Revista Mexicana de Ingeniería Química, Vol. 23, No. 1 (2024), Poly24218


Effect of chitosan on the electrokinetic, spectroscopic, and textural properties of TiO2 nanoparticles

K. Macías-Collado, L.T. Ballesteros-Rozo, V. W. Velázquez-Vázquez, D.M. Frías-Márquez, R. López-González, M.A. Alvarez-Lemus

https://doi.org/10.24275/rmiq/Poly24218


 

Abstract

Titania (TiO2) nanoparticles were synthesized using the sol-gel method and subsequently modified with chitosan (CS). FTIR spectroscopy confirmed the presence of chitosan by modifications on the 3380 cm-1 and 1630 cm-1 bands, while XRD showed a shift in the reflection peaks from titania when it was bound to chitosan. TGA revealed that the actual amount of chitosan added to the composite was about 16% wt. Hydrodynamic diameter for titania particles was 720 nm, whereas the composite exhibited mainly particles of 1098 nm. Zeta potential measurements showed a change from -13.7 to 21 mV for TiO2-CS compared to pure titania. Physisorption analysis determined the BET specific surface area of TiO2 and TiO2-CS being 38 m2/g and 24 m2/g, respectively. In the visual observation, the behavior of titania and TiO2-CS suspended in deionized water for 24 hours was observed. Contact angle measurements were taken over calcite artificial rocks using brine, brine/TiO2, and brine/TiO2-CS, resulting in angles of 113.73°, 106.8°, and 97.90°, respectively. Although they fall within the hydrophobic range, a decrease in contact angle was achieved by adding nanoparticles. Sedimentation and agglomeration of titanium particles were formed at shorter time than for the composite suspended particles.

Keywords: Chitosan, TiO2, nanoparticles, particle stability, contact angle.

 


References

  • Al-Ameer, M.A., Sahib Azad, M., Al-Sheri, D., Mohamud, M., Shahzad Kamal, M., Patil, S. (2023). A guide for selection of aging time and temperature for wettability alteration in various rock oil. ACS Omega, 8, 30790–30801. https://doi.org/10.1021/acsomega.3c00023
  • Ali, M.E.A., Aboelfadl, M.M.S., Selim, A.M., Khalil, H.F., & Elkady, G.M. (2018). Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases. Separation Science and Technology 53(18), 2870–2881. https://doi.org/10.1080/01496395.2018.1489845
  • Al-Taweel, S.S., Saud, H.R., Kadhum, A.A.H., Takriff, M.S. (2019). The influence of titanium dioxide nanofiller ratio on morphology and surface properties of TiO2/chitosan nanocomposite. Results in Physics 13, 102296. https://doi.org/10.1016/j.rinp.2019.102296
  • Anaya-Esparza, L.M., Ruvalcaba-Gómez, J.M., Maytorena-Verdugo, C.I., González-Silva, N., Romero-Toledo, R., Aguilera-Aguirre, S., Pérez-Larios, A., Montalvo-González, A.E. (2020). Chitosan-TiO2: A Versatile Hybrid Composite. Materials (Basel). 13, 811. https://doi.org/10.3390/ma13040811
  • Ángel-Hernández, B., Hernández-Aldana, F., Pérez-Osorio, G., Gutiérrez-Arias, J.E.M. (2021). Municipal wastewater treatment by photocatalysis: Comparison between UV lamp and solar radiation using TiO2 and ZnO/TiO2 synthesized catalysts. Revista Mexicana de Ingeniería Química 20(3). https://doi.org/10.24275/rmiq/Cat2438
  • Bayat, A.E., Junin, R., Samsuri, A., Piroozian, A., Hokmabadi, M. (2014). Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures. Energy Fuels 28, 6255–6266 https://doi.org/10.1021/ef5013616
  • Branca, C., D’Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., Wanderlingh, U. (2016). Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer 99, 614-622. https://doi.org/10.1016/j.polymer.2016.07.086
  • Chen, Q., Ye, Z., Tang, L., Wu, T., Jiang, Q., Lai, N. (2020). Synthesis and Solution Properties of a novel hyperbranched polymer based on chitosan for enhanced oil recovery. Polymers 12, 2130. https://doi.org/10.3390/polym12092130
  • Dos Santos Francisco, A.D., Grasseschi, D. (2020). Wettability alteration of oil-wet carbonate rocks by chitosan derivatives for application in enhanced oil recovery. Journal of Applied Polymer Science 138, 50098. https://doi.org/10.1002/app.50098
  • Dos Santos Francisco, A.D., Maia, K.C.B., Vieira Moura, J.G., Veiga Nascimento, R.S., da Silva Lima, F., Grasseschi, D. (2023). Chitosan derivatives as surfactant carriers for enhanced oil recovery – Experimental and molecular dynamic evaluations of polymer-surfactant interactions. Colloids and Surfaces A Physicochemical Engineering Aspects 671, 131644. https://doi.org/10.1016/j.colsurfa.2023.131644
  • Ehtesabi, H., Ahadian, M., Taghikhani, V. (2015). Enhanced oil recovery using TiO2 nanoparticles: Investigation of deposition during transport in core plug. Energy Fuels 29, 1–8. https://doi.org/10.1021/ef5015605     
  • Fahimehsadat, V., Hossein, D. (2019). The characterization of TiO2-reduced graphene oxide nanocomposites and their performance in electrochemical determination for removing heavy metals ions of cadmium (II), lead (II) and copper (II). Materials Science and Engineering: B 243, 189-198. https://doi.org/10.1016/j.mseb.2019.04.009     
  • Frank, L.A., Onzi, G.R., Morawski, A.S., Pohlmann, A.R., Guterres, S.S., Contri, R.V. (2020). Chitosan as a coating material for nanoparticles intended for biomedical applications. Reactive and Functional Polymers 147, 104459. https://doi.org/10.1016/j.reactfunctpolym.2019.104459
  • González-Calderón, J.A., Peña-Juárez, M.G., Zarraga, R., Contreras-López, D., Vallejo-Montesinos, J. (2021). The role of alkoxysilanes functional groups for surface modification of TiO2 nanoparticles on non-isothermal crystallization of isotactic polypropylene composites. Revista Mexicana de Ingeniería Química 20(1), 435-452. https://doi.org/10.24275/rmiq/Poly1995
  • Goriletzky V.I., Mitichkin A.I., Belenko L.E., Rebrova T.P. (2001) IR spectroscopy of KBr and salt and crystals. Semiconductor physics, quantum electronics & optoelectronics 4, 139-141. https://doi.org/10.15407/spqeo4.02.139
  • Gozdecka, A., Wiacek, A.E. (2017). Behavior of TiO2/Chitosan dispersion as a function of solution pH. Progress on Chemistry and Application of Chitin and its Derivatives 12, 21-47. https://doi.org/10.15259/PCACD.22.03
  • Hassanzadeh-Tabrizi, S.A. (2023). Precise calculation of crystallite size of nanomaterials. Journal of Alloys and Compounds 968, 171914. https://doi.org/10.1016/j.jallcom.2023.171914 
  • Hiroi, Z. (2022). Inorganic structural chemistry of titanium dioxide polymorphs. Inorganic Chemistry 61, 8393-8401. https://doi.org/10.1021/acs.inorgchem.2c00945 
  • Hou, J., Sun, L. (2021). Synergistic effect of nanofluids and surfactants on heavy oil recovery and oil-wet calcite wettability. Nanomaterials 11(7), 1849. https://doi.org/10.3390/nano11071849
  • Hussein, E.M., Desoky, W.M., Hannafy, M.F., Guirguis, O.W. (2021). Effect of TiO2 nanoparticles on the structural configurations and thermal, mechanical and optical properties of chitosan/TiO2 nanoparticle composites. Journal of Physics and Chemistry of Solids 152, 109983. https://doi.org/10.1016/j.jpcs.2021.109983
  • Jonassen, H., Kjøniksen, A.L., Hiorth, M. (2012).Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules 13, 3747-3756. https://doi.org/10.1021/bm301207a 
  • Kao, J.Y., Cheng, W.T. (2020). Study on dispersion of TiO2 nanopowder in aqueous solution via near supercritical fluids. ACS Omega, 5, 1832–1839  https://doi.org/10.1021/acsomega.9b03101
  • Karthikeyan, K.T., Nithya, A., Jothivenkatachalam, K. (2017). Photocatalytic and antimicrobial activities of chitosan-TiO2 nanocomposite. International Journal of Biological Macromolecules 104, 1762-1773. http://dx.doi.org/doi:10.1016/j.ijbiomac.2017.03.121
  • Khalilnezhad, A., Rezvani, H., Ganji, P., Kazemzadeh, Y. (2019). A complete experimental study of oil/water interfacial properties in the presence of TiO2 nanoparticles and different ions. Oil & Gas Science and Technology 74, 39. https://doi.org/10.2516/ogst/2019007
  • Kumar, S., Koh, J. (2012). Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. International Journal of Molecular Sciences 13, 6102-6116. https://doi.org/10.3390/ijms13056102
  • Ładniak, A., Jurak, M., Wiącek, A.E. (2021). Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects 630, 127546. https://doi.org/10.1016/j.colsurfa.2021.127546
  • Li, X., Yoneda, M., Shimada, Y., Matsui, Y. (2017). Effect of surfactants on the aggregation and stability of TiO2 nanomaterial in environmental aqueous matrices. Science of the Total Environment 574, 176-182. https://doi.org/10.1016/j.scitotenv.2016.09.065       
  • Lin, B., Luo, Y., Teng, Z., Zhang, B., Zhou, B., Wang, Q. (2015). Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. LWT-Food Science and Technology 63(2), 1206–1213. https://doi.org/10.1016/j.lwt.2015.04.049
  • Negi, G.S., Anirbid, S., Sivakumar, P. (2021). Applications of silica and titanium dioxide nanoparticles in enhanced oil recovery: Promises and challenges. Petroleum Research 6, 224-246. https://doi.org/10.1016/j.ptlrs.2021.03.001      
  • Ozerin, A.N., Zelenetskii, A.N., Akopova, T.A., Pavlova-Verevkina, O.B., Ozerina, L.A., Surin, N.M., Kechek’yan, A.S. (2006). Nanocomposites based on modified chitosan and titanium oxide. Polymer Science Series A 48, 638–643. https://doi.org/10.1134/S0965545X06060137
  • Padmini, M., Balaganapathi, T., Thilakan, P. (2021). Mesoporous rutile TiO2: Synthesis, characterization and photocatalytic performance studies. Materials Research Bulletin 144, 111480. https://doi.org/10.1016/j.materresbull.2021.111480  
  • Poluboyarinov, A.S., Chelpanov, V.I., Lebedev, V.A., Kozlov, D.A., Khazova, K.M., Volkov, D.S., Kolesnik, I.V., Garshev, A.V. (2019). Titanium oxide microspheres with tunable size and phase composition. Materials 12(9), 1472. https://doi.org/10.3390/ma12091472
  • Qi, J., Ye, Y.Y., Wu, J.J., Wang, H.T., Li, F.T. (2013). Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration. Water Science and Technology 67(1), 147–151. https://doi.org/10.2166/wst.2012.545
  • Ramírez-Revilla, S. A., Camacho-Valencia, D., & Ortiz-Romero, D. (2023). Kinetic evaluation of photocatalytic decoloration of Synozol Red K3BS dye using TiO2-anatase and direct solar radiation. Revista Mexicana de Ingeniería Química 22(1), 2–7. https://doi.org/10.24275/rmiq/IA2995
  • Rodríguez-Guzmán, C. A., Montaño-Leyva, B., Sánchez-Burgos, J. A., Bautista-Rosales, P. U., & Gutierrez-Martinez, P. (2022). Chitosan and GRAS substances application in the control of Geotrichum candidum isolated from tomato fruits (Lycopersicum esculentum L.) in the state of Nayarit, Mexico: In vitro tests. Revista Mexicana de Ingeniería Química, 21(3). https://doi.org/10.24275/rmiq/Bio2790
  • Schubert, J., Chanana, M. (2019). Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Current Medicinal Chemistry 25, 4556–4586. https://doi.org/10.2174/0929867325666180601101859
  • Shi, L., Zhang, J., Zhao, M., Tang, S., Cheng, X., Zhang, W., Li, W., Liu, W., Peng, H., Wang, Q. (2021). Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 13, 10748-10764. https://doi.org/10.1039/D1NR02065J
  • Siripatrawan, U., Kaewklin, P. (2018). Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids 84,125-134. https://doi.org/10.1016/j.foodhyd.2018.04.049
  • Sun, X., Zhang, Y., Chen, G., Liu, T., Ren, D., Ma, J., Sheng, Y., Karwani, S. (2018). Wettability of hybrid nanofluid-treated sandstone/heavy oil/brine systems: implications for enhanced heavy oil recovery potential. Energy Fuels 32, 11118–11135. https://doi.org/10.1021/acs.energyfuels.8b01730
  • Surovčík, J., Medvecká, V., Greguš, J., Gregor, M., Roch, T., Annušová, A., Ďurina, P., Vojteková, T. (2022). Characterization of TiO2 nanofibers with enhanced photocatalytic properties prepared by plasma assisted calcination. Ceramics International 48, 37322-37332. https://doi.org/10.1016/j.ceramint.2022.08.309
  • Tajmiri M., Mousavi S.M., Reza Ehsani M., Roayaei E., Emadi A. (2015). Wettability alteration of sandstone and carbonate rocks by using ZnO nanoparticles in heavy oil reservoirs. Iranian Journal of Oil & Gas Science and Technology 4, 50-66. https://doi.org/10.22050/ijogst.2016.12479
  • Thommes, M., Kaneko, K., Neimark. A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87, 1051-1069. https://doi.org/10.1515/pac-2014-1117
  • Xiaoping, W. (2022). Applications of titanium dioxide materials. In Titanium dioxide - advances and applications. Muhammad Ali H. (Ed) IntechOpen. https://doi.org/10.5772/intechopen.99255
  • Zhang, M., Tiedan, C., Wang, Y. (2017). Insights into TiO2 polymorphs: highly selective synthesis, phase transition, and their polymorph-dependent properties. RSC Advances 7, 52755-52761. https://doi.org/10.1039/C7RA11515F
  • Zheng, X.F., Lian, Q. (2015). Synthesis and evaluation of CoFe2O4–chitosan nanoparticles in enhanced oil recovery. Journal of Dispersion Science and Technology 36, 245-251. https://doi.org/10.1080/01932691.2014.904794
  • Zhu, J., Xie, S., Yang, Z., Li, X., Chen, J., Zhang, X., Zheng, N. (2021). A review of recent advances and prospects on nanocellulose properties and its applications in oil and gas production. Journal of Natural Gas Science and Engineering 96, 104253. https://doi.org/10.1016/j.jngse.2021.104253