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Abstract
Lead recovery from sulfides is traditionally associated with pyrometallurgical processes that involve elevated capital costs
and the generation of harmful gases that, if not adequately treated, can cause severe environmental damage. For this reason,
alternative methods are needed for lead recovery from this type of mineral. A hydrometallurgical approach could permit the use
of environmentally friendly organic reagents, citrate in this case, to leach lead from galena in neutral media. The effects of pH, the
mineral/solution ratio, and the hydrogen peroxide concentration as an oxidant in lead leaching at room temperature were studied.
The results show that, at low citrate to lead ratios (~2) and a H2O2/Pb ratio between 2.3 and 2.5, complete lead dissolution is
possible, due to the formation of soluble sulfur oxyanion species (S4O6

2-, SO3
2-, S2O3

2-) in the near-neutral solutions. The
proposed system limits the irreversible oxidation of sulfur species, liberated during galena leaching, to the sulfate ion (SO4

2-),
which decreases the solubility of lead in solution.
Keywords: Galena leaching, Citrate, Sulfur species, Lead, Neutral media.

Resumen
La recuperación de plomo a partir de sulfuros se asocia tradicionalmente a los procesos pirometalúrgicos que implican costos
elevados de capital y la generación de gases nocivos que, si no se tratan adecuadamente, pueden causar graves daños ambientales.
Por esta razón, se necesitan métodos alternativos para la recuperación de plomo a partir de este tipo de minerales. Un enfoque
hidrometalúrgico podría permitir el uso de reactivos orgánicos respetuosos con el medio ambiente, en este caso el citrato,
para lixiviar el plomo a partir de galena en medio neutro. Se estudiaron los efectos del pH, la relación mineral/solución y
la concentración de peróxido de hidrógeno como oxidante en la lixiviación de plomo a temperatura ambiente. Los resultados
muestran que, a bajas relaciones entre citrato y plomo (~2) y una relación H2O2/Pb entre 2.3 y 2.5, es posible la disolución
completa del plomo, debido a la formación de especies solubles de oxianiones de azufre (S4O6

2-, SO3
2-, S2O3

2-) en soluciones
cercanas a la neutralidad. El sistema propuesto limita la oxidación irreversible de especies de azufre liberadas durante la
lixiviación de galena al ion sulfato (SO4

2-), el cual disminuye la solubilidad del plomo en solución.
Palabras clave: Lixiviación de galena, Citrato, Especies de azufre, Plomo, Medio neutro.
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1 Introduction

Lead has various applications due to its resistance,
density, and reactivity; it is used in the manufacture
of containers for the discharge of radioactive material
and recently in lead phosphate glass, vanadyl glass,
batteries, alloys in the form of tetraethyl lead, and
lead silicate (Rammah et al., 2020). Unfortunately,
its presence is a significant problem in public health
(O'Connor et al., 2018). Global lead mine production
in 2022 was led by China with more than two million
tons, leaving Australia in second place and the Latin
countries with a production of less than 25%. The
largest reserves of this metal are in Australia, followed
by China with 37 and 12 million tons, respectively
(USGS, 2023).

Lead represents 0.0013% of the earth's crust and is
commonly found in nature as galena (PbS), anglesite
(PbSO4), and cerussite (PbCO3), although galena is
the principal mineral for lead extraction. Depending
on its formation process, it can contain traces
of silver, copper, zinc, cadmium, antimony, and/or
arsenic. Traditionally, lead has been obtained by
concentration processes, such as flotation. However,
because lead is associated with other sulfides and
oxides, processing the ore leads to low recovery
(Javadi Nooshabadi and Rao, 2016). To adequately
separate the mineral of interest, a prior ultrafine
grinding process may be carried out (Zhang et al.,
2019). Once the concentrate is obtained, the recovered
lead goes to a new concentration and refining process
by pyrometallurgy, which can produce volatile ash
and generate environmental problems if not handled
properly. Despite those drawbacks, this process
predominates in lead recovery from ores as well as
in recycling (Chen et al., 2016; Tang et al., 2019).
Lead sulfide is one of the most insoluble lead minerals
with a solubility product (Kps) of 10-28.3; however,
in highly oxidizing environments the sulfide oxidizes
to sulfate, releasing only a small part of the lead
into solution (Hsieh and Huang, 1989), since the
Kps of PbSO4 is 10-6.2. The practical consequence
is that when the sulfate concentration is increased in
the solution, the free lead ion (Pb2+) concentration
decreases.

Lead solubility can be improved by forming
soluble complexes with inorganic and organic ligands.
Investigations into the recovery of lead through
hydrometallurgical routes have been reported using
ultrasound-assisted leaching and chlorides (John et
al., 2020; Xie et al., 2022), direct electrolysis
from chlorides (Fan et al., 2021), alkaline media
(Seyed Ghasemi and Azizi, 2018), nitric acid (Oh
et al., 1999; Kim et al., 2017; Ichlas et al.,
2020), trichloroacetic acid (Adebayo Albert et al.,
2021), acetic acid (Osasona et al., 2021), chloride
(Kobayashi et al., 1990; Wang et al., 2003; Adebayo
and Olasehinde, 2015; Wang et al., 2015; Nikkhou
et al., 2020) and some organic agents such as
ethylenediaminetetraacetic acid, EDTA (Smaniotto et
al., 2009; Cheikh et al., 2010), citric acid (Arwidsson
et al., 2010; Kumar, 2017), sodium citrate (Zárate-
Gutiérrez and Lapidus, 2014; Zárate-Gutiérrez et al.,
2015; Solís-Marcial et al., 2022), among others.

Citrate (cit) is an organic ion used in the
pretreatment of gold-bearing minerals and materials
because of its effectivity in removing certain base
metal phases, such as those of copper and lead,
from the system before the gold leaching process
with thiourea (Torres and Lapidus, 2020; Segura-
Bailón and Lapidus-Lavine, 2023); it can also be
used in recycling lead from discarded car batteries
(Sonmez and Kumar, 2009a) and lead recovery from
oxidized minerals such as anglesite (Zárate-Gutiérrez
and Lapidus, 2014). Citrate leaching is an attractive
alternative because it forms stable complexes with lead
(Table 1), although at temperatures above 30°C, citrate
can be degraded (Torres et al., 2018).

Figure 1 shows the predominance zones of the
complexes formed between citrate and lead with
respect to the pH and potential of the system. However,
an oxidizing medium is necessary to transform the
sulfide ion, allowing the formation of Pb-complexes;
this can be achieved with the addition of hydrogen
peroxide (H2O2). It is important to mention that
the figure does not consider the maximum sulfate
concentration because this investigation presents the
identification of sulfur species released during galena
leaching. However, the predominance zone of the
principal lead complex (Pb(cit)2

4-) does not change
significantly in the pH range of 6-8 contemplated in
this study.

Table 1. Thermodynamic constants for the reactions of the Pb-citrate system at 25 ºC.

Reaction Log K Reference Ec.

Pb2+ + 2cit3- = Pb(cit)2
4- 6.84 Puigdomenech (2004) (1)

Pb2+ + cit3- = Pb(cit)- 4.44 NIST (2004) (2)
Pb2+ + H+ + cit3- = Pb(Hcit) 8.30 NIST (2004) (3)
Pb2+ + 2H+ + cit3- = Pb(H2cit)+ 11.14 NIST (2004) (4)
Pb2+ + H+ + 2cit3- = Pb(Hcit)(cit)3- 10.61 NIST (2004) (5)
2Pb2+ + 2cit3- = Pb2(cit)2

2- 10.70 NIST (2004) (6)
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Figure 1. Eh-pH diagram for the Pb-cit system at 25°C. Total Pb and citrate concentrations: 112 
0.01 and 0.2 M, respectively.  113 
 114 
Some investigations show the effects of the citrate concentration, pH, temperature, and 115 
solid/liquid ratio for lead leaching. For anglesite (PbSO4) leaching with 0.1 M citrate from 116 
pH of 3 to 7, lead recovery increased from 10.5% to 94%, respectively, related to the 117 
formation Pb(cit)24-. In the pH range 8 to 10, the recovery decreased to 60% due to lead 118 
hydroxide formation. As the ratio S/L increased to 30 g/L, the extraction declined to <70% 119 
due to solution saturation (Zárate-Gutiérrez and Lapidus, 2014). 120 
 121 
Although the citrate ion is necessary to increase lead dissolution, its concentration is also an 122 
important factor since excess citrate has been shown to decrease lead dissolution due to the 123 
formation of solid lead citrate (Sonmez and Kumar, 2009b). This behavior was observed with 124 
galena, as well as with recycled lead-acid batteries (Villa et al., 2018). 125 
 126 
On the other hand, lead dissolution from the oxidation of a Pb-Ag-Zn sulfide concentrate is 127 
limited by the low solubility of lead sulfate (Zárate-Gutiérrez et al., 2015). The sulfide ions, 128 
liberated into solution from galena, and other reactive sulfides, have only been studied during 129 
the cyanidation process in the presence of sulfide minerals (Hewitt et al., 2009); in other 130 
systems, such as in citrate leaching, the identification of sulfur species has not been 131 
undertaken, despite the fact that their presence is relevant in lead leaching because some 132 
species can suppress its solubility. The present study offers an option to recover lead in a 133 
neutral to slightly alkaline medium with a low concentration of citrate (0.2 M) as a 134 
complexing agent and hydrogen peroxide as an oxidant; the effects of hydrogen peroxide 135 
concentration, pH, and solid/liquid ratio and the species of sulfides liberated from galena 136 
were determined in the leaching system at 25°C. 137 
 138 
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Figure 1. Eh-pH diagram for the Pb-cit system at 25°C.
Total Pb and citrate concentrations: 0.01 and 0.2 M,
respectively.

Some investigations show the effects of the citrate
concentration, pH, temperature, and solid/liquid ratio
for lead leaching. For anglesite (PbSO4) leaching
with 0.1 M citrate from pH of 3 to 7, lead recovery
increased from 10.5% to 94%, respectively, related
to the formation Pb(cit)2

4-. In the pH range 8 to 10,
the recovery decreased to 60% due to lead hydroxide
formation. As the ratio S/L increased to 30 g/L, the
extraction declined to <70% due to solution saturation
(Zárate-Gutiérrez and Lapidus, 2014).

Although the citrate ion is necessary to increase
lead dissolution, its concentration is also an important
factor since excess citrate has been shown to decrease
lead dissolution due to the formation of solid lead
citrate (Sonmez and Kumar, 2009b). This behavior
was observed with galena, as well as with recycled
lead-acid batteries (Villa et al., 2018).

On the other hand, lead dissolution from the
oxidation of a Pb-Ag-Zn sulfide concentrate is
limited by the low solubility of lead sulfate (Zárate-
Gutiérrez et al., 2015). The sulfide ions, liberated
into solution from galena, and other reactive sulfides,
have only been studied during the cyanidation process
in the presence of sulfide minerals (Hewitt et al.,
2009); in other systems, such as in citrate leaching,
the identification of sulfur species has not been
undertaken, despite the fact that their presence is
relevant in lead leaching because some species can
suppress its solubility. The present study offers an
option to recover lead in a neutral to slightly
alkaline medium with a low concentration of citrate
(0.2 M) as a complexing agent and hydrogen
peroxide as an oxidant; the effects of hydrogen
peroxide concentration, pH, and solid/liquid ratio and
the species of sulfides liberated from galena were
determined in the leaching system at 25°C.

2 Experimental

2.1 Mineral characterization

The mineral sample was obtained from a Mexican
mineral processing plant in the state of Zacatecas-
Mexico. The size fraction -53/+44 µm (-270/+325
mesh) was employed. The lead, iron, and copper
contents were determined by atomic absorption
spectrometry (Varian SpectrAA 220FS) after acid
digestion with aqua regia, and the mineralogical
species present in the sample were identified by X-ray
diffraction (D8 Advance) in the range of 2°-90° for a
2θ angle at a speed of 8°/min.

2.2 Materials and equipment

All solutions were prepared with chemical
grade reagents, deionized water, sodium citrate
(NaH2(C3H5O(COO)3), 99%), hydrogen peroxide
(H2O2, 30%), hydrochloric acid (HCl, 36%),
nitric acid (HNO3, 76%), sulfuric acid (H2SO4,
98%), sodium hydroxide (NaOH, 97%), potassium
permanganate (KMnO4, 99%).

For the leaching system, a mechanical stirrer
(Caframo BDC-250) at 600 RPM was used, coupled
to a heating system with a Thermo-super nova 20536
hotplate to maintain a constant temperature. The
control of the temperature, pH, and ORP was carried
out with the multiparameter meter, Hanna S5521. The
leaching system and the sampling were carried out
in a Pyrex® glass reactor with a plastic lid where
the electrodes were mounted to monitor the system
stability.

The experimental conditions to evaluate the effects
of pH, solid/liquid ratio, and H2O2 concentration on
lead leaching with sodium citrate are presented in
Table 2; these were selected on the basis of a previous
thermodynamic analysis of sulfur species distributions
(not shown here). The pH was regulated with dilute
sulfuric acid and sodium hydroxide; samples were
taken during the leaching process at a set time, and
all were analyzed by atomic absorption spectrometry.

Peroxide quantification was performed through
titration (T0) of 1 mL of the test solution (filtered leach
solution) with 25 mL of deionized water and 5 mL of
9 M H2SO4.

Table 2. Conditions for PbS leaching tests.

Parameter Range

Temperature, °C 25
pH 6, 7, 8
NaH2(C3H5O(COO)3), M 0.2
H2O2, M 0.019, 0.078, 0.097
Mineral/Solution, g/L 3, 5, 10, 30

www.rmiq.org 3
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The titration solution consisted of 0.004 M
potassium permanganate, and the endpoint was
indicated by a change to a faint pink color.

For the determination of the sulfur species released
during the leaching of galena, an iodometric titration
system was implemented in an acid medium to
quantify the species such as sulfide (S2-), thiosulfate
(S2O3

2-) and sulfite (SO3
2-), and the quantification

of tetrathionate (S4O6
2-) with permanganate, on the

other hand, the determination of sulfate (SO4
2-)

by turbidimetry (Clesceri et al., 1999). Therefore,
four independent titrations were carried out on each
aliquot from the leaching. The first titration (T1)
allows the quantification of intermediate sulfur species
(S2-, S2O3

2-, SO3
2-), in a second titration (T2)

zinc acetate (Zn(CH3COO)2) is added in order to
mask S2- (Wasserlauf and Dutrizac, 1982; Kohr,
1997) and the concentration of S2- is determined
by difference from the previous titrations (S2- =

T1 (S2-, S2O3
2-, SO3

2)-T2(S2O3
2-, SO3

2-)), the third
titration (T3) was implemented to the determination
of thiosulfate with Zn(CH3COO)2 and formaldehyde
(CH2O) to masks S2- and SO3

2-, respectively (Kilroy,
1979; Rolia and Barbeau, 1980), the concentration
of sulfite is determinate by difference (T2-T3).
The quantification of tetrathionate (S4O6

2-) and
polysulfides (Sx

2-) are determinate like S4O6
2- (T4)

with permanganate due to its oxidizing power, it
oxidizes all intermediate species, including S4O6

2-

(Miura et al., 1991), and tetrathionate is determined
by the difference in the concentration of intermediate
sulfide (S4O6

2-= T4(S4O6
2-, S2-, S2O3

2-, SO3
2-)-

T1(S2-, S2O3
2-, SO3

2-). Finally, the concentration of
SO4

2- was determined by turbidimetry (Clesceri et
al., 1999), and a balance between Pb concentration
and total sulfur species in solution corroborates the
concentration of all sulfides. It is important to mention
that before the quantification of sulfur species, the
solution was heated and filtered to eliminate the
remaining H2O2 (Takagi and Ishigure, 1985). The
concentration of H2O2 is determined by the difference
between the solution from the leaching (To) and T4.

Thermodynamic modeling Eh-pH diagram for
system S-H2O was performed using the database
of thermodynamic software HSC Chemistry v.
6.1, and the equilibrium speciation diagrams were
constructed using the software Medusa Chemistry
(Puigdomenech, 2004).

3 Results

3.1 Characterization of the mineral

X-ray diffraction of the sample revealed that galena
(PbS, 01-0880) was the principal mineral phase
(Figure 2). On the other hand, chemical analysis
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Figure 2. X-ray diffractogram of the mineral sample. 204 

Table 3. Chemical composition of the mineral sample. 205 
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Pb 69.87 
Cu 0.28 
Fe 0.18 

3.2. Citrate leaching 206 

Leaching tests were performed to dissolve lead, evaluating different values of pH, 207 
hydrogen peroxide concentration, and the solid/liquid ratio. 208 

3.2.1 pH effect 209 

Figure 3 shows the results of the leaching tests, where it is observed that, as the pH 210 
increases from pH 6 to 8, there is only a slight difference in the amount of lead dissolved 211 
at a solid/liquid ratio of 3 g/L in 0.097 M of H2O2 after 15 minutes. At shorter times, a 212 
slight increase in the lead dissolution rate can be noted for the most alkaline pH (pH 8). 213 
The lead dissolution rate for the three cases is high, where more than 90% extraction is 214 
attained after 5 minutes and complete dissolution at 20 minutes. 215 
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Figure 2. X-ray diffractogram of the mineral sample.

Table 3. Chemical composition of the mineral sample.

Composition (%)

Pb 69.87
Cu 0.28
Fe 0.18

showed that the lead, copper, and iron content was
69.87, 0.28, and 0.18%, respectively (Table 3).

3.2 Citrate leaching

Leaching tests were performed to dissolve lead,
evaluating different values of pH, hydrogen peroxide
concentration, and the solid/liquid ratio.

3.2.1 pH effect

Figure 3 shows the results of the leaching tests, where
it is observed that, as the pH increases from pH 6
to 8, there is only a slight difference in the amount
of lead dissolved at a solid/liquid ratio of 3 g/L in
0.097 M of H2O2 after 15 minutes. At shorter times, a
slight increase in the lead dissolution rate can be noted
for the most alkaline pH (pH 8). The lead dissolution
rate for the three cases is high, where more than 90%
extraction is attained after 5 minutes and complete
dissolution at 20 minutes.
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Figure 3. Lead dissolution at different pH values, 3 g/L of 0.2 M citrate, 0.097 M H2O2 at 217 
25°C. 218 
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3.2.2 Effect of the solid/liquid ratio 220 

The variation of the amount of mineral with respect to the volume of the citrate-H2O2 solution 221 
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dissolution rate rises as the pH increases from pH 6 to pH 8; at a more alkaline pH, leached 224 
lead is greater than 95% after only 20 min; however, when the S/L ratio is increased to 30 225 
g/L, lead dissolution decreases to 10, 17 and 37% at pH 6, 7 and 8, respectively (Figures 4a, 226 
4b, and 4c). 227 
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Figure 4. Lead recovery at different S/L ratios (3, 5, 10, and 30 g/L), 0.2 M citrate, and 0.097 229 
M H2O2 at different pH values: a) pH 6, b) pH 7, and c) pH 8. 230 
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Figure 4. Lead recovery at different S/L ratios (3, 5,
10, and 30 g/L), 0.2 M citrate, and 0.097 M H2O2 at
different pH values: a) pH 6, b) pH 7, and c) pH 8.

3.2.2 Effect of the solid/liquid ratio

The variation of the amount of mineral with respect
to the volume of the citrate-H2O2 solution on lead
dissolution was studied (Figure 4). In Figures 4a,
4b, and 4c, for a solid-liquid ratio of 10 g/L, the
behavior is similar to that presented in the previous
section, where the lead dissolution rate rises as the pH
increases from pH 6 to pH 8; at a more alkaline pH,
leached lead is greater than 95% after only 20 min;
however, when the S/L ratio is increased to 30 g/L,
lead dissolution decreases to 10, 17 and 37% at pH 6,
7 and 8, respectively (Figures 4a, 4b, and 4c).

As may be noted, low recoveries were obtained for
the highest S/L ratio (30 g/L) at the three pH values;
this behavior is related to the concentration of the
oxidant in the system. For 3, 5, and 10 g/L ratios,
lead concentrations of 0.010, 0.017, and 0.034 M are
attained with a peroxide concentration of 0.097 M,
representing 100% extraction. However, with 30 g/L
the maximum Pb concentration would be 0.101 M,
while only 37% of the extraction is reached (Figure
4c). At all three pH, the conversion of galena reached
a stable value in less than 5 minutes.

This behavior is related to the peroxide-galena
stoichiometry, which is dependent upon the oxidation
of the sulfur species released during this process.
Figure 5 shows the Eh-pH diagram for the metastable
S-H2O system, showing the metastable species
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present, such as thiosulfate (S2O3
2), tetrathionate

(S4O6
2-), and sulfite (SO3

2- ); the stable species such
as HSO4

- and SO4
2- have been omitted.

The metastable species shown in Figure 5 can
be related to galena leaching. The formation of each
sulfur species resulting from the oxidation of galena
and the relationship between H2O2/PbS leached are
presented in Table 4. These ratios could indicate the
degree to which sulfur is oxidized, in the absence
of auto-decomposition or consumption by competing
metal sulfides. In any event, values of H2O2/PbS
leached lower than 4 indicate that the sulfur does not
completely oxidize to the sulfate ion; this situation
is advantageous since PbSO4(s) has an extremely low
solubility (10-6.2) and PbS (10-28.3), as was mentioned
earlier.

Table 5 shows the relationship between the initial
lead present in the galena and solution at the different
(S/L) ratios (3, 5, 10, and 30 g/L) at 0.097 M
peroxide; in these conditions, there are H2O2/Pb°
ratios of 9.7, 5.7, 2.9 and 1.0, respectively for each
S/L ratio. Considering the reactions in Table 4, it
is crucial that the H2O2/Pb ratio be less than three
and greater than two to avoid irreversible oxidation
of sulfide to sulfate and the formation of elemental
sulfur, respectively. Therefore, a ratio between 2 to 3
promotes the formation of reversible sulfur oxyanion
species S2O3

2-, S4O6
2- and SO3

2-. For the H2O2/Pb°

ratio of 2.9 (S/L=10 g/L in this case), these species
are prevalent (see below); the other relations show
an unfavorable behavior because 3 and 5 g/L imply
H2O2/Pb° ratios above four, and 30 g/L relationship
suggest a value less than one.

These relationships were corroborated by
quantifying the consumption of hydrogen peroxide,
presented in Table 5, determined by titration. Except
in limited cases, the (H2O2 consumed/Pb leached)
ratio is less than 4, even though H2O2 is still present
in the solution after 45 minutes; this may indicate
that sulfur transformations to higher oxidation states
get slower as the pH and solid/liquid ratio increase
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(ratio H2O2/Pb > 2). It is interesting to note that at
pH 8, H2O2 is almost completely consumed at 10
and 30 g/L. The predictions of products of sulfide
ion oxidation from PbS shown in Table 5 are verified
by the determination of the sulfur species by titration
(Figure 6), where tetrathionate predominates under all
conditions.

For these four scenarios, the H2O2/PbS ratio ~ 2.3
is the most favorable option for the leaching system
because the tetrathionate ion can act as oxidant in a
reversible reduction to thiosulfate; a similar effect is
observed for sulfite (Druschel et al., 2003).

3.2.3 Effect of H2O2 concentration

To evaluate the effect of H2O2 and the ratio
H2O2/Pb necessary for galena leaching, avoiding the
irreversible oxidation to sulfate, four concentrations of
H2O2 were used (0.097, 0.078, and 0.019 M), 0.2 M
citrate at 25°C. In Figure 7, lead recovery decreases
as the peroxide concentration decreases; this behavior
is related to the ratio H2O2°/Pb° required for lead
leaching and irreversible sulfide oxidation (below 3
and above 2).

Table 4. Ratio of H2O2/PbS for reactions present in the system PbS-Cit-H2O2.

Reaction Ratio H2O2/PbS Ec.

2PbS + 9H2O2 + 4cit3- + 2H+ = 2Pb(cit)2
4- + S2O8

2- + 10H2O 4.5 (7)
PbS + 4H2O2 + 2cit3-= Pb(cit)2

4- + SO4
2- + 4H2O 4.0 (8)

2PbS + 7H2O2 + 4cit3- + 2H+ = 2Pb(cit)2
4- + S2O6

2- + 8H2O 3.5 (9)
PbS + 3H2O2 + 2cit3-= Pb(cit)2

4-+ SO3
2- + 3H2O 3.0 (10)

4PbS + 9H2O2 + 8cit3- + 6H+ = 4Pb(cit)2
4- + S4O6

2- + 12H2O 2.3 (11)
2PbS + 4H2O2 + 4cit3- + 2H+ = 2Pb(cit)2

4- + S2O3
2- + 5H2O 2.0 (12)

PbS + H2O2 + 2cit3- + 2H+= Pb(cit)2
4- + S0 + 2H2O 1.0 (13)

Table 5. H2O2 concentration consumed at different S/L ratios with an initial concentration of 0.097 M H2O2.
pH Ratio S/L, Initial Pb, Ratio Dissolved Pb Consumption H2O2 Experimental ratio, Species

g/L M H2O2/Pb M M % H2O2 consumed/Pb dis

6 3 0.01 9.7 0.010 0.041 41.8 4.1 SO4
2-

5 0.017 5.7 0.017 0.07 72.6 4.1 SO4
2-

10 0.034 2.9 0.034 0.079 81.2 2.3 S4O6
2-

30 0.101 1.0 0.010 0.057 58.4 5.7 SO4
2-

7 3 0.01 9.7 0.010 0.041 41.8 4.1 SO4
2-

5 0.017 5.7 0.017 0.07 71.8 4.1 SO4
2-

10 0.034 2.9 0.033 0.076 78.6 2.3 S4O6
2-

30 0.101 1.0 0.017 0.054 55.2 3.1 S2O6
2-/SO3

2-

8 3 0.01 9.7 0.010 0.041 41.8 4.1 SO4
2-

5 0.017 5.7 0.017 0.069 70.9 4.0 SO4
2-

10 0.034 2.9 0.034 0.079 81.2 2.3 S4O6
2-

30 0.101 1.0 0.038 0.061 62.8 1.6 S0/S2O3
2-
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Table 6. H2O2 consumption and ratio H2O2/Pb a pH 8, 0.2 M citrate, 3.0 g/L mineral, varying the H2O2
concentration at 25°C.

Initial Initial H2O2 Ratio Dissolved Consumption H2O2 Experimental Ratio, Species
Pb M H2O2/Pb Pb, M M % H2O2 consumed/Pb dis

0.01
0.097 9.7 0.0100 0.040 41.2 4.0 S2O8

2-/SO4
2-

0.078 7.8 0.0100 0.042 53.9 4.2 S2O8
2-/SO4

2-

0.019 1.9 0.0076 0.019 98.6 2.5 S2O3
2- /S4O3

2-
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Table 6 shows the different H2O2°/Pb° ratios in the
system for the three peroxide concentrations (0.097,
0.078, and 0.019 M) at the lowest S/L ratio (3 g/L).
At H2O2/Pb° ratios of 9.7 and 7.8, there is an excess
of peroxide, where the irreversible sulfate species is
generated, and complete dissolution of the galena is
achieved. However, for the ratio of 1.9, where this
ratio (H2O2°/Pb°) is less than 2, only 76% of the lead
passed into the solution. The three relationships were
corroborated with the lead in solution and peroxide
consumption presented in Table 6, where values of
4 and 4.2 for initial H2O2 concentrations of 0.097
and 7.8 M, respectively, were found. On the other
hand, a ratio of 2.5 was determined for the initial
H2O2 concentration of 0.019 M and the presence
of reversible sulfur oxyanion species (S2O3

2-/S4O3
2-)

was evidenced.

High ratios H2O2 consumed/Pb dissolved (≥ 4)
can be associated to high consumptions of peroxide
(greater than 53%) and final oxidation states of the
sulfur are linked to S2O8

2- and SO4
2-, causing a

detrimental effect on the solubility of lead, despite the
presence of citrate in the alkaline solution. Only at an
initial concentration of 0.019 M H2O2 (ratio H2O2/Pb
= 2.5), a partial oxidation of sulfur to thiosulphate
and tetrathionate is achieved. Finally, it is important to
mention that once the pH is regulated, it remains stable
throughout all the tests due to the buffering effect of
citrate (Ruiz-Vela et al., 2023).

The solids present after the leaching process at
pH 8 and 0.097 M H2O2 were characterized by X-
ray diffraction (Figure 8). The principal phase is
chalcopyrite, which is consistent since this mineral is
stable under the working conditions.
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at pH 8 and 0.097 M of H2O2.

Conclusion

Citrate is a leaching agent that facilitates lead leaching
from galena at room temperature. It is possible to
completely leach the lead content of the mineral at pH
8, when sufficient peroxide is present in the system
for mineral oxidation due to the formation of stable
complexes between citrate and lead (Pb-Cit).

Under the conditions tested, lead recovery is
favored when the relation between peroxide and
galena is about 2.3 to 2.5, promoting the formation
of tetrathionate and other soluble sulfur species that
do not suppress lead solubility. At these near-neutral
pH values, the formation of dithionate and sulfate
ions appears to be slowed, allowing more efficient use
of the hydrogen peroxide oxidant, compared to that
observed in more acid solutions.
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