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Abstract
17β-estradiol (E2) is a natural estrogen considered the major endocrine disruptor in the environment at ng L−1. Advanced
oxidation processes (AOP) such as photo-Fenton, have shown promising results for E2 oxidation. However, in AOP and
conventional process, the final destination of E2 is not reported, nor is it mentioned if it has been transformed into simpler
species such as CO2, a greenhouse gas. Therefore, the aim of this work was to evaluate the production of HCO−3 from the
oxidation of 17β-estradiol by a photo-Fenton process as a strategy to avoid the generation of greenhouse gases in water. Batch
assays were realized with E2-C concentrations (mg L−1) of 3.5, 4.5, and 7.5 at pH values of 5, 10, and 7.5, using FeSO4 ·7H2O (4)
and H2O2(10), respectively. An EE2−C of 64.99 % was obtained, and the oxidation of E2 followed a first-order reaction model,
where coefficients of 84.30×10−3 min−1. A predominant production of 3.73 ± 0.21 mg HCO−3 -C L−1 was observed, compared to
0.45 ± 0.01 mg CO2-C L−1 (pH 10). The Fenton process predominantly oxidized E2 to HCO−3 , which it is considered innocuous
for the environmental. The process was not inhibited at pH 10.
Keywords: 17β-estradiol, advanced oxidation, photo-Fenton, dioxide carbon, bicarbonate.

Resumen
17β-estradiol (E2) es un estrógeno natural considerado como el mayor disruptor endócrino a concentraciones de ng L−1. Procesos
de oxidación avanzada (POA) como el foto-Fenton ha mostrado resultados prometedores para la oxidación de E2. Sin embargo,
en procesos convencionales y POA, el destino final de E2 no es reportado o si este fue transformado hasta CO2, un gas de
efecto invernadero. Por ello, el objetivo de este trabajo consistió en evaluar la producción de HCO−3 proveniente de la oxidación
de 17β-estradiol por un proceso de foto-Fenton como una estrategia para evitar la generación de gases de efecto invernadero
en agua. Se realizaron ensayos en lote con (mg L−1) E2-C (5, 4.5 y 7) a pH 5, 10 y 7.5 con FeSO4 · 7H2O (4) y H2O2 (10),
respectivamente. Se obtuvieron EE2−C del 64.99 % y la oxidación de E2 se ajustó a un modelo de reacción de primer orden, donde
se obtuvieron coeficientes de hasta 84.30×10−3 min−1. Se obtuvo una producción mayoritaria de hasta 3.73 ± 0.21 mg HCO−3 -C
L−1, comparado con 0.45 ± 0.01 mg CO2-C L−1 (pH 10). El proceso foto-Fenton oxidó E2 hasta HCO−3 mayoritariamente, el
cual es considerado como inocuo para el medio ambiente. El proceso no fue inhibido por el pH 10.
Palabras clave: 17β-estradiol, oxidación avanzada, foto-Fenton, dióxido de carbono, bicarbonato.
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1 Introduction

Every day, a considerable quantity of commonly
used products is discharged into the environment
via wastewater systems. Due to their physical and
chemical properties, these substances have significant
effects on aquatic biota even at trace concentrations
(ng L−1 - µg L−1) (Zolkefli et al., 2020; Fang et
al., 2019b). Among these compounds are emerging
contaminants (ECs), defined as organic chemical
compounds of various nature that are commonly
used and continually introduced into water sources
(Srikanth et al., 2019). These contaminants lack
updated toxicological data and are not subject to
regulation due to their low concentrations (ng L−1)
(Valdez et al., 2020). It has been reported that
ECs have the potential to generate environmental
problems and impact human or animal health due
to their physical and chemical properties (Olatunde
et al., 2020). The contaminants falling into this
category include pharmaceutical compounds, cleaning
products, personal care products, artificial sweeteners,
flame retardants, hydrocarbons, pesticides, dyes,
among others (Gonzales et al., 2023; Parida et al.,
2021).

The adverse effects associated with the presence
of ECs in water are primarily related to endocrine
disruption. This consists of the alteration of hormonal,
metabolic, and reproductive functions in living
organisms, precipitating a systematic imbalance,
which could generate issues such as cancer, metabolic
syndrome, among other effects on aquatic fauna (Khan
et al., 2020; Vilela et al., 2018).

Among the ECs with significant disruptive
potential, natural estrogens such as estrone (E1), 17β-
estradiol (E2), estriol (E3), alongside synthetics like
17α-ethinylestradiol (EE2) (Castellanos et al., 2021).
These compounds enter natural water continously
through various routes, including wastewater from the
pharmaceutical industry, domestic use, or naturally
occurring secretions from the adrenal glands and
ovaries of females (Fang et al., 2019a). Numerous
studies have highlighted the adverse environmental
impacts of estradiol in water, leading to global
environmental issues such as the feminization of
animal species, neuriligical harm, and immune
systems disruption (Ren et al., 2022). For instance,
zebrafish and medaka fish in river waters of Israel
have been exposed to concentrations from 48 to
313 ng L−1, resulting in morphological alterations
in the testicles and a tendency to feminize males
(Sun et al., 2019). Furthermore, the presence of E2
in the environment has compromised water quality
for human consumption and the infiltration of the
pollutant through cultivated soils (Ren et al., 2022).
The physicochemical properties of 17β-estradiol (E2)

facilitate its adsorption in sediments, contributing to
its high persistence (Brion et al., 2004). Consequently,
conventional wastewater treatment plants (WTPs)
often fail completely eliminate this compound, with
quantified concentrations reaching up to 630 ng L−1

in WTP effluents in Asia, 3000 ng L−1 in Europe,
2300 ng L−1 in Latin America, and up to 9000 ng
L−1 in Africa. Additionally, conventional WTPs serve
as sources greenhouse gas emotions, continuously
generating COX, NOX, and SOX (Medrano et al.,
2022; Du et al., 2020).

Diverse physical, chemical, and biological
processes are currently under investigation
as alternatives for the removal of E2 and
other pharmaceuticals from contaminated water.
Technologies for removal, including reverse osmosis,
nanofiltration, membrane filtration, electrochemical
process, and various adsorption techniques, have
demonstrated significant efficacy in E2 removal
from water samples. For instance, the application
of granular sludge under anaerobic conditions, as
studied by Zhao et al. (2020), achieved degradation
percentages of up to 42.2% of E2. Similary, Aziz and
Ojumu (2020) reported removal percentages of up to
95% of E2 through the utilization of technologies such
as membrane nanofiltration. Despite the promising
results observed with these technologies, it is essential
to consider some notable drawbacks, including high
energy requirements, the potential formation of
unwanted by-products must be considered, such as
their high energy requirement, formation of unwanted
products, and the unreported final disposition of the
removed pollutant (Lyubimenko et al., 2022).

Advanced oxidation processes (AOP) have been
considered as a promising solution for eliminating
E2 from water, transforming this toxic compound
into simpler substances. Some of the most studied
AOPs include photocatalysis, Fenton oxidation and
photo-Fenton, all of which involve the generation
of hydroxyl radicals (·OH) (Gonzalez et al., 2023;
Mansouri et al., 2021). These radicals play a crucial
role in oxidizing organic compounds, including
ECs, into less complex molecules (Medrano et al.,
2022; Gowtham et al., 2021; Laverde-Cerda et al.,
2020). Among the various photo-Fenton systems, UV-
Vis/H2O2/Fe(II) stands out for its advantages, such as
low operating costs and easy implementation on an
industrial scale (Brienza et al., 2014). Some studies on
E2 removal through AOPs include the work of Bennet
et al. (2018), where the oxidation of 10 µg L−1 of
17β-Estradiol using UV and UV/H2O2 with a Mercury
lamp (1 kW) was investigated. A removal efficiency
of up to 90% was reported, although the oxidation
products remained unidentified. Orozco et al. (2019)
achieved an 85 % removal efficiency of 1 µg E2 L−1

in 60 minutes using UV 400 W (254 nm) with 100 mg
L−1 of TiO2, although the final oxidation product was
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not disclosed. Similary, Butt et al. (2021) evaluated
the oxidation of the methyl orange dye through a
photo-Fenton process, achieving removal percentages
of up to 37% in 60 minutes of reaction. Singa et
al. (2021) highlighted the efficacy of this process
for eliminating polycyclic aromatic hydrocarbons in
landfills, with oxidation efficiencies ranging from
84.43 to 92.54%. However, a common limitation in
these studies is the lack of information regarding
the AOP products and the whether the organic
compounds are transformed into simple species like
CO2. This information is important for assessing the
completeness of the process and the potential toxicity
of the formed metabolites. Environmental conditions,
including light radiation, H2O2 concentration, and pH
are main factors in controlling the oxidation process
and the formation of compounds like HCO−3 and
CO2 (Pinoargote et al., 2022). HCO−3 is considered
environmentally innocuous and is not a greenhouse
gas, in contrast to CO2. Therefore, the objective of this
study was to evaluate the production of HCO−3 from
the oxidation of 17β-estradiol through a photo-Fenton
process as a strategy to avoid generating greenhouse
gases in water.

2 Material and methods

2.1 Batch assays

Assays were performed in 60 mL serological bottles,
with a working volume of 36 mL and the remaining
volume as headspace (Figure 1). The oxidation of
E2 was evaluated at concentrations of 3.5 (I), 4.5
(II) and 7.5 (III) mg L−1 of E2-C at pH 5, 10, and
7.5, respectively, adding to each one 4 mg L−1 of
FeSO4 · 7H2O as catalyst and 10 mg L−1 of H2O2,
according to what was reported by Pinoargote et al.
(2022). The concentrations of catalyst and hydrogen
peroxide used were selected according to the lowest
concentrations evaluated in the literature to optimize
the process (Gowtham and Pauline, 2021). Assays
were exposed to direct natural sunlight for 1 hour
and liquid and gas samples were taken every 5,
and 10 minutes for subsequent analysis. It is worth
mentioning that the bottles were exposed to natural
sunlight from 12:30 pm to 1:30 pm, during the months
of February and March 2023 in the city of Mineral
de la Reforma, Hidalgo, Mexico. Additionally, an
assay was carried out to evaluate the stability of E2
when exposed to sunlight, consisting of maintaining
a concentration of 15 mg E2-C L−1 for 3 h.
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Figure 1. The reaction system for batch assays.

2.2 Kinetic evaluation of the photo-Fenton
process

To evaluate the oxidation of E2 in the process,
response variables was performed, such as efficiency
of estradiol consumption (EE2−C), using equation 1.

EE2−C =
mgC−E2 consumed

mgC−E2 initial
× 100 (1)

The reaction of the assays carried out was evaluated by
a linear regression analysis with a first order reaction
equation, as shown in equations 2.

lnCE2 = −kt+ lnCE20 (2)

Where CE2 corresponds to the concentration of E2 at
each unit of time, CE20 was the initial concentration
of E2, k was the kinetic constant in min−1, and
t was the time in minutes, respectively. For each
regression, the determination coefficient (R2 >0.9) was
calculated, to demonstrate the fitting of the model with
the experimental data. Finally, a mass balance was
performed in all assays to assess the final fate of E2,
including the formation of products formatted.

2.3 Analytical methods

17β-estradiol concentrations were determined in a
Perkin Elmer series 200 (USA) high performance
liquid chromatograph (HPLC) equipped with a UV-
visible detector at a wavelength (λ) of 230 nm, using
a C18 column. A methanol-water mixture (70:30 v/v)
was used as the mobile phase with a flow rate of 1
mL min−1. For the analysis of total organic carbon
(Total Carbon (TC), Total Organic Carbon (TOC), and
HCO−3 ) in all the assays, a Shimadzu TOC-Analyzer
was used. Where the total carbon was oxidized in a
reactor at a temperature of 720 ºC and for the analysis
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of inorganic carbon two solutions were used: one of
HCl (1N) and H2PO4 (25%) with a flow of extra-dry
air at 150 mL min−1 and a pressure of 200 kPa. CO2
concentrations were analyzed in a Perkin Elmer gas
chromatograph (GC), model Autosystem XL (USA),
equipped with a thermal conductivity detector (TCD),
as well as an HP-PLOT/Q capillary column, Agilent
Technologies (USA), 30 m long, 0.530 mm internal
diameter and 40 µm particle size. The temperatures
of the oven, injector and detector were set at 60°C,
100°C, and 200°C, respectively. Ultra-high purity
helium was used as the mobile phase at a flow rate
of 10 mL min−1. The injection volume was 50 µL, and
data acquisition was performed using TC Nav software
version 6.3.1.

2.4 Statistical analysis of the data

The batch assays, as well as each of the calibration
curves, were conducted in duplicate and, the data
represented represent average of the experimental
group. For each linear regression performed, the
determination coefficient (R2) was calculated, and in
all cases, it was higher than 0.99. In addition, the
standard deviations and the coefficient of variation
(CV) were estimated for each set of data, with the CV
was less than 10% in all cases.

3 Results and discussion

3.1 E2 stability evaluation under natural
sunlight

The results of the stability evaluation of 17β-estradiol
are shown in Figure 2, where 15 mg E2-C L−1 in
water were exposed to natural sunlight for 3 h. This
was done to rule out photolysis of E2 under natural
sunlight before conducting assays with FeSO4 · 7H2O
and H2O2. During the 3-hour assay, it was observed
that the concentration of E2 remained constant with a
mean of 15.40 ± 0.65 mg E2-C L−1 (CV of 4.24%). It
is worth mentioning that, in the analytical techniques
employed, the production of E2 metabolites was
not observed. This indicates that the formation of
metabolites and new products during the photo-Fenton
process will be directly related with the oxidation of
E2 through the addition of FeSO4 · 7H2O, and H2O2
(Fernandez et al., 2017).

On the other hand, the assay carried out with
2 mg E2-C L−1, adjusted to a pH of 10, showed
simultaneous production of inorganic carbon and a
decrease in the concentration of E2. The results of
these assays are shown in Figure 3. The alkaline pH
led to a decrease in the concentration of E2, with up to
490 µg L−1 of inorganic carbon produced, originating
from the decrease in estradiol concentration. An

increase in pH greater than10 has been considered a
factor that does not promote Fenton-type reactions,
as high efficiencies have been reported at pH values
lower than 3 (Qian et al., 2020). However, the assay
samples containing 2 mg E2-C L−1 were analyzed
by HPLC, revealing the accumulation of carbonated
metabolites throughout the process, although specific
metabolites were not identified. This indicates that
the pH adjustment of 10 has a direct effect on
the E2 bonds, leading to the formation of HCO−3 .
Furthermore, it is important to mention that the pKa of
E2 has been reported in the range of 10.23 - 10.4 (Yang
et al., 2023; Shareef et al., 2006). When estradiol is
in a medium where pH ≥ pKa, it tends to undergo
a strong effect of electron loss and dissociation, due
to the weak bonds in the polar functional groups of
its structure, as indicated by Gong et al. (2022). This
loss of electrons is so intense that the lost functional
groups combine with inorganic compounds such as
HCO−3 or other organic compounds, resulting from
the partial oxidation of E2, according to the results
found in the present work. Likewise, it has been
reported that compounds such as the bicarbonate ion
tend to generate radicals scavengers that promote the
oxidation of E2 (Kim et al., 2015; Frontistis et al.,
2011). It is worth mentioning that the pH in the assays
increased over time from 10 to 10.93, which can be
attributed and is verified by the formation of inorganic
carbon compounds such as HCO−3 .
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Figure 5. Kinetic profile of oxidation test with 4.5 mg
E2-C L−1 with 4 mg L−1 of FeSO4 · 7H2O as catalyst
and 10 mg L−1 of H2O2, at pH 10. (♦) E2-C, (▲)
HCO−3 -C, (•) CO2-C.

3.2 Oxidation of 17β-estradiol in batch
assays

Figure 4 shows the results obtained from the kinetic
profile of the oxidation assay with 3.5 mg E2-C
L−1 at pH 5, where the oxidation of 960 µg E2-
C L−1 is observed in the first 10 min of the assay
and remains constant for the rest of the hour. Along
with consumption, 690 µg HCO−3 -C L−1 and 610 µg
CO2-C L−1 were produced in the first 10 min of
reaction, and these concentrations remained constant
until the end of the assay. This study represents one
of the first attempts to evaluate the production of
inorganic carbon in advanced oxidation processes with
Fe2+/H2O2, aming to assess whether E2 is completely
or partially oxidized.

Figure 5 shows the results obtained from the
kinetic profile of the oxidation assay with 4.5 mg E2-
C L−1 at pH 10, where the maximum oxidation of
up to 4.04 mg E2-C L−1 was observed during the
first 10 min of the assay. Along with consumption,
up to 3.90 mg HCO−3 -C L−1 and 0.45 mg CO2-C
L−1 were generated during the reaction, and these
concentrations remained constant until the end of the
assay. Compared with the previous assays at pH 5, a
higher production of inorganic carbon was observed,
suggesting that Fenton reactions with Fe2+/H2O2 lead
to oxidation up to HCO−3 at alkaline pH. The Fenton
process was not inhibited in a pH 10 medium.
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Figure 6. Kinetic profile of oxidation test with 7.5 mg
E2-C L−1 with 4 mg L−1 of FeSO4 · 7H2O as catalyst
and 10 mg L−1 of H2O2, at pH 7.5. (♦) E2-C, (•) CO2-
C, (▲) HCO−3 -C.

Assays with 7.5 mg E2-C L−1 were evaluated
under a neutral pH (7.5) to understand the influence
on the oxidation of E2 and the formation of inorganic
carbon compounds. The results obtained from the
kinetic profile of this assay are presented in Figure 6,
where the maximum oxidation of up to 3.75 mg E2-
C L−1 was observed in the first 10 min. The result
was similar to that obtained in the assays with 4.5 mg
E2-C L−1 at pH 10. Simultaneously, up to 0.55 mg
HCO−3 -C L−1 and 0.73 mg CO2-C L−1 were generated,
starting from the first 10 minutes of the reaction.
In these assays, the decrease in the concentration of
E2 is directly attributed to a precipitation effect, as
the production of inorganic carbon was lower than
the concentration of the organic carbon consumed, as
reported Camacho et al. (2022).

It should be noted that this study stands as one
of the initial works demonstrating the complete E2
oxidation by photo-Fenton to carbon compounds such
as HCO−3 and CO2. It is not just a proposal for the
E2 oxidation pathway. Additionally, it was observed
that the concentrations of E2 in the first 20 and
30 minutes of the reaction followed a first-order
reaction behavior. However, when the reaction reaches
equilibrium, the oxidation changes from first order to
zero order. A mass balance (Table 1) was conducted in
all assays, revealing that E2 was primarily converted
into HCO−3 . The production of inorganic carbon was
pH-dependent. In the assay with 3.5 mg E2-C L−1 at
pH of 5, the maximum production of HCO−3 -C was
690 µg L−1. However, when the pH was increased
to 10 in the assays with 4.5 mg E2-C L−1, the
maximum production of HCO−3 -C was to 3.90 mg L−1

(Table 1). This represented 4.6 times increase and is
correlated with the zone curves of predominance of
carbonaceous species, where, at pH values above 8,
the production of species such as HCO−3 increases.
For this reason, environmental conditions promote the
formation of HCO−3 from the oxidation of E2 at pH
10. The photo-Fenton process was not inhibited (Yang
et al., 2023; Camacho et al., 2022). Moreover, under
alkaline conditions, Fe2+, SO2−

4 , UV from sunlight,
and the formation of HCO−3 were the primary active
oxidation species generating ·OH from H2O2 and OH-
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Table 1. Results of the mass balance in the batch assays with 3.5, 4.5, and 7.5 mg E2-C L−1.

Conditions Initial concentration (mg L−1) Final concentration (mg L−1)

E2-C (mg L−1) pH E2-C E2-C CO2-C HCO−3 -C
3.5 5 3.50 ± 0.01 2.46 ± 0.16 0.61 ± 0.03 0.69 ± 0.06
4.5 10 4.50 ± 0.01 1.69 ± 0.12 0.45 ± 0.008 3.90 ± 0.34
7.5 7.5 7.50 ± 0.01 2.66 ± 0.07 0.42 ± 0.01 0.06 ± 0.04

species (Zhu et al., 2021). Although, HCO−3 is
consider as a suppressor of ·OH generation, this study
found that the presence of Fe2+, SO2−

4 , UV from
sunlight and H2O2 promoted ·OH production (Liu
et al., 2023; Zhu et al., 2021). Furthermore, under
alkaline conditions, the formation of Fe(III)-hydroxyl
complexes was promoted for ·OH production, given
than Fe(OH)2+ is the most potent photoactive
species (Feng et al., 2005). In all assays, the final
concentration of CO2 remained around 0.5 ± 0.1 mg
L−1, regardless of changes in the pH values. The
results indicate that the photo-Fenton with Fe2+/H2O2
and sunlight did not produce greenhouse gases such
as CO2 at pH > 7, and it was not inhibited due to
the predominant generation of HCO−3 . According to
these results, the use of photo-Fenton process in real
systems could be an alternative to mitigate greenhouse
gases generation in wastewater treatment plants and
eliminate contaminants from wastewater.

The results of oxidation efficiencies of E2 of
each assay are shown in Table 2. The E2 removal
efficiencies in assays with initial concentrations of
3.5, 4.5 and 7.5 mg L−1 of E2-C were 25.75 ± 2.43,
59.34 ± 7.32, and 64.44 ± 0.97 %, respectively. The
removal efficiency exhibited an increase with higher
initial concentrations, and the oxidation process was
not inhibited across varying pH conditions. Notably,
the results obtained in this study are better than
reported in certain studies, such as the one conducted
by Kovacic et al. (2018), which reported oxidation
efficiencies of 30% for 5µM E2 over 95 minutes
using advanced oxidation processes with a 450 W
Xenon lamp. These results were lower than it was
obtained in the present study, but also their study not
disclose the final fate of E2. Similarly, Bennett et al.
(2018) reported efficiencies of 64 % in the removal
of 10 µg L−1 of E2 through oxidation with UV light
and H2O2. However, their study also did not provide
information on the final fate of the contaminant, and
the concentration evaluated was 450 times lower than
the concentration of E2 used in our study. Feng et al.,
(2005) reported an oxidation efficiency of 61.7 % from
an initial concentration of 36.7 µmol E2 L−1 after 160
min of UV-vis irradiation with a 250 W metal halide
lamp (λ ≥ 313 nm) at pH 3. While the efficiencies
reported by Feng et al., (2005) are similar with the
results of our study, the oxidation was 1.6 times higher
than that achieved in this work using Fe2+/H2O2 and
sunlight at pH 10.
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Figure 7. Linear regression of a first-order reaction of
trials with 3.5 (•), 4.5 (▲) and 7.5 (■) mg E2-C L−1.

3.3 Oxidation kinetics of 17β-estradiol

The results of the kinetic evaluation of the
concentrations of E2 were analyzed using linear
regression to assess the fit of a first-order reaction
model. It is important to remember that the
concentrations of E2 in the first 30 minutes of the
reaction followed a first-order reaction behavior and
when the reaction reaches equilibrium, the oxidation
changes from first order to zero order. The findings,
represented in Figure 7 and Table 2, reveal that the
kinetic constants were greater than 10−2 min−1 at
pH values of 7.5, and 10. The highest constant was
obtained in the assay with 7.5 mg E2-C L−1 at a pH of
7.5, followed by the assay with 4.5 mg E2-C L−1 at a
pH of 10, while the lowest constant was obtained in the
assay with 3.5 mg E2-C L−1 at pH 4.5. In comparison,
Zhu et al., (2021) reported kinetic constants (min−1)
of 0.0464 and 0.0308 during the oxidation of 0.1 mmol
of E2 at pH values of 9, and 10, respectively, using UV
light from a mercury lamp (254 nm) in both freshwater
and seawater. The constants reported by Zhu et al
(2021) are 0.81, and 1.73 times lower than the kinetic
constants obtained in our work at pH values of 10
and 7, respectively. Kovacic et al., (2018) reported a
k value of 15.39×10−3 min1 with 5 µM E2, TiO2-FeZ
and a 50 µM H2O2 concentration in assays conducted
under sunlight exposure.

The kinetic constant (k) reported by Kovacic et al.
(2018) is 4.4 times lower than that it found in our work,
particularly when compared with the assay involving
7.5 mg E2-C L−1. In a study by Yang et al., (2023),
a kinetic constant of 8.79×10−7 min−1 was reported
during the oxidation of 100 µg L−1 E2 with humic
acids, which is up to 949 times lower compared to the
findings in our work. On the other hand, Gong et al.,
(2022) conducted a study with activated carbon and
reported an adsorption rate of 7.5 mg E2 mg Fe/Ni
carbonized.
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Table 2. Comparison of first-order reaction kinetics constants of batch assays with E2-C at different pH values and
oxidation efficiencies obtained.

Assay (mg E2-C L−1) pH Oxidation efficences E2 (%) k (k×10−3 min−1)

3.5 5 25.75 ± 2.43 6.5 ± 1.2
4.5 10 59.34 ± 7.72 27.9 ± 4.3
7.5 7.5 64.44 ± 0.97 84.3 ± 2.2 
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While the adsorption speed reported by Gong
et al., (2022) is higher than the results obtained in
our work, it is essential to note that E2 was not
transformed, instead, it was transferred from one
environmental compartment to another, remaining in
the environment. Furthermore, the results obtained
in this work show that the use of Fe2+/H2O2 with
sunlight is superior to the use of TiO2 and UV light.
This is an advantage due to the lower cost and simpler
infrastructure, making it a more practical approach for
application in real systems.

The behavior of the obtained kinetic constants
exhibited linearity with a determination coefficient
(R2) of 0.993, as shown in Figure 8. It was observed
that as the initial concentration of E2 increased,
the kinetic constant (k) also increased according to
Equation 3. The linearity of the data suggests that the
oxidation of E2 is not dependent on the pH values
assessed, aligning findings reported by Kim et al.,
(2015). According to their observations, as the initial
concentration of E2 increases, the kinetic constant
shows a linear increase, indicating that pH values do
not significantly influence the oxidation of E2 in the
system.

k = 19.4[E2−C]− 60.15 (3)

Conclusions

The pH 10 promoted the formation of HCO−3 during
the oxidation of 17β-estradiol. The E2 oxidation
efficiencies in assays with initial concentrations of
3.5, 4.5 and 7.5 mg L−1 of E2-C at pH values of 5,

10, and 7.5 were 25.75 ± 2.43, 59.34 ± 7.32, and
64.44 ± 0.97 %, respectively. The reaction kinetics
was fitted to a first-order reaction model with linear
coefficients of determination greater than 0.9. The E2
oxidation constants were found to be independent of
the pH in the media but exhibited dependence on
the initial concentration of 17β-estradiol with a linear
behavior. The maximum oxidation constant found
was 84.3×10−3 min−1 in assays with 7.5 mg E2-C
L−1. The production of HCO−3 was found to be pH-
dependent. This due to that at pH 5, the maximum
HCO−3 -C production was 0.69 ± 0.06 mg L−1, and at
pH 10, it increased to 3.73 ± 0.21 HCO−3 -C mg L−1.
The oxidation of 17β-estradiol by the photo-Fenton
process with Fe2+/H2O2 was not inhibited for the pH
10, with the majority of the production being HCO−3 .
Therefore, the use of photo-Fenton process in real
systems emerges as a viable alternative to mitigate
the generation of greenhouse gases in wastewater
treatment plants.
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