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Abstract
Previous studies have shown that phenazines contribute to hydrocarbons (HC) transformation by Pseudomonas aeruginosa. The
rod is capable of degrading HC shortly after exposure to oil; and this study aimed to assess the effect of phenazine methosulfate
(PMS), on the removal of HC by bioaugmentation with pyocyanin-producing P. aeruginosa TGC04. Microcosms were prepared
containing fine sand and oil-contaminated beach sand (1:4). The pre-inoculum was prepared with pasteurized sand enriched with
10 µmol/L of PMS; supplemented with barley malt bagasse and incubated at 29±1°C for 10 days. Afterwards, portions of the
inoculum were added to the microcosms (1:10; 1:100 and 1:1000). The total petroleum hydrocarbons (TPH) were reduced by up
to ≈49%, while the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were reduced by ≈37 and 56%. P. aeruginosa
TGC04 preferentially degraded 4-6 ring PAHs (80-89%). The 2-3 ring PAHs were removed by up to ≈37%. In the presence of
PMS, there was a significant reduction in HC; the highest rates of degradation, however, were observed without PMS (1:100).
As a contribution, this study expands the knowledge that the hydrocarbonoclastic activity of P. aeruginosa is not increased by
addition of exogenous phenazines but favors the removal of 4-6 ring PAHs.
Keywords: Bioremediation, Allochthonous bioaugmentation, Encompassed inoculum, Phenazine Methosulphate, Polycyclic
Aromatic Hydrocarbons.

Resumen
Estudios anteriores han demostrado que las fenazinas contribuyen a la transformación de hidrocarburos (HC) por Pseudomonas
aeruginosa. La bacteria degrada el HC poco después de la exposición al petróleo. Este estudio objetivó evaluar el efecto del
metosulfato de fenazina (PMS) sobre la eliminación de HC mediante bioaumentación con P. aeruginosa TGC04 productora de
piocianina. Se prepararon microcosmos que contenían arena fina y arena de playa contaminada con petróleo pesado (1:4). El
preinóculo se preparó con arena pasteurizada enriquecida con 10 µmol/L de PMS; suplementado con bagazo de malta de cebada
e incubado a 29±1°C durante 10 días. Posteriormente se agregaron porciones del inóculo a los microcosmos (1:10; 1:100 y
1:1000). Los hidrocarburos totales de petróleo (TPH) se redujeron hasta en ≈49%, mientras que P. aeruginosa TGC04 degradó
preferentemente los hidrocarburos aromáticos policíclicos (HAP) de 4-6 anillos (80-89%). Los HAP de 2-3 anillos se eliminaron
hasta en un ≈37%. En presencia de PMS, hubo una reducción significativa de HC; Sin embargo, las tasas más altas de degradación
se observaron sin PMS (1:100). Como contribución, este estudio amplía el conocimiento de que la actividad hidrocarbonoclástica
de P. aeruginosa no aumenta con la adición de fenazinas exógenas, sino que favorece la eliminación de HAP de 4-6 anillos.
Palabras clave: Biorremediación, Bioaumentación alóctona, Inóculo abarcado, Metosulfato de fenazina, Hidrocarburos aromáticos
policíclicos.
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1 Introduction

Although different energy alternatives have been
developed and disseminated over the last few decades,
dependence on fossil fuels is still imperative in modern
society with significant leaks still a sad and dramatic
reality (Silva et al., 2021). For almost ten months
between 2019 and 2020, ≈ 5,300 tons of crude oil
were spilled approximately 3,000 km off the Brazilian
coast (Araújo et al., 2021; Lessa et al., 2021). The
oil shared similar properties to extra-heavy oil (Nobre
et al., 2022; Zacarias et al., 2021; Oliveira et al.,
2020). This accident caused multifactorial losses and
is considered the largest in the history of Brazil and
the South Atlantic (Estevo et al., 2021; Pena et al.,
2020), as well as one of the greatest disasters involving
a crude oil spill in the world, with consequences to be
felt for many decades (Anjos et al., 2023).

After a large oil spill, a change in the C:N:P
ratio can be observed at the site where the
accident occurred (Jacques et al., 2008). Exposure
to hydrocarbons promotes drastic changes in the
autochthonous microbiota (Sarkar et al., 2016) and
a hydrocarbonoclastic community later becomes
dominant (Teramoto et al., 2013). Microorganisms
are principally involved in the transformation of
hydrocarbons in nature (Dourado et al., 2017). The
option for this natural detoxification process, however,
does not seem to be the most appropriate decision
since coastal areas are very fragile areas (Disner and
Torres, 2020).

In this context, emergency intervention may
require an inoculation of high-density cells
of competent allochthonous hydrocarbonoclastic
microbes when the indigenous population is not able
to maintain efficient degradation of the contaminant
(Brzeszcz et al., 2020). Bioaugmentation is based on
the survival and maintenance of the catabolic activity
of the inoculant against petroleum hydrocarbons
(Nowak and Mrozik, 2016). The technique is very
effective in the initial stages of the process (Woź
niak-Karczewska et al., 2019). Around 70 to 75% of
petroleum hydrocarbons can be transformed within
approximately 30 up to 100 days of treatment
(Cavalcanti et al., 2019).

Due to their constitution, Gram-negative bacteria
are the most promising microbes in terms of
bioaugmentation treatment (Abena et al., 2019).
Pseudomonas aeruginosa is one of the most important
hydrocarbonoclastic bacteria (Ojewumi et al., 2018).
It is abundant in soils contaminated by petroleum
hydrocarbons, playing a key ecological role in soil

detoxification (Huang et al., 2021; Crone et al.,
2019). In addition, P. aeruginosa exhibits versatility
in physiological and metabolic terms, which results
in increased bioavailability of contaminants (Zhao
et al., 2018) and capacity to transform paraffins
(Karamalidis et al., 2010), naphthenes (Shekhar et al.,
2015), aromatics (Zhang et al., 2015) and polycyclic
aromatics (Filinov et al., 2010).

P. aeruginosa is proficient in the production
of a myriad of secondary metabolites (Depke et
al., 2020). Some of them, such as phenazines, are
synthesized under situations of environmental stress,
including nutrient-limiting conditions, exposure to
complex molecules, oxidative stress, and competition
(Arruda et al., 2019). The specific phenazine of P.
aeruginosa pyocyanin (PYO) is an important signaling
molecule in quorum-sensing systems (Gonçalves
and Vasconcelos, 2021). This property is closely
associated with the response mechanism of P.
aeruginosa to high selective pressures exerted by the
environment (Bahari et al. 2017). Given this, PYO
and other phenazines may participate in the processes
involving the degradation of oil based on the premise
that PYO acts as an electron carrier in the presence of
oxygen and in the formation of free radicals to react
with hydrocarbons (Abdelaziz et al., 2022).

Interest in the role of phenazines in hydrocarbon
transformation processes is very recent and still little
explored (Mangwani et al., 2015; Wu et al., 2014). As
an example, there are reports of the use of hexane and
toluene as substrates for the synthesis of PYO (Ozdal
et al., 2019). Additionally, the correlation between
PYO synthesis and biosurfactant production was only
first reported by Das and Ma in 2013. P. aeruginosa
grown in mineral medium produced ≈10 µg/mL of
PYO. This coincided with high emulsification indices
of three petroderivatives (60-75 %). A second strain
produced ≈5 µg/mL and reached an emulsifying index
of 25 and 40%. In addition, our group observed
that the difference of approximately 60 times in the
concentrations of PYO resulted in an increase of 65%
in the removal of pyrene and 45% of anthracene from
samples of sandy soil. Additionally, a high correlation
was observed between the synthesis of PYO and the
emulsification of a lubricating oil mixture (Viana et
al., 2018).

Therefore, the aim of this study was to
evaluate the effect of adding exogenous methosulfate
phenazine (PMS), associated with allochthonous
bioaugmentation with P. aeruginosa TGC04 on the
reduction of the total petroleum hydrocarbons (TPH)
and the 16 USEPA priority polycyclic aromatic
hydrocarbons (PAH) from oil-contaminated beach
sand.
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Table 1. Characterization of sand and barley malt bagasse samples.

Parameters
Results

ReferenceBS FS BMB

Total organic carbon (% w/w) 25,976 0.74 1,200.00 USEPA 9060
Total nitrogen (mg/Kg) 35.2 31.8 497.1 USEPA 315.2
Total phosphorus (mg/Kg) < 1 3.04 421 USEPA 365.3
Clay (%) 0.99 0.8 — ISO 13320: 2020
Silt (%) 1.29 6.4 —
Coarse sand (%) 1.86 60.1 —
Fine sand (%) 95.86 32.7 —
Water holding capacity (%) 16.2 30.1 — Cavalcanti et al. (2019)
1TPH (mg/Kg) 25,900.00 — — USEPA 8015
Gasoline (mg/Kg) < 134.00 — —
Kerosene (mg/Kg) 320 — —
Diesel (mg/Kg) 5,160.00 — —
Lubricant oil (mg/Kg) 20,400.00 — —
16 USEPA priority 2PAHs (mg/Kg) 75.83 — — USEPA 8270
Acenaphthene (mg/Kg) < 0.27 — —
Acenaphytilene (mg/Kg) < 0.27 — —
Anthracene (mg/Kg) 3.47 — —
Phenanthrene (mg/Kg) 25.6 — —
Fluorene (mg/Kg) 4.13 — —
Naphthalene (mg/Kg) 2.67 — —
Benzo[a]anthracene (mg/Kg) 7.94 — —
Benzo[a]pyrene (mg/Kg) 3.36 — —
Benzo[b]fluoranthene (mg/Kg) < 0.27 — —
Benzo[g,h,i]perylene (mg/Kg) < 0.27 — —
Benzo[k]fluoranthene (mg/Kg) < 0.27 — —
Chrysene (mg/Kg) 13.5 — —
Dibenzo[a,h]anthracene (mg/Kg) < 0.27 — —
Fluoranthene (mg/Kg) < 0.27 — —
Indeno[1,2,3, c-d]pyrene (mg/Kg) < 0.27 — —
Pyrene (mg/Kg) 13 — —
BS: oil-contaminated beach sand; FS: Uncontaminated fine sand; BMB: barley malt bagasse; 1TPH:
Total Petroleum Hydrocarbons; 2PAH: Polycyclic Aromatic Hydrocarbons

2 Material and methods

2.1 Sand and contaminant

Oil-contaminated beach sand was collected from
the foreshore of the municipality of Tamandaré
(Pernambuco, Brazil) in September 2019 and kept
stored in an open area away from access to bathers.
The sand appeared as a dense, dark and oily material.
The study also used samples of fine beach sand,
free from hydrocarbon contamination as described in
section 2.5. The physicochemical characteristics of the
sands used in this study are summarized in Table 1.
Also summarized is the characterization of barley malt
bagasse (BMB) used in the preparation of the pre-
inoculum.

2.2 Pseudomonas aeruginosa TGC04

The strain was originally recovered from sand soil
located in a gas station and is registered in the
Brazilian registry of genetic heritage and associated
knowledge (#A404D65) and in the UFPEDA
culture collection (1063B). For acclimation to the
contaminant, a suspension of the strain was prepared
in 0.85% NaCl, with turbidity standardized at an
optical density (OD) of 0.4 at 600 nm (Cawley
et al., 2019). Then, 1 mL of the suspension was
transferred to 100 mL of mineral medium, composed
of (mg/L): K2HPO4 (500); (NH4)2SO4 (500); MgSO4
(500), FeCl2 (10); CaCl2 (10); NaCl (25); MnCl2
(0.1), ZnSO4 (0.01), yeast extract (500) and two
drops of complex B solution, pH 7.2±0.2 (Del'Arco
and de França, 2001), supplemented with 10 µg/mL
PMS (Sigma-Aldrich, China) and completed with
contaminated sand 1% (w/v). The system was
incubated under shaking at 150 rpm, at 29±1°C for
5-7 days. After the oil emulsification, a new 1 mL
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aliquot was transferred to a new bottle until reaching
10% of contaminated sand (w/v).

2.3 PYO production and quantification

Two synthetic exogenous phenazines were tested:
PMS (Sigma-Aldrich China; batch #SYN1371310,
purity 90%) and phenazine (PNZ) (Sigma-Aldrich
Ukraine; batch #MKCG5144, purity 98%). The
respective stock solutions were prepared in DMSO
1%. Three concentrations were tested: 1, 5 and 10
µmol/L. The solutions were added to 20 mL of
cetrimide agar in Petri dishes and then the strain was
inoculated by spreading and incubating for 72h at
29±1ºC.

PYO quantification was performed by solid-base
extraction (Abou et al., 2018), with modifications.
Briefly, the agar was cut into small cubes and
transferred to tubes containing 20 mL of chloroform.
After stirring for 10 min, the organic phase was
separated and 10 mL of 0.2 mol/L HCl solution
was added. Followed by further stirring, the phase
containing protonated PYO (pink) was carefully
neutralized with 1.5 mol/L Tris-HCl until it turned
blue. The concentration of PYO (µg/mL) was
determined by applying the value of the OD value at
580 nm of the neutralized phase to the equation:

PYO = [OD580 − 6× 10−4 ÷ 14.026] (1)

2.4 Pre-inoculum

The pre-inoculum was prepared with adaptations to
the strategy described by Innemanová et al. (2018)
and previous findings from our group. Initially, 100
g of fine sand were pasteurized at 60ºC for 30 min
(Franco-Hernández et al., 2003). Afterwards, BMB
0.5% (w/w) was mixed with the oil-contaminated
beach sand (Oliveira et al., 2021) and 5 mL of the
inoculum (≈104 CFU/mL), prepared in MWY broth
(500 mg/L of yeast extract and mineral water quantum
sufficit) (Viana et al., 2017) added or not to 0.1 mL
of 10 µmol/L PMS. The mixture was incubated at
29±1°C for 10 days with the water content maintained
at 60-70% of water holding capacity, corrected with
sterilized distilled water (Innemanová et al., 2018).
At the end of ten days, the cell density (CFU/g) had
increased by two log units.

2.5 Bioaugmentation assay

Microcosms with a capacity of 400 mL were prepared,
filled with 200 g of pasteurized sand, distributed
in two layers: 50 g of fine sand as a base,
completed with 150 g of oil-contaminated beach sand
(Sundaram et al., 2013). Then, portions of the pre-
inoculum were transferred to the microcosms and
mixed again (inoculum:sand ratio 1:10; 1:100 and

1:1000). The microcosms were incubated at 29±1ºC
for 21 days and the residual TPH concentrations of
the 16 USEPA priority PAHs were determined by
gas chromatography coupled with mass spectrometry
using the USEPA 8015 and USEPA 8270 methods,
respectively. Abiotic losses, i.e., the percentual of
organic material degraded by non-living factors, were
known calculated in microcosm a containing the same
amount of sand, kept sterilized by adding silver nitrate
10% (m/w) (Vasudevan and Rajaram, 2001). Cell
quantification in sandy soil was performed by pour
plate and expressed in CFU/g.

2.6 Statistical treatment

All experiments were performed in triplicate and
results expressed as the mean ± standard deviation.
To verify the normal distribution of the data, the
values were analyzed using the Shapiro-Wilk test.
Homoscedasticity was tested and checked using the
Levene test and when the data did not follow
a normal distribution, the Kruskal-Wallis test was
used, followed by the Conover test, adjusted by the
Hochberg test.

3 Results

Initially, the PYO production capacity of P. aeruginosa
TGC04 was verified in the presence of exogenous
phenazines (Fig. 1). There was only PYO production
in media containing 10 µmol/L of PMS (7.37±0.10
µg/L) and PNZ (0.54±0.10 µg/L). Without addition
of exogenous phenazines, P. aeruginosa TGC04
produced 1.90±0.10 µg/L of PYO. Therefore, PMS
was chosen for the bioaugmentation assay.

The initial C:N:P ratio in microcosms at the
time of P. aeruginosa TGC04 inoculation was
100:0.1:0.003 (Table 1). After the treatment performed
to test the effect of the addition of PMS on
hydrocarbons degradation, there was a reduction
between ≈37 and 56% of the 16 USEPA priority
PAHs (abiotic loss =10%) in the ratios of the three
tested inoculum:sand samples (Fig. 2 I). There was a
preferential degradation of 4-6 ring PAHs (≈80-89%,
p=0.02) and there was no enhancement of treated
compared to microcosms without PMS (Fig. 2 III).
Benzo[a]fluoranthene was the least assimilated PAH,
while all the others were degraded, in particular,
chrysene and pyrene, the two 4-6 ring PAHs most
concentrated in the sand.

For the 2-3 ring PAHs (Fig. 2 IV), the size
of the inoculum and the presence of PMS were
important factors that influenced the removal of these
hydrocarbons, ≈14 and 38% (p=0.01). The most
prevalent 2-3 ring PAHs were phenanthrene, fluorene
and anthracene; virtually, all of them were removed.
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Figure 1. Pyocyanin production by Pseudomonas
aeruginosa TGC04 in the presence of exogenous
phenazines. Distribution other than normal (p =
0.007). Means of the triplicate different from each
other (p = 0.027). Post-hoc result according to the
Conover test: Both control (B) vs phenazine (A) and
control vs Phenazine Methosulfate (C) (p = 0.0052);
Phenazine (A) vs Phenazine Methosulfate (C) (p =
0.0002).

On the other hand, naphthalene was not transformed,
suggesting that it was not bioavailable (Table 2).
Additionally, the results with 2-3 ring PAHs (Fig. 2
IV) were similar to those observed for all of the 16
PAHs (Fig. 2 I).

TPHs were less degraded by the P. aeruginosa

TGC04 strain (abiotic loss =40%) (Fig. 2 II). Only in
the 1:100 condition without PMS was there a higher
percentage of degradation (≈50%). Additionally, the
most significant results were observed in treatments
without PMS, and the 1:100 inoculant: sand ratio
favored the greatest reduction in TPHs content.

Abiotic losses were observed at 10 and 40%,
respectively, for the 16 USEPA priority PAHs and
TPH, suggesting that P. aeruginosa TGC04 handled
the heaviest fractions of the petroleum. Additionally,
the cell density in the sand at the end of the treatment
was ≈106 CFU/g. Possibly these were not altered
because they were still in the log phase after the
inoculation.

Table 3 shows that among the microcosms
containing PMS, the 4-6 ring PAHs had the highest
daily removal rates, under conditions 1:1000 and 1:10.
Under this condition, the daily TPH removal rate
was 3.3 times higher than in the microcosms lacking
PMS. On the other hand, under conditions without
PMS, when the ratio was 1:1000, removal rate was
15.6 times higher in TPH removal when compared
to microcosms with PMS. For the 1:100 ratio, there
was a 5.8-fold difference. At this ratio, the highest
daily degradation rates of all tested hydrocarbons were
observed.

  2 
 

 
Figure 2. Effect of PMS on hydrocarbon reduction (%). Inoculum: sand ratio of 1:10 
(red), 1:100 (green) and 1:1000 (blue). (+): presence and (–): absence of PMS in the 

microcosms: I (p= 0.01); and II (p= 0.01); III (p = 0.01); IV (p= 0.02). 
 

Figure 2. Effect of PMS on hydrocarbon reduction (%). Inoculum: sand ratio of 1:10 (red), 1:100 (green) and 1:1000
(blue). (+): presence and (-): absence of PMS in the microcosms: I (p = 0.01); and II (p = 0.01); III (p = 0.01); IV
(p = 0.02).
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Table 2. Hydrocarbon reduction by Pseudomonas aeruginosa TGC04 (p = 0.02).

Treatments
∑

16 priority 1PAHs
∑

4-6 ring PAHs
∑

2-3 ring PAHs 2TPH 3PYO (µg/L)

1:10 (4PMS) 47.3±0.1 81.0±0.1 27.1±0.1 4.2±0.1
7.37±0.101:100 (PMS) 37.4±0.1 81.0 ±0.1 14.2±0.1 8.4±0.1

1:1000 (PMS) 55.8±0.1 80.9±0.1 37.8±0.1 0.6±0.1
1:10 38.4±0.1 89.1±0.1 15.6±0.1 1.3±0.1

1.90±0.100.11111111 56.4±0.1 89.1±0.1 33.5±0.1 49.0±0.1
0.73611111 50.7±0.1 89.0±0.1 23.7±0.1 9.8±0.1
1PAH: Polycyclic Aromatic Hydrocarbons; 2TPH: Total Petroleum Hydrocarbons; 3Pyocyanin. 4Phenazine
Methosulfate. (1:10; 1:100, and 1:1000: inoculum: sand ratio).

4 Discussion

4.1 Allochthonous bioaugmentation

Hydrocarbon biodegradation is a complex process that
requires metabolically capable microbes (Canul-Chan
et al., 2023). The hypothesis of this work was that
exogenous phenazines can stimulate the production
of PYO and, therefore, increase the degradation of
petroleum hydrocarbons by acting on the metabolism
of P. aeruginosa TGC04 in the presence of oil in
an oxygen-rich environment. The hydrocarbonoclastic
potential as well as the use of P. aeruginosa
in the bioremediation of oil-contaminated soils is
widespread (Suwardi et al., 2021; Wu et al., 2019).
There is very little information, however, about the
association between the degradation of hydrocarbons
and phenazines (Viana et al., 2018, Das and Ma,
2013).

After an oil spill, the increase in organic
matter in the soil caused by hydrocarbons results
in nutrient imbalance and new generations of
hydrocarbonoclastic microbes may be prevented from
growing, enabling bioaugmentation treatment (Leys et
al., 2005). The growth rate, the ability to use specific
substrates and to overcome natural competition,
however, are determining factors of the microbiota
for the positive results of bioaugmentation of
contaminated soil (Zhu et al., 2015; Duquenne et al.,
1999). New bioaugmentation models can minimize
certain limitations in this process (Fernandez et al.,
2019). Some adopted strategies, such as allochthonous
bioaugmentation, guarantee good results (Chen et al.,
2019), as demonstrated by the present study.

Bioaugmentation is not indicated for prolonged
treatments; it is an effective strategy, however, if
applied in the initial and most critical phase of the
intervention after the oil spill (Woź niak-Karczewska
et al., 2019). It is reported that PAHs can be removed
by up to 75% within 30 to 100 days by applying
bioaugmentation (Cavalcanti et al., 2019). Thus, since
the P. aeruginosa TGC04 strain removed more than
80% of 4-6 ring PAHs after 21 days, the selective use

of this microorganism is considered fundamental for
successful treatment. Brzeszcz et al. (2020) observed
a reduction of almost 87% in oil, attributing the
result to the hydrocarbonoclastic potential of this
microorganism, as well as its persistence under hostile
conditions. Because the composition of the microbiota
can vary between soil types, as well as throughout
the phases of bioremediation of oil-contaminated sites,
the most appropriate choice of an added agent is a
critical decision in the process (Radwan et al., 2019).
Therefore, the introduction of a pre-adapted microbe
increases the chances of positive results.

Pseudomonas spp. are microbes of particular
interest in bioaugmentation because they exhibit
characteristics crucial to the outcome of the process:
1) they are abundant in the soil; 2) easy to cultivate
and with a high growth rate, even in the presence of
unconventional substrates; 3) easy to manipulate and
reintroduce into the soil, and 4) have notable metabolic
versatility and production of active metabolites (Chin-
A-Wong et al., 2003). Reports in the literature are
that P. aeruginosa has crucial requirements in terms
of oil catabolism and has shown highly promising
traits during the screening of hydrocarbonoclastic
populations (Chikere and Fenibo, 2018).

Although some P. aeruginosa’s metabolites such
as PYO can alter the composition of microbial
diversity and may result in a reduction in the
percentage of hydrocarbon removal, the use of axenic
culture of P. aeruginosa produces very positive results,
no less effective than mixed cultures (Norman et
al., 2004). Ilori and Amund (2000) described P.
aeruginosa as the only microbe able to degrade
13 hydrocarbons relative to the 4 species they
investigated. Mittal and Singh (2009) observed that 4
among 20 strains of P. aeruginosa degraded 20% of
aromatic compounds in 60 days. Shekhar et al. (2014)
described the growth of P. aeruginosa in the presence
of 5 types of aromatic hydrocarbons in concentrations
of up to 5% for 10 days, observing a more that were
found to have a toxic, but not biocidal effect on the
cell. Belo-Akinosho et al. (2016) discussed that P.
aeruginosa best contributed to the return of fertility of
agricultural soils contaminated by hydrocarbons (ratio
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Table 3. Daily hydrocarbon removal rate (p= 0.01).

Treatments
Degradation rate (±0.10 mg/Kg)∑

16 priority 1PAHs
∑

2-3 ring PAHs
∑

4-6 ring PAHs 2TPH

1:10 (3PMS) 2.25 1.29 3.86 0.2
1:100 (PMS) 1.78 0.68 3.86 0.4
1:1000 (PMS) 2.66 1.8 3.85 0.03

1:10 1.82 0.74 4.24 0.06
0.11111111 2.69 1.6 4.24 2.33
0.73611111 2.41 1.13 4.23 0.47

1PAH: Polycyclic Aromatic Hydrocarbons; 2TPH: Total Petroleum Hydrocarbons; 3PMS: Phenazine
Methosulfate

inoculum:sand 1:20 and 1:200), among 44 isolates
tested.

In the present study, a high rate of daily
degradation of PAHs by P. aeruginosa TGC04
was observed. This occurred possibly because the
inoculum remained longer in the stationary phase
of bacterial growth as it uses different alternative
metabolic pathways that interact with the basic
core metabolism (Frimmersdorf et al., 2010). As
a result, the inoculant can tolerate more toxic
compounds in the oil, such as 4-6 ring PAHs, and
these molecules commonly become preferred carbon
sources (Vasconcelos et al., 2013). Karamalidis et al.
(2010), unlike our study, observed a preference for 3
ring PAHs; only from the 21st day onwards, the other
PAHs began to be degraded. On the other hand, Salam
et al. (2011) found that two strains of P. aeruginosa
degraded 90-92% of different hydrocarbons in 21
days, demonstrating more affinity for pyrene and
crude oil; a daily removal rate of 4.32 to 4.38% was
achieved, values approximate to what we found in our
study with the 4-6 ring PAHs (Table 3).

The degradation of more recalcitrant molecules,
such as 4-6 ring PAHs, may occur via cometabolism,
where bioavailable 4 ring PAHs or 2-3 ring PAHs
can be used as the cosubstrate (Vasconcelos et al.,
2013). The degradation rate of PAHs is greater when
contamination occurs in mixtures of PAHs. Sawulski
et al. (2015) observed that within 20 days, the
assimilation of phenanthrene had contributed to the
removal of fluoranthene. Similarly, benzo[a]pyrene
was removed in the presence of 4 ring PAHs. The
4-6 ring PAHs are more toxic than the 2-3 ring
PAHs, but the induction of enzymes that degrade
the heavier hydrocarbons may serve to remove the
lighter hydrocarbons. This phenomenon has been
described for treatments using pure cultures (Sawulski
et al., 2015). Silva et al. (2009) observed that after
12 weeks (abiotic loss =20%), pyrene was rapidly
consumed and participated in the removal of > 5 ring
PAHs. On the other hand, although more naphthalene,
anthracene and phenanthrene were removed than the
4-6 ring PAHs, they found residual concentrations of
naphthalene. This was also observed in the present

study, an event attributed to the fact that this compound
had become less bioavailable.

Innemanová et al. (2018) described a 72%
reduction of 5-6 ring PAHs in 4 months. As also
observed in the present work, the more concentrated
inoculant generated the least positive results in terms
of degradation. This was because the inoculum was
poor, but the authors were unable to explain its
mechanism. In another investigation, it was found that
there was no difference between free or encapsulated
inoculum of the P. aeruginosa Spet strain since, in
both cases, the PAHs were reduced by up to 89%
within 191 days (Karamalidis et al., 2010). This shows
that the methodology used in the present study was
economical.

TPHs on the other hand, were not consumed in the
same proportion as the PAHs; our findings, however,
were similar to a 90-day study that assessed the
addition of surfactant and the moisture content for
stimulating growth of the autochthonous microbiota
and favor the removal of TPH in biopile systems
(Cisneros-de la Cueva et al., 2024). On the other hand,
Haghollahi et al. (2016) found a 70% reduction in
TPH in sandy soil only after 270 days. The authors
assumed that the result obtained was c aused by
the fact that TPHs degradation rates are higher in
sandy soils since sand is a porous soil system, which
facilitates oxygen transfer as well as microbe access to
the pollutant. In pores < 3 mm, however, this property
practically disappears. Given this, we assume that the
lower degradation of TPHs in the present study was
due to the characteristics of the oil mass encrusted in
the agglomerates. The chemical complexity of extra-
heavy crude oil is an even greater challenge due
to the low availability of hydrocarbons. It is worth
noting that P. aeruginosa TGC04 achieved 50% TPHs
reduction in a significantly shorter time than previous
studies (Haghollahi et al., 2016; Lladó et al., 2012).

4.2 Role of phenazines

Beach sands are sites where microbiota plays a key
role in the balance of the coastal ecosystem (Disner
and Torres, 2020). Oil contamination drastically
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changes the C:N:P ratio of the soil and in response to
nutritional stress, P. aeruginosa synthesizes different
phenazines using intracellular levels of ATP (Özcan
and Kahraman, 2015). In addition to generating
energy for the cell, phenazines confer a selective
growth advantage to their producers (Blankenfeldt et
al., 2004). This contributes to phenazine-producing
microbes, such as P. aeruginosa, becoming dominant
following an oil spill episode (Norman et al., 2004).

Phenazines participate in biological fitness
regulation across species (Fitzpatrick, 2009) and
protect cells from hydrocarbon toxicity, through
different mechanisms (Costa et al., 2015). PYO is
the main phenazine produced by P. aeruginosa, and
although there is no correlation between pigment
synthesis and resilience, the strains that produce
the most PYO appear to be more significantly
resistant to toxic compounds (Finlayson and Brown,
2011). In addition, the mechanisms by which PYO
participates in the transformation of hydrocarbons
have not yet been fully revealed. Two hypotheses
have been proposed: the first involves the generation
of reactive oxygen compounds that react with
hydrocarbon molecules (Jabĺ oń ska et al., 2023).
The second hypothesis attributes to PYO the role of a
terminal signaling factor in the quorum sensing of P.
aeruginosa. This acts in the synthesis of biosurfactants
that increase the oil contact area, its assimilation and
metabolization into intermediates of the citric acid
cycle, important for biomass production. and energy
(Dietrich et al., 2006). In addition, the sugars required
in the process come from the gluconeogenesis process
(Das and Chandran, 2011).

PYO also participates in the formation of biofilms
that protect P. aeruginosa from the toxic effects
of hydrocarbons (Das et al., 2013). Biofilm growth
depends on iron and redox active compounds such as
phenazines can increase Fe2+ bioavailability (McRose
et al., 2023). Iron is usually found in coastal areas
and it acts as a barrier retaining and accumulating
chemical species such as phosphorus (Charette and
Sholkovitz, 2002). Furthermore, the limestone content
of sand helps in the deposit and transport of iron,
providing a scenario that enables microbe survival. It
is important to note that a previous study had identified
the iron content in the accident affected area as circa
5,000 mg/kg (Mirlean et al., 2013).

PMS was added to make phenazine available
at the beginning of pre-inoculum growth, as well
as to stimulate PYO production by P. aeruginosa
TGC04. The introduction of an exogenous phenazine
redox mediator was used because, in the log phase
of bacterial growth, the production of phenazines is
low due to catabolic repression resulting from the
depletion of C and N sources; as well, there is a switch
from planktonic to sessile lifestyle (Denning et al.
2003). PMS is an analogue of the PYO intermediate 5-

methyl phenazine-1-carboxylic acid (5-Me-PCA), and
in low concentrations it is non-toxic, enabling the
development of colonies, tolerance to hydrocarbons
and the formation of biofilms of P. aeruginosa in
oxygen-limited environments (Sporer et al., 2018).

The function of PMS is to serve as a primary
electron acceptor in a redox reaction, resulting in the
generation of superoxide anion (O2·) and hydroxyl
radical (·HO) (Jahn et al., 2020). These free radicals,
in addition to reducing intracellular NAD(P)H into
NAD(P) (Yamaki and Muratsubaki, 2012), can also act
on sensitive cells, reducing the growth of competitors
(Wang and Coates, 2017).

Free radicals promote nucleophilic attack on
hydrocarbons, especially aromatic and condensed
aromatic ones, destabilizing the molecule (Unglaube
et al., 2020). This may explain the greater reduction
in PAH relative to TPHs. Our results supported this
hypothesis, which should be further investigated in
future work. Free radicals are products generated in
aerobic processes in P. aeruginosa. A redox cycle
mediated by NADPH is regulated by phenazines,
reducing the redox destructive potential of free
radicals. Therefore, PYO also regulates primary
metabolism during the log phase of P. aeruginosa
growth and keeps the cell stable in the environment,
prolonging the stationary phase. The added PMS may
have promoted nucleophilic attack on hydrocarbons
and possibly increased oxidative stress. In order to
neutralize the free radicals formed, P. aeruginosa
TGC04 may have used PMS as an electron acceptor
for NADPH, thus obtaining the means to guarantee
biomass and energy production.

Additionally in soil systems, residual phenazines
are degraded by some amidase-producing
autochthonous microorganisms under aerobic and
anaerobic conditions (Zhu et al., 2023). These
enzymes participate of the breakdown of amide
bonds and may form products with little or no
toxicity (Kapitanov et al., 2023). Amidase is
one of the representative groups of hydrolases
necessary for ring cleavage in the biodegradation
of oil by hydrocarbonoclastic microorganisms
(Ramdass and Rampersad, 2023). Thus, further
studies with consortia may unveil whether exogenous
phenazines are effective in hydrocarbon-contaminated
soil bioremediation in terms of optimization of
bioaugmentation and reduction of abiotic losses.

Conclusion

In summary, P. aeruginosa is a species with high
potential for use as a bioremediation agent for sandy
soil systems polluted with heavy crude petroleum.
The addition of exogenous PMS did not enhance
the hydrocarbonoclastic activity of P. aeruginosa
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TGC04, in terms of reducing PAHs and TPHs, nor
did it accelerate the biodegradation process. The most
dramatic observation of the present work was the
fact that PMS participated in the removal of 4-6 ring
PAHs and to a lesser extent in removal of TPHs,
which contains many other heavy chain hydrocarbon
fractions, but not those composed of aromatic or
polycyclic compound. Overall, these results cannot be
used to predict field performance, but they indicate
that the best approach to remove PAHs appears to
be allochthonous bioaugmentation, stimulating PYO
production.
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BMB Barley Malt Bagasse
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PAHs Polycyclic Aromatic Hydrocarbons
PMS Phenazine Methosulphate
PNZ Phenazine
PYO Pyocyanin
TPH Total Petroleum Hydrocarbons
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