocoagulation process. Separation Science and Technology (Philadelphia), 55(17), 3195–3227. https://doi.org/10.1080/01496395.2019.1671866
  • Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering 37, 1-9. https://doi.org/10.1016/j.jwpe.2020.101440
  • Tatoulis, T., Stefanakis, A., Frontistis, Z., Akratos, C. S., Tekerlekopoulou, A. G., Mantzavinos, D., & Vayenas, D. V. (2017). Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation. Environmental Science and Pollution Research, 24(2), 1085–1092. https://doi.org/10.1007/s11356-016-7058-6
  • Zhang, S., Zhang, J., Wang, W., Li, F., & Cheng, X. (2013). Removal of phosphate from landscape water using an electrocoagulation process powered directly by photovoltaic solar modules. Solar Energy Materials and Solar Cells, 117, 73–80. https://doi.org/10.1016/j.solmat.2013.05.027.