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Abstract
A biofilter was built from the production of biochar obtained from Sargassum spp. (SKPH) as an environmentally friendly
option for its application in problems related to the generation of gases such as H2S, CO2, and CH4 that emanate during the
decomposition process of accumulated Sargassum waste. The Sargassum was treated with KOH to obtain an activated biochar,
estimating a surface area of 1319 m2 g−1 with an average pore size of 1.447 nm. This surface area value allows its use as
a biofilter to control H2S, CO2, and CH4 gases. The analysis of textural properties and structure of biochar were studied by
XRD, FTIR, BET, and CHN-S techniques. The characterization results by X-ray diffraction and Raman spectroscopy showed a
biochar with amorphous characteristics. In this study, the constructed biofilter was filled with SKPH biochar; this system was
interconnected to the reactor containing Sargassum spp. (freshly collected from the beach) and to the portable gas meter. The
results showed that sulfur, hydrogen, and nitrogen were significantly higher in the SKPH-LB sample. In general, biochar made it
possible to demonstrate its efficient use to control H2S and CO2 produced by the disposal of Sargassum waste, becoming a novel
strategy to improve the elimination of toxic gases and reduce greenhouse gas emissions.
Keywords: biochar; biofilter; H2S; Sargassum spp., waste.

Resumen
Se construyó un biofiltro a partir de la producción de biocarbón obtenido del Sargassum spp. (SKPH) como una opción amigable
con el medio ambiente para su aplicación en problemas relacionados con la generación de gases como el H2S, CO2 y CH4 que
son emanados durante el proceso de descomposición de los residuos acumulados de sargazo. El sargazo fue tratado con KOH para
la obtención de un biocarbón activado, estimándose un área superficial de 1319 m2 g−1. Este valor de área superficial permite
su uso como biofiltro para el control de los gases de H2S, CO2 y CH4. Las técnicas XRD, FTIR, BET y CHN-S estudiaron
las propiedades texturales y la estructura del biocarbón. Los resultados de la caracterización por XRD y espectroscopia Raman
mostraron un biocarbón con características amorfas. En este estudio el biofiltro construido fue rellenado con el biocarbón SKPH,
este sistema se interconectó al reactor que contenía Sargassum spp. y al medidor de gas portátil. Los resultados mostraron
que el azufre, el hidrógeno y el nitrógeno fueron significativamente mayores en la muestra SKPH-LB. En general, el uso del
biocarbón demostró su uso eficiente para controlar el H2S y el CO2 producidos por la descomposición de los desechos de
sargazo, convirtiéndose en una novedosa estrategia para mejorar la eliminación de gases tóxicos y reducir las emisiones de gases
invernadero.
Palabras clave: biocarbón, biofiltro, H2S, Sargassum spp, residuo.
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1 Introduction

In recent years, various materials such as iron-oxide-
based materials (Feng et al., 2020), zeolites (Rahmani
et al., 2023), polymeric membranes (Casadei et al.,
2020), and activated carbon (de Oliveira et al., 2020)
have been used to remove sulfurous compounds
through adsorption. Hydrogen sulfide (H2S) is a
colorless, extremely dangerous, corrosive, flammable
gas heavier than air. It has a somewhat sweet and
rotten egg-like odor and can be poisonous in high
concentrations. At as low as 0.008 ppm, it causes
an odor nuisance (Cox et al., 2002). H2S emissions
are commonly found in volcanic eruptions, sulfur
springs, fumes from underwater fissures, swamps,
bodies of standing water, crude oil, and as a result
of the organic decomposition of biomass (Cao et al.,
2023). Industries such as seafood processing, farming,
leather markets, compost plants, and wastewater
treatment (Olortiga-Asencios et al., 2022) plants
also produce H2S (Letelier-Gordo et al., 2020).
A new factor contributing to the increase in H2S
production is the environmental problem caused by
the decomposition of macroalgae in the Mexican
Caribbean. Sargassum spp. has been arriving regularly
since 2014, transforming the white sand and turquoise
sea landscape into a picture of yellow and brown
colors that is quite daunting for water and beach
activities. This contingency has been recurrent, and
between July and August 2015, an average of 9726
m3 of seaweed accumulated per month per km
of coastline was observed (van Tussenbroek et al.,
2017). This situation has led to various problems
for the Quintana Roo coast in tourism, social, and
environmental aspects. In the latter, the decrease
in oxygen content, reduction in light, water quality
degradation, beach erosion, etc. have caused mortality
of near-shore seagrasses and fauna. Sargassum also
affects daily life as rotten Sargassum produces H2S
when breathed in, and depending on the exposure
time and concentration, it can cause serious health
problems (Yaw Atiglo et al., 2024).

High concentrations of H2S in sediment have
been linked to mortality events in seagrass (Koch
et al., 2022). H2S is also responsible for serious
environmental problems, such as acid precipitation
and global warming. Other toxic compounds, such
as carbon dioxide (CO2) and methane (CH4), which
are part of greenhouse effect gases (GHG), can be
stored in activated biochars that work as adsorbent
materials (Gutiérrez-Bonilla et al., 2022). Currently,
biofilters have become a popular substitute for
traditional air treatment procedures, including odor
control and the removal of volatile organic compounds
(VOC) (Permana et al., 2022), as well as H2S
emissions. Biofilters are devices that transport a moist

contaminated fluid through a permeable filled area
(Danila et al., 2022). The effectiveness of biochar
in a biofilter depends on numerous factors, including
suitable packing materials, large surface area, specific
surface area, pore volume, pore size distribution, good
ion exchange capacity, high gas retention capacity,
and improved selectivity (Das et al., 2019). Recent
research has shown that biochar can be beneficial
when included as an adsorbent in biofilters (Yang
et al., 2023). Furthermore, biochar can be used
alone or mixed with other substances as a filter
medium in bioretention systems, water treatment,
decontamination of urban stormwater, adsorption, etc.
In research adsorption of CH4, H2S, and CO2, it
was determined that the physicochemical properties of
biochars were related to the adsorption performance
(Sethupathi et al., 2017). Adsorption has also been
widely used for removing H2S, using traditionally
mesoporous materials with a larger surface area, which
might enhance the adsorption potential (Izhar et al.,
2022).

Biochar, a porous carbon-rich material produced
from biomass under oxygen-limited conditions, is now
being developed as an efficient adsorbent that has
been widely used for vapor analysis, including the
adsorption of H2S (Han et al., 2020), CO2, and CH4.
Moreover, biochar has a competitive advantage due
to its low cost and can be obtained from any source
of biomass. In recent years, various studies have
been carried out that relate the type of biomass, the
pyrolysis temperature, and the activation conditions
using different atmospheres, and how these parameters
affect the performance of biochar as CO2 and H2S
adsorbent materials, finding important differences in
its behavior with each of these gases, related to both
the porous structure and the surface chemistry. Several
authors consider that H and S are stored in the pores
of the biochar without being chemically linked to
the biocarbon. That is, it can be assumed that H2S
adsorbs on active sites of the biochar, that is to say,
the surface chemistry of biochar could be altered to
anchorage specific functional groups to selectively
H2S adsorption (Elsayed et al., 2009). A possible
reaction mechanism during the H2S adsorption onto
biochar can be very complex with a diversity of sulfur
products. Commonly, the reaction mechanics includes
two steps: (1) physical adsorption in the presence
of water, H2S is adsorbed on the carbon surface,
dissolved in water, and dissociated in an adsorbed
state; (2) oxidation step. The adsorbed H2S reacts with
oxygen (O2) to form ending products of elemental
sulfur (S0), sulfur dioxide (SO2), and sulfate (SO2−

4 )
(Huang et al., 2022).

This study aims to present the findings of an
experiment conducted in a laboratory using a biofilter
that contained biochar SKPH. The biochar SKPH was
derived from the remnants of Sargassum spp. and was
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Figure 1 Diagram of the connection between the reactor and the biofilter. 161 
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Figure 1 Diagram of the connection between the
reactor and the biofilter.

used to eliminate greenhouse gases such as H2S, CO2,
and CH4. We analyzed the physicochemical properties
and adsorption capacities of the SKPH sample before
and after it was connected to the reactor.

2 Materials and methods

2.1 Biofilter

In this study, biochar was produced from Sargassum
spp. (sample SKPH) according to reported in previous
work (Pérez-Salcedo et al., 2019). The resulting
biochar has an average pore size of approximately
1.4 nm and a measured surface area of around 1319
m

2
g−1. A biofilter was then constructed by filling

a transparent glass tube (10 mm diameter, 125 mm
height) with 400 mg of the SKPH biochar, and
sealing both ends with 100 g of quartz wool. Silicone
hose reducers (9 mm diameter, 15 mm height) were
connected to both sealed ends, and a plastic tube
(8 mm diameter, 60 mm long) was attached. This
system was then connected to six reactors containing
10 g fresh weight (without any prior treatment), which
were placed in 250 mL serological bottles that were
sealed with a tert-butyl plug and secured with a metal
ring. The bottles were then incubated at 35 °C for
natural decomposition, with headspace gas samples
taken individually every 48 hours for 16 days. CO2
and H2S were measured using a Geotech 5000 gas
analyzer portable equipment with three control units
directly connected to the portable gas meter, and the
other three reactors connected to the biofilter for 60

seconds. Figure 1 depicts the connection between the
reactor, the sample of Sargassum spp, the biofilter,
and the gas analyzer. SKPH-LB corresponds to the
biochar sample that has been in contact with the gases
generated by the decomposition of the biomass, that is
to say, post-biofilter placement.

2.2 Characterization

Gas flow rates were measured and controlled using
a Geotech Biogas 5000 gas analyzer in units of
L min−1. The total pore volume, specific surface
area, and pore size distributions were determined
through N2 physisorption tests using a Quantachrome
Nova 2200e. The CHNS composition of biochars
was examined using an automatic elemental analyzer,
Thermoscientific Flash 2000. X-ray diffraction (XRD)
patterns were obtained using Bruker D-2 Phaser
with Cu-Kα radiation from 10° to 80°. The optimal
preparation condition was achieved in all the
characterizations.

3 Results and discussion

3.1 Physical and chemical characteristics
of biochar

3.1.1 BET analysis

The biochar samples were degassed at 250 °C under
vacuum for 5 hours to eliminate any impurities on
their surface. The micropore BET assistant, which is
included in the Novawin software, was employed to
calculate the specific area (SBET ) and the Brunauer-
Emmett-Teller (BET) equation using relative pressures
ranging from 0.05 to 0.3 P/P0. The pore volume and
diameter of the biochar were determined using the
Barrett-Joyner-Halenda (BJH) method. The estimation
was based on the quantity of gas adsorbed at a
relative pressure close to unity (0.98 P/P0). The
pore size distribution graph was obtained through
the novel Quenched Solid Density Functional Theory
(QSDFT) method (Neimark et al., 2009). Figure 2(a)
displays the adsorption and desorption isotherms of
the SKPH and SKPH-LB samples before and after
being connected to the reactor containing Sargassum
waste. The data revealed an II-type isotherm with
an H4 hysteresis loop for both SKPH and SKPH-
LB, suggesting that these biochar samples consist of
micro-mesoporous adsorbent materials (Bedin et al.,
2016). The pore structure parameters of biochar are a
crucial factor that affects their adsorption properties.
Figure 2(b) shows the pore size distribution of the
biochars SKPH and SKPH-LB. Both samples show an
undefined peak at around 1.4 nm which is attributed to
the presence of micropores.

www.rmiq.org 3
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Figure 2 (a) Nitrogen adsorption-desorption isotherm of the samples SKPH and SKPH-LB, and (b) pore distribution.

Table 1 Pore structure parameters of the biochar
samples.

Sample BET surface area Average pore size Pore volume
(m2 g−1) (nm) (cm3 g−1)

SKPH 1319 1.47 0.75
SKPH-LB 1191 1.41 0.61

Additionally, two increases in pore diameters can
be seen at approximately 2.4 nm and 5.7 nm. These
are associated with the formation of mesopores due to
the activation process with KOH.

Table 1 provides a comparison of the average pore
size, pore volume, and BET surface area for different
biochar samples. The data in the table shows that the
SKPH sample had a surface area of 1319 m2 g−1,
while the SKPH-LB sample had a reduced surface area
of 1191 m2 g−1. The reduction in surface area in the
SKPH-LB sample could be due to the adsorption of
nitrogen and sulfur trapped within the pores during
the H2S gas adsorption process, as revealed in the
CHNS elemental analysis. This indicates that the
micropores played a crucial role in the adsorption
of H2S. Furthermore, the pore diameter decreased
slightly in the range of 5-5.6 nm, and according to the
IUPAC classification, the biochar can be categorized
as microporous. The adsorbed volume also decreased
slightly in the 5-5.6 nm range, and to a lesser extent
in the 1.40 to 1.50 nm range, indicating that both
micropores and mesopores played a vital role in the
H2S, CO2, and CH4 adsorption process.

3.1.2 Elemental analysis CHN-S

The results of the elemental analysis of biochars
are presented in Figure 3. The data shows that both
samples, SKPH and SKPH-LB, have similar carbon
contents, which are 74.42% and 76.37%, respectively.
However, the sample SKPH-LB exhibits significantly
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Figure 3 CHN-S analysis of the biochar SKPH and
SKPH-LB.

higher concentrations of sulfur, hydrogen, and
nitrogen. The sulfur concentration in SKPH-LB is
1.2 times higher than SKPH, while the hydrogen and
nitrogen concentrations are 2.0 and 4.5 times higher,
respectively. These increments represent increases of
107%, 355%, and 23%, respectively, compared to
SKPH. Moreover, the increase in the amount of H,
N, and S, in SKPH-LB suggests the retention of
gases of H2S and CH4 produced by the reactor
containing Sargassum waste, thereby decreasing the
accessible surface area (1191 m2 g−1). One of the
outstanding attributes of biochar that may contribute
to the biofilter performance is its ability to adsorb
gases and this characteristic is related to the high
surface area (Thompson et al., 2020). Furthermore, the
results indicate that carbon is the primary component
of biochar. The C, H, N, and S composition analysis of
biochar is summarized in Table 2.
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Table 2 CHNS elemental analyses of biochar in
weight percentage.

Biochar C H N S

SKPH 74.42 0.71 0.80 3.67
SKPH-LB 76.37 0.84 1.47 4.52
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Figure 4 X-ray diffraction (XRD) patterns of SKPH
and SKPH-LB.

3.1.3 X-ray powder diffraction (XRD)

In Figure 4, we can observe the amorphous carbon
structures C (002) and C (100) for SKPH and SKPH-
LB samples. The broad reflection between 20° and
25° indicates poor crystallinity without long-term
crystalline order, in both samples, corresponding to
the (002) plane of an ordered hexagonal graphitic
carbon lattice. The peak located at 44.3° is associated
with the plane (100), suggesting a more graphitic
behavior (Wang et al., 2020). For both samples,
the diffractograms of the biochars are very similar
and these confirm that it contained mainly the
amorphous compounds due to the decomposition of
biomass indicating an amorphous carbon structure,
presence of C, and graphite with randomly oriented
aromatic carbon sheets. It is worth mentioning that
the crystalline nature of biochar is the key to its
stability, and this property largely depends on the
biomass source and carbon content. The presence
of amorphous carbon is associated with random
mixtures of thermally variable molecules, aromatic
polycondensates, poorly structured graphene stacks
anchored in the amorphous phase, and turbostratic
materials composed of chaotic graphite crystallites
(Tomczyk et al., 2020).

3.1.4 Raman spectroscopy

Raman spectroscopy has been widely used to examine
the carbon structure of both samples, pre (SKPH)
and post-biofilter placement (SKPH-LB). In Figure
5, two peaks were observed at approximately 1322
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Figure 5. Raman spectra of the biochar SKPH and
SKPH-LB.

and 1590 cm−1, corresponding to the D-band and G-
band. The D-peak was attributed to sp3-hybridized
carbon defects, while the G-peak represented the
vibrations of sp2-hybridized graphitic carbon in a two-
dimensional hexagonal lattice (Sun et al., 2014). The
results show a D and G peaks were very pronounced
in both samples, and no significant differences were
observed. It is possible to further analyze the diversity
of defect degrees using the value of ID/IG. The ratio
of the D peak and G peak’s relative intensity (ID/IG)
indicated the structural defects and disorders in the
biochars. The biochar SKPH-LB had a higher degree
of disorderliness in the carbon structure, with ID/IG =

1.41 ± 0.05, compared to sample SKPH, with ID/IG =

1.31 ± 0.01. The increase in the defect degree of this
biochar could be attributed to the introduction of N and
S in the biochar, according to the results of the CHN-S
elemental analysis.

3.2 Performance during the test

In Figure 6 (a) the line, indicated by black circles,
shows the average values obtained from the direct
H2S emissions of the control group (SKPH). A
concentration of 2,000 ppm was recorded during
the first four days of sampling, and it reached the
maximum value on day 10, with an average of
2,703 ppm. The lower line, indicated by empty
circles, shows the average values obtained from the
SKPH-LB sample passed through the biofilter. In
SKPH-LB samples the maximum H2S concentration
was 120 ppm. This represents a greater than 95%
decrease in the H2S concentration concerning the
control group emissions, which shows the efficiency
of SKPH Sargassum biochar in removing this gas. In
the literature there are other examples of the use of
biochar, for example, biochar prepared from invasive
algae Sargassum spp. was successfully employed as a
sorbent for caffeine removal from water (Francoeur et
al., 2021).
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In this same sense, Truong et al., (2023) mentions
the potential of biochar obtained from Sargassum
hemiphylum to remove Cu(II) from aqueous solutions,
leading to its high degree of applicability for water
treatment. In addition, studies on Sargassum and
Enteromorpha biochars indicate a high adsorption
capacity which means good development potential in
the field of H2S removal (Han et al., 2020).

Figure 6 (b) shows the production of CO2, and as
in the case of H2S, the values obtained from the direct
measurement of the SKPH group are higher than those
of the SKPH-LB sample. This suggests that biochar
has the potential to absorb a significant portion of the
CO2 molecule (Zhang et al., 2022). In Figure 6 (c),
the detected methane concentrations were very low,
with the highest concentration being only 0.36%. This
low level of methane emission can be attributed to the
fact that the Sargassum used in this experiment was
recently collected and in this type of sample, mainly
sulfate-reducing bacteria have been identified, which
favors the production of H2S over methane (Hervé et
al., 2021). Furthermore, some authors have suggested
that the high sulfur content in algae negatively affects
methane production (Maneein et al., 2021).

Conclusions

An inexpensive and straightforward biofilter was
tested for removing H2S, CO2, and CH4 using
accumulated Sargassum waste. The results showed
that the biofilter made with biochar from Sargassum
spp. can significantly absorb H2S and CO2 gases. The
nitrogen and sulfur content in the biochar increased
after being exposed to reactor gases. To understand the
physicochemical properties of the biochars, they were
characterized by DRX, BET, and Raman analyses.
The BET analysis revealed that the biochar’s surface
area decreased slightly after the H2S gas adsorption
process, reaching a minimum value of 1208 m2

g−1 for sample SKPH-LB. This study opens an
opportunity avenue for Sargassum waste, through the

use of biochar. Therefore, we consider biochar as
an important candidate for further research in the
emissions control of toxic gases.
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