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Abstract
The dense packing of cassava starch determined by a semi-crystalline structure is responsible for obtaining low degrees of
substitution in the acetylation processes. The present study evaluated the effect of dual modifications combining physical and
chemical treatments on the degree of substitution (DS), structural, morphological, pasting and gelatinization properties of cassava
starches. Four physical treatments such as annealing (ANN), heat-moisture (HMT), ultrasound (UTS) and homogenization
(HMG) were used to subsequently perform the chemical modification of acetylation with acetic anhydride for each treatment.
The modification was confirmed by infrared spectroscopy with the presence of the carboxyl group (C=O) characteristic of starch
acetates. The modified starches did not change the type-A crystalline pattern, however, they presented decreases in the intensities
of the peaks, relative crystallinity, as well as greater stability upon heating and less retrogradation. In conclusion, the dual
physicochemical modification is an alternative to increase the efficiency of the chemical reaction, decreasing the use of chemical
agents and increasing the GS achieved, which enables its application in the biofilm industry.
Keywords: Physical treatments, starch acetates, crystallinity, dual modification, morphology.

Resumen
El almidón de yuca presenta un denso empaquetamiento determinado por su estructura semicristalina, la cual es la responsable
de la obtención de bajos grados de sustitución en los procesos de acetilación. El presente estudio evaluó el efecto de
las modificaciones duales combinando tratamientos físicos y químicos sobre el grado de sustitución (GS), las propiedades
estructurales, morfológicas, de empastamiento y gelatinización de almidones de yuca. Se utilizó cuatro tratamientos físicos
como annealing (ANN), humedad-calor (HMT), ultrasonido (UTS) y homogenización (HMG) para posteriormente realizar
la modificación química de acetilación con anhidrido acético para cada tratamiento. La modificación fue confirmada por
espectroscopia de infrarrojo con la presencia del grupo carboxilo (C=O) característico de los acetatos de almidón. Los almidones
modificados no cambiaron el patrón cristalino tipo-A, sin embargo, presentaron disminuciones en las intensidades de sus picos, en
la cristalinidad relativa, así como una mayor estabilidad al calentamiento y menor retrogradación. En conclusión, la modificación
dual fisicoquímica es una alternativa para aumentar la eficiencia de la reacción química, disminuyendo el uso de agentes químicos
y aumentando el GS alcanzado, lo que posibilita su aplicación en la industria de biopelículas.
Palabras clave: Tratamientos físicos, acetatos de almidón, cristalinidad, modificación dual, morfología.
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1 Introduction

Cassava (Manihot esculenta C) is a transitory crop
of great socioeconomic and agroindustrial importance
in Colombia, grown for its edible tuberous roots
and, minimally, for its leaves. Tuber is an important
energy source, with starch as the main component,
over 80% on a dry basis, making it a potential raw
material for industrialization (Salcedo & Contreras,
2017). However, 95.4% of the production is destined
for fresh consumption, and only 5.6% for processing
into flours and starches (Ramos-Villacob et al., 2023).
The cassava starch application in both food and
non-food industries has been widely studied, due
to its low cost, easy availability, non-toxic nature,
renewability, biodegradable properties and available
hydroxyl groups that can be modified (Ashogbon,
2017). Native cassava starch presents a smooth
surface, free of pores with spherical or oval shaped
granules of a regular size between 15-18 µm, low
amylose content around 15 and 25 % w/w, and high
amylopectin content between 80 and 83 % w/w, type-
A polymorphism and a degree of crystallinity between
35 and 45, which determines its semi-crystalline
nature and physicochemical properties (Colivet &
Carvalho, 2017; Gutiérrez & Alvarez, 2018).

Native cassava starch presents limitations in film
development due to its low mechanical strength,
high hydrophilicity, and low thermal stability (Cui
et al., 2021). To improve these drawbacks, physical,
chemical, enzymatic or combined modifications are
necessary to enhance its functionality and make it
more suitable for its extensive use in these industries
(Ochoa et al., 2017). Chemical modifications have
been widely used for the development of starches
with acceptable hydrophobic and thermal properties,
among them, esterification by acetylation stands out,
which is a process applied with relative ease and
favorable results in its physicochemical and functional
properties (Cuenca, et al., 2020; Trela et al., 2020).
However, the dense packing, granular conformation
and semi-crystalline nature of the starch molecule
confers a high resistance to chemical modification,
known as steric hindrance, which can be reflected by
the low availability of free hydroxyl groups to react
with acetyl groups, preventing the substitution of these
groups, and therefore, the formation of starch acetates
resulting in low degrees of substitution (Otache et al.,
2021).

In addition, chemical modification processes
require organic agents or solvents that increase
the degree of substitution. However, these solvents
can generate negative environmental impacts,
therefore, it is necessary to propose industrially
viable technological alternatives that lead to a
reduction in the quantities of chemical agents.

As a result, some studies have been oriented
to implement physical treatments combined with
chemical modification to improve GS, mainly because
it is an environmentally friendly, low-cost technology,
capable of altering the crystallinity of the granules,
giving desirable characteristics to the starch and
preparing it for chemical modification, and reducing
the concentrations of chemical modifying agents
(Schafranski et al., 2021). For this purpose, physical
treatments such as heat-moisture and ultrasound
promote starch chain interactions and alter properties
such as gelatinization temperature, solubility, pasting,
and morphological properties (Schafranski et al.,
2021).

This research responds to scientific gaps
in the scientific literature on dual modification
processes using physical and emerging technologies
such as annealing, heat-moisture, ultrasound, and
homogenization; and chemical methods such as
acetylation, with conditions below gelatinization.
Therefore, the hypothesis presented is: The
physical/chemical modification processes are feasible
to increase the degrees of substitution of starch
acetates for applications in biodegradable films,
reducing the use of chemical agents applied. In this
sense, the research aims to evaluate the effect of
physical treatments on the degree of substitution of
acetylated cassava starches.

2 Materials and methods

2.1 Materials

Native cassava starch (Manihot esculenta cv M-TAI)
was supplied by Almidones de Sucre S.A.S. Analytical
grade reagents were used.

2.2 Simple modification process

2.2.1 Annealing treatment

The starch samples were treated following the
methodology used by Yu et al., ( 2021) with slight
modifications. Initially, a starch-water suspension was
prepared under a 1:3 ratio, then the suspension was left
under refrigeration for 24 h to reach equilibrium. The
samples were then subjected to a hydrothermal process
in a water bath at 60 °C with constant stirring at 250
rpm for 4 h.

2.2.2 Heat-Moisture treatment

Cassava starch samples were hydrothermally modified
using the methodology described by Li et al., (2017)
with some modifications. The moisture content of the
samples was adjusted to 25 % w/w with distilled water
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and mechanical mixing. Next, the samples were kept at
room temperature for 24 h to reach equilibrium. After
this time, the hydrothermal process was carried out in
ovens with forced convection at 90 °C for 4 h.

2.2.3 Ultrasound treatment

Cassava starch samples were treated by ultrasound
following the methodology used by (Zhang et
al., 2019) with modifications. An ultrasonic bath
(Elmasonic P 60 H, Germany) was used by adjusting
the conditions to a frequency of 37 kHz and a power
of 50 W. Suspensions of native cassava starch at 10
% w/v were prepared and subjected to the ultrasonic
modification process at a temperature of 60 °C for 4 h.

2.2.4 Homogenization treatment

Samples of native cassava starch were suspended at
10% w/v in distilled water and treated using an ultra-
turrax disperser (T25 Basic, IKA, Germany) with
agitation at 3000 rpm for 4 h at 60 °C.

Native cassava starches (NCS) and modified by
annealing (ANN), moisture-heat (HMT), ultrasound
(UTS) and homogenization (HMG) were subsequently
centrifuged at a rotational speed of 3402 RCF for
5 min. The precipitates were subjected to a drying
process at 35 °C in a convective oven for 20 h until a
moisture content of 10 % w/w was reached. Then, the
samples were macerated, passed through a 200-mesh
sieve, and finally stored in airtight bags for further
characterization.

2.3 Dual modification process

2.3.1 Preparation of acetylated starches

Physically treated and native starch samples were
acetylated following the methodology employed by
Colussi et al., (2017) with some modifications. 10 g of
starch were dispersed in 100 ml of distilled water with
active stirring at 50 °C for 2 h. The suspension was
cooled to 40 °C and the pH was adjusted to 8.0 with
1 M NaOH solution. Next, 5 ml of acetic anhydride
was added dropwise to the stirred suspension and let
to react for 2 h, the pH was maintained between 8
and 8.5 with 1 M NaOH. After the reaction time, the
suspension was adjusted to pH 4.5 with 1 M HCl. The
obtained starch was washed twice with distilled water
and once more with 70 % ethanol and centrifuged at
3402 RCF for 5 min. Finally, the starch was dried in a
convective oven at 35 ºC for 24 h and stored.

2.4 Degree of substitution of acetylated
starches

The determination of acetyl groups (AC) was
performed according to the methodology used by

Salcedo et al., (2016). 1 g of modified starch on
dry basis was transferred to a 250 ml Erlenmeyer,
with 50 ml of distilled water and three drops of
phenolphthalein. The sample was neutralized with 0.1
N NaOH until it remained a slightly pink color, and
then 25 ml of 0.45 N NaOH was added, and the
suspension was shaken vigorously for 30 min. After
this time, the saponified samples were titrated with 0.8
N HCl. At the same time a blank was titrated using
native starch. The percentage of substituted acetyl
groups was determined based on the volume of acid
spent (Eq. 1).

Acetyl(%) =
(Blank ml -sample ml )*(N HCl*0.043 *100)

sample g
(1)

Where, 0.043 are the milliequivalents of the acetyl
group.

DS corresponds to the average number of
acetyl groups introduced per unit of anhydroglucose,
calculated according to Eq. (2):

DS =
(162) ∗ (% acetyl)

4300− [42 ∗% acetyl]
(2)

2.5 Scanning electron microscopy and
birefringence

The morphological characteristics of native and
modified starch were observed by scanning electron
microscopy (SEM) coated with a gold/platinum thin
film under vacuum and placed on a double-sided
Scotch tape (Figueroa-Flórez et al., 2019). The
micrographs were obtained on a SEM microscope
(JEOL, JSU-5600 LV, Japan) under operating
conditions at 15 KV, 30 mA and an amplitude range
of 1000 -11800X.

To observe birefringence, 7 mg of each starch
sample were homogenized in 1 ml of deionized water.
A 50 µL aliquot was poured onto a slide to examine
morphology and birefringence of the granules using a
trinocular polarized microscope (Optika, B-383POL,
Italy). Microphotographs were acquired under bright
and polarized light fields, at 40X magnification,
using a high-resolution 10MP camera with USB 3.0
connection (Optika, CB10+, Italy) (Figueroa-Flórez,
2020).

2.6 Attenuated total reflectance Fourier
transform infrared spectroscopy

Infrared spectra (FTIR-ATR) of starches were
acquired on an infrared spectrometer (UATR, Perkin
Elmer, USA), with a 1.5 mm diameter ZnSe/diamond
crystal. The sample was placed on the crystal, until the
entire diameter was covered, and each spectrum was
recorded with a resolution of 8 cm-1 and 4 readout
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scans in the range of 400 - 4000 cm-1. The ratio of
absorbances in bands 1047/1022 cm-1 and 925/1022
cm-1 was determined to assess the degree of molecular
order (Yu et al., 2021).

2.7 Apparent amylose content

Apparent amylose content was determined by the
standardized iodine spectrophotometric method (Li et
al., 2017) with the following modification. 10 mg
of the sample was dissolved/degreased in a 10 mL
solution of 95 % DMSO and placed in a water
bath for 15 min. The sample was reacted with I2/KI
solution for 20 min in test tubes previously cover
for light protection. Then, the absorbance value of
this reaction was determined in a UV-VIS Pharo
300 spectrophotometer (Spectroquant®, Darmstadt,
Germany) at 620 nm, according to a calibration curve
of potato amylose (A0512) and corn amylopectin
(10112) standard solutions from Sigma-Aldrich under
concentrations of 0-100% w/w.

2.8 X-ray diffraction

X-ray diffraction (XRD) patterns of starch samples
were obtained using a diffractometer (Panalytical,
X'Pert MPD, Switherland) operated at 1.8 kW and 40
mA. Spectra were acquired in a range of 4-40°, at
a scan rate of 2°/min and sampling interval of 0.02°
(Figueroa-Florez, 2020). The degree of crystallinity
(DC) was estimated as the ratio of the absorption peaks
areas (crystalline zone) and the total diffractogram
area, using numerical integration methods and
MATLAB software (MathWorks, R2019a, USA).

2.9 Pasting properties

The pasting properties were determined using a
rheometer (Anton Paar, MCR 302, Austria), according
to the method used by Dar et al., (2018) with
slight modifications. 8 % w/v starch suspensions were
subjected to a temperature of 50 °C for 2 min, then
increased to 95 °C, held at 95 °C for 5 min and cooled
once again to 50 °C, and finally, held at 50 °C for 2
min. The ascent and descent rates were 7.5 °C/min

for each stage. The different viscosity parameters were
analyzed using RheoCompass software (v1.12, Anton-
Paar, Austria).

2.10 Gelatinization properties

Gelatinization properties were determined using a
rheometer (Anton par MCR 302, Austria), using the
parallel plates geometry with a 25 mm diameter and
a gap distance of 1.0 mm. After validation of the
linear viscoelasticity region (LVR), 30% w/v starch
suspensions were subjected to a temperature sweep
between 30 and 90 °C with a constant frequency of 1.0
Hz and a 0.5 % deformation (Cham & Suwannaporn,
2010). The values of elastic modulus (G’ [Pa]) and
viscous modulus (G” [Pa]) were obtained. Results
were processed using RheoCompass software (v1.12,
Anton-Paar, Austria).

2.11 Statistical analysis

A unifactorial design was used with six (6) levels
corresponding to the type of modification, as described
in Table 1. Data were analyzed by analysis of variance
(ANOVA) and Tukey's test for mean difference at a
significance level of 5 % using Statgraphics statistical
software (Centurion XVI.l, Statgraphics Inc., USA).

3 Results and discussion

3.1 Degree of substitution of acetylated
starches

The percentage of acetyl groups (AC) and the
degree of substitution (DS) of native and modified
cassava starches are shown in Table 2. These
parameters increased significantly (p<0.05) with dual
modifications, being more evident in the HMTA and
UTSA samples. According to Omodunbi Ashogbon
(2021), the first modification could alter the granular
surfaces and the bond strength between the chains,
making the hydroxyl groups more available to be
substituted by acetyl groups.

Table 1. Experimental design implemented in the modification of cassava starches.

Treatment Nomenclature

Native cassava starch NCS
Acetylated cassava starch ACS
Starch modified by annealing and acetylation ANNA
Starch modified by heat-moisture treatment and acetylation HMTA
Starch modified by ultrasound and acetylation UTSA
Starch modified by homogenization and acetylation HMGA
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Table 2. Percentage of acetyls and degree of substitution of starches with dual modifications.

Sample AC (%) DS

NCS - -

ACS 4.322±0.03a 0.170±0.001a

ANNA 5.618±0.19bc 0.223±0.008bc

HMTA 5.962±0.19c 0.238±0.008c

UTSA 7.109±0.19d 0.287±0.008d

HMGA 5.274±0.19b 0.209±0.008b

AC: Percentage of acetyls (%); GS: Degree of substitution; NCS: Native cassava starch; ACS Acetylated cassava starch;
ANNA: Starch modified by annealing and acetylation; HMTA: Starch modified by heat-moisture treatment and acetylation;
UTSA: Starch modified by ultrasound and acetylation; HMGA: Starch modified by homogenization and acetylation. Same

letters in the same column do not differ statistically (p < 0.05).

AC and DS of HMGA and ANNA treatments
were lower compared to HMTA and UTSA
treatments, possibly due to the higher steric hindrance
and increase in the crystallinity cause by the
homogenization and annealing processes, which
reduces the availability of hydroxyl groups on
the amylose and amylopectin chains for further
acetylation. However, all these treatments were
significantly higher than the single ACS modification.
These results are above those reported by Zdybel et
al. (2021), who obtained substitution degrees between
0.07 and 0.10 in dual-modified sweet potato starches
by annealing and acetylation.

UTSA exhibited the most significant increase
in AC and GS values, which could be attributed
to the effect of sonification causing morphological
changes in the granular surface as fractures, pores, and
cracks, facilitating the penetration of the acetyl group
(CH3CO-) during acetylation (Amini et al., 2015).
Abedi et al. (2019) reported similar results, obtaining
GS values between 0.2 and 0.5 in dual-modified wheat
starches by ultrasound and acetylation. According to
these authors, the variation of the ultrasonic frequency
can alter the polymeric structure, reducing steric
hindrance and increasing the interaction of the granule
with the acetic anhydride. Likewise, HMT treatment
could promote an increase in starch chain interactions,
causing a separation of the double helix structure and
a rearrangement of the crystal structure. Due to this
separation, the granule becomes more susceptible and
allows a better action of the modifying agents for
the HMTA sample, achieving better efficiency in the
reaction (Schafranski et al., 2021).

3.2 Scanning electron microscopy and
birefringence

The morphological properties of native and modified
starches are presented in Fig.1(A, B). NCS samples
exhibited starch granules of spherical or oval shape,
smooth and relatively uniform surfaces, as reported
for native cassava starches by Figueroa-Flórez et al.

(2019) . Regarding the particle size, the average
diameter of granules is between 15-18 µm. However,
some fragmented granules with truncated ends were
observed, possibly due to the extraction process of the
starch. Similar results were reported for native cassava
starches by other authors (Javadian et al., 2021).

ACS treatment did not exert significant changes
in the morphology and size of starch granules
compared to their native counterparts, possibly due
to the low concentrations of the esterifying reagent.
However, small agglomerations were observed among
the granules, which could be related to the presence
of hydrophilic groups in the starch molecule. Sodhi &
Singh, (2005) and Singh et al., (2004) reported similar
results for acetylated rice, corn, and potato starches,
respectively.

Starch showed changes in the morphological
surfaces after dual modification. HMTA sample
presented roughness, fissures, cavities, and holes.
These variations could be caused mainly by
the combination of the physical and chemical
modification methods, altering the internal molecular
structure of the starch and evidencing these changes
in morphology (Subroto et al., 2022). Majzoobi et
al. (2016) found agglomerations and morphological
irregularities in hydrothermally treated rice starch
granules, which were more significant when the time
of HMT treatment was increased.

In UTSA samples were visualized notable changes
in the surface microstructure and size of the starch
granules, such as erosion and fragmentation, as well as
granules with partial loss of their native morphology.
This phenomenon could be attributed to the high
shear generated by the rupture of the cavitation
bubbles generated by the ultrasound treatment that
eroded the starches surfaces, altering both the size
and the surface of the starch granules (Yang et al.,
2019). Khurshida et al. (2021) found small lacerations
in samples of cassava starches dual modified by
ultrasound and acetylation, which intensified with
increasing ultrasonic treatment, suggesting the effect
exerted by ultrasonic pretreatment.
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Fig. 1. Scanning electron microscopy images (A, B) and polarized field (C) of native and modified cassava 267 
starch. 268 

 (A) Micrographs at 1000X magnification; (B) Micrographs at 11800X magnification. 269 
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Fig. 1. Scanning electron microscopy images (A, B) and polarized field (C) of native and modified cassava starch. (A)
Micrographs at 1000X magnification; (B) Micrographs at 11800X magnification. NCS: Native cassava starch; ACS
Acetylated cassava starch; HMTA: Starch modified with heat-moisture treatment and acetylation; UTSA: Starch
modified with ultrasound treatment and acetylation.

On the one hand, birefringence is the ability
of starch granules to refract polarized light in
two directions. The birefringence patterns of native
and dual-modified samples of cassava starches are
exposed in Fig.1C. The native forms of NCS starches
exhibited a birefringence pattern with a centralized
"malt cross" typical of native cassava starches
crystal structure (Arroyo-Dagobeth et al., 2023). In
contrast, the modified forms of the starches presented

variations in cross-polarization. All modifications
significantly decreased the birefringence patterns,
causing a more opaque appearance of the starch
hilum structure (Alcázar-Alay & Meireles, 2015). In
this context, weak patterns indicate disorganization of
the crystalline regions, and loss of birefringence is
associated with deformation of the granule due to the
various modifications performed.
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Fig. 2. FTIR-ATR spectra of native and modified cassava starches. NCS: Native cassava starch; ACS Acetylated
cassava starch; ANNA: Starch modified with annealing treatment and acetylation; HMTA: Starch modified with
heat-moisture treatment and acetylation; UTSA: Starch modified with ultrasound treatment and acetylation; HMGA:
Starch modified with homogenization treatment and acetylation.

3.3 Attenuated total reflectance Fourier
transform infrared spectroscopy

FTIR-ATR spectroscopic analysis provides
information on short-range conformational variations
in amylaceous materials, indicating changes in chain
conformation, semicrystalline order and molecular
ordering (Hoover, 2009). The FTIR-ATR spectra
of native and modified starches are shown in Fig.
2. These spectra show significant changes in the
intensities of the absorption bands of all starch
samples, both in the diagnostic zone (4000 - 1500
cm-1) and in the fingerprint zone (1500 - 500 cm-1).
The absorption bands in the range 3000-3600 cm-1

correspond to the vibration of the O-H bond associated
with the hydroxyl groups. A variation in the spectra
of the modified starches compared to the native
control was observed due to the substitution of O-
H groups by acetyl groups in the polymeric chains,
causing a decrease in these bands (Salgado-Delgado
et al., 2022;Cuenca, Ferrero, et al., 2020; Figueroa-
Flórez et al., 2016). Additionally, in the 2940 cm-1

region, related to the C-H bonds of the glucose units,
a variation was observed in the vibrations of the
absorbance peaks of modified starches compared to
their native control, possibly originating from changes
in the ratios of their amylose/amylopectin contents
(Kizil et al., 2002).

In the ACS treatment was observed a new band
at 1740 cm-1 related to the C=O group, intensified
in dual-modified starches such as ANNA, HMTA,
UTSA, and HMGA, and was completely absent in the
native counterpart (NCS). Olagunju et al. (2020) found

similar results observing changes in these same bands
for pigeon pea acetylated starches with different DS.
The absorption band near 1650 cm-1 is correlated to
the strongly bound water present in the starch structure
(Trela et al., 2020). A decrease in absorbance of these
bands in modified samples compared to NCS. When
a water molecule strongly interacts through hydrogen
bonds, its bending vibration requires higher energy
to undergo vibrational excitation, resulting in reduced
absorption of the band vibration, considering a strong
water-starch interaction for modified starches (Kumar
et al., 2018).

A stretch in the 1245 cm-1 bands, corresponding
to the C-O group, was observed in the fingerprint
region between 1500 - 500 cm-1 of modified starches
whereas absent in native starch. The presence of this
peak could be related to the acetyl group and the
effects of hydrothermal processes (Salcedo-Mendoza
et al., 2016). In this same region, it has been shown
that the absorption bands at the wavelength of 1047
and 1022 cm-1 are associated with ordered and
amorphous starch structures, respectively (J. Figueroa-
Flórez, 2020). Thus, the relationship between the
heights of the bands at 1047 and 1022 cm-1 has
been used to quantify the degree of molecular order
(MO) in starchy materials. As listed in Table 3, the
MO1 values presented a significant decrease for the
UTSA, HMGA, and ANNA treatments compared
to the NCS sample, this could be caused by the
dissociation and unwrapping of the double helices that
form the crystalline matrix to a greater extent by the
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Table 3. Degree of molecular order, apparent amylose content and degree of crystallinity of native and modified
starch samples.

Sample MO1 MO1 CA (%) DC (%)

NCS 0.721±1.06E-03ab 1.231±3.97E-03a 21.785±0.216a 48.613±0.313a

ACS 0.723±3.53E-04bc 1.151±1.24E-02b 12.639±0.213b 39.456±0.578b

ANNA 0.718±2.41E-05d 1.137±2.35E-03bc 16.854±0.330c 37.498±0.432c

HMTA 0.727±3.52E-03c 1.169±2.35E-03d 14.407±0.643d 35.540±0.298d

UTSA 0.708±1.82E-03e 1.124±3.75E-03c 11.634±0.351be 27.580±0.160e

HMGA 0.712±3.91E-04e 1.152±3.15E-05b 10.939±0.928e 31.560±0.229f

MO1: Molecular order based on the 1047/1022 cm-1 ratio related to the "semi-crystalline order", MO2: molecular order based
on the ratio 995/1022 cm-1 related to "swelling capacity", CA: Percentage of amylose (%), DC: degree of crystallinity (%),
NCS: Native cassava starch; ACS Acetylated cassava starch; ANNA: Starch modified by annealing and acetylation; HMTA:
Starch modified by heat-moisture treatment and acetylation; UTSA: Starch modified by ultrasound and acetylation; HMGA:

Starch modified by homogenization and acetylation. Same letters in the same column do not differ statistically (p < 0.05).

physical treatments, which could affect the molecular
structure and increase the introduction of acetyl
groups, correlating with the increase of DS (Hoover,
2009). In turn, HMTA presented a significant increase
in these values, suggesting a molecular rearrangement
in the starch structure and changes in crystallinity
(Yu et al., 2021). Likewise, MO2 values decreased
significantly for all modified treatments compared to
NCS, results that could be attributed to conformational
changes of the starch molecule after the modifications,
possibly due to the substitution of O-H groups.

3.4 Apparent amylose content

The apparent amylose content (AC) of native and
modified cassava starch samples is listed in Table
3. The NCS treatment shows an amylose content
between 20 and 22 %, similar to results found by
Hoover (2001) and Toae et al. (2019) in native
cassava starches of variety M-TAI. CA decreased
significantly after modifications (p<0.05). Amilose
decreased in ACS treatment (41.98 %) compared to
NCS counterpart. Such behavior could be attributed
to the interference of acetyl groups affecting iodine
uptake during amylose determination (Betancur et
al., 1997; Kumar et al., 2019). Lawal et al. (2015)
reported a decrease in the amylose content of
acetylated starches from cassava, maize, and sweet
potato compared to native controls, suggesting it
could be attributed to the leaching of amylose during
modification processes.

The UTSA and HMGA treatments showed a
reduction of 46.59 and 49.78 %, respectively, in the
percentage of amylose content compared to the native
sample. Chen et al., (2004) and Wang et al., (2022)
explained that a higher content of amylose is in the
amorphous zone of the starch granule, indicating that
the dual modifications occurred to a greater extent in
this region, causing a decrease in the CA. These results
could induce variations in the crystallinity patterns
determined by XRD.

The amylose content decreased between 33.86 and
31.81 % in HMTA and ANNA treatments. In previous
studies, hydrothermal treatments reduced the apparent
amylose content, possibly due to conformational
changes in the polymeric chains of amylose-
amylose and amylose-amylopectin interactions. This
phenomenon results in a decrease in the number
of helical turns, decreasing the intensity of the
characteristic color of the amylose-iodine complex
(Hoover, 2009; Jin et al., 2023; Nakazawa & Wang,
2003; Paraginski et al., 2016). Consequently, the
decrease of CA in dual-modified starches could be
explained by a combined effect of physical and
chemical modifications that would cause leaching
of amylose and/or depolymerization of the chains,
decreasing their ability to form a complex with iodine
(Hoover, 2009).

3.5 X-ray diffraction

The crystalline patterns of native and modified starch
granules are shown in Fig. 3. Native cassava starch
exhibited an A-type monocyclic polymorphism with
strong reflection at Bragg 2θ angles around 15.04°,
17.03°, 18.00°, 23.035° and a small peak around 20°
(Figueroa-Flórez et al., 2023). These peaks represent
the ratio of the amylopectin side chains and amylose
chains arranged in a helix shape (crystalline zones)
to the unstructured components (amorphous zone)
(Martens et al., 2018). Although tuber starches usually
show B-type diffraction patterns, previous studies also
reported a characteristic A-type pattern in cassava
starches (Tupa et al., 2013; Van Soest & Vliegenthart,
1997).

Modifications did not change the crystalline
pattern of the starch granules but induced significant
decreases in the intensities of the peaks, resulting
in variations in the degree of relative crystallinity.
UTSA sample presented the maximum decrease
in the characteristic peaks with respect to NCS,
showing almost the loss of the small peak around
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Fig. 3. X-ray diffraction patterns of native and
acetylated cassava starches. NCS: Native cassava
starch; ACS Acetylated cassava starch; ANNA: Starch
modified by annealing and acetylation; HMTA: Starch
modified by heat-moisture treatment and acetylation;
UTSA: Starch modified by ultrasound and acetylation;
HMGA: Starch modified by homogenization and
acetylation.

20°. According to Bartz et al. (2015), during
the acetylation, the unsubstituted free hydroxyl
groups manage to rearrange themselves, forming new
hydrogen bonds, thus maintaining the characteristic
crystalline peaks of starch but with reduced intensity.

The reduction of crystalline peaks caused by
molecular rearrangement in modified samples resulted
in significant decreases in the degree of crystallinity
(DC) compared to the native sample (Table 3).
DC decreased from 48.613 % for NCS to 39.456
% for ACS. Similar findings were reported by
Palavecino et al., (2019) for native and acetylated
starches from cassava and sorghum. This effect was
more significant for dual-modified samples. UTSA
presented a higher reduction in DC (27.58 %)
among all treatments. Zhang et al., (2012) argue that
intramolecular and intermolecular hydrogen bonds
when partially replaced by acetyl groups, lose their
ability to form hydrogen bridges. Although they
are rearranged and retain their crystalline pattern,
lowering the intensity of the peaks results in the loss
of crystallinity. Furthermore, the action of physical
treatments prior acetylation increased changes in the
conformation of the polymeric chain, semicrystalline
order, and molecular ordering of modified starches,
according with results obtained through FTIR-ATR
infrared spectroscopy.

3.6 Pasting properties

Figure 4 shows the behavior of the pasting properties
during the heating and cooling of suspensions of
native and modified cassava starches. All modified
starches presented a significant reduction of pasting
temperature (PT) compared to NCS, being the lowest
for ACS, ANNA, and HMTA. This decrease could
be explained by a possible insertion of acetyl groups
in the amorphous region of the starch molecules,
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Fig. 4. Pasting properties of native and modified
cassava starches. NCS: Native cassava starch; ACS
Acetylated cassava starch; ANNA: Starch modified
with annealing treatment and acetylation; HMTA:
Starch modified with heat-moisture treatment and
acetylation; UTSA: Starch modified with ultrasound
treatment and acetylation; HMGA: Starch modified
with homogenization treatment and acetylation.

weakening the integrity of the granule and facilitating
water absorption during the heating process, thus
decreasing the pasting temperature of the modified
samples (Saartrat et al., 2005). Khurshida et al., (2021)
observed similar behaviors in dual heterogeneous
ultrasound and acetylation modifications of cassava
starches associated with changes in morphological
properties and swelling power. These results could
be verified previously in the results of apparent
amylose content, finding a significant decrease in dual
modifications.

During the heating phase, the starch granule
swells and increases volume until the structure
collapses, leading leach of amylose and an increase
in viscosity until the peak viscosity (PV) is
reached (Hoover, 2010). ACS treatment presented
a significant PV decrease compared to NCS,
suggesting fewer unbroken swollen granules, possibly
indicating substitutions of O-H groups by other
functional groups (Khurshida et al., 2021). Such
effect was more significant in dual-treated samples,
showing lower values in the PV peak, suggesting
a crystallinity decrease, lower amylose leaching and
higher substitutions of the O-H groups, according
to the DS, FTIR, and CA results. Bello-Pérez et
al. (2010) reported decreases in PV for acetylated
barley starches with different GS. This behavior
implies a tendency to decrease viscosity peak by all
modifications, correlating with those results obtained
for amylose content, and may as well interfere with
other physicochemical properties such as swelling
power (SP) and solubility in cold water (SCW).

The breakdown viscosity (BV) is related to the
stability of starch granules against shear force with
temperature action and depends on the difference
between the peak viscosity (PV) and the minimum
viscosity (MV) during heating at constant temperature
(Aaliya et al., 2021). The modification of starch
significantly reduced the values of BV, improving the
stability of the pastes of starches. The most stable were
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HMTA, UTSA, and HMGA, with lower values of BV.
This behavior could be related to depolymerization
of starch chains during dual modifications and
partial alteration of the granular structure due to
the introduction of new functional groups, which
contributed to the increase in hydrophobicity and
decrease in apparent amylose content, as well as
changes in crystallinity values (Khurshida et al.,
2021; Saartrat et al., 2005). Similarly, Hong et al.,
(2016) observed similar behavior in heterogeneous
modifications of potato starches with acetylation
assisted by pulsed electric fields.

Setback viscosity (SV) is defined as the difference
between the final viscosity (FV) and the minimum
viscosity of pastes in the cooling phase. The
magnitude of SV is the tendency of the pastes to
retrograde (Wang et al., 2015). The dual modifications
significantly reduced the SV, mainly in UTSA, HMGA
and ANNA samples. This phenomenon could be
explained by a lower leaching and the decreases in
amylose caused by the dual modification, producing a
lower regrouping reflected in lower SV (Aaliya et al.,
2021). In contrast, Sindhu et al., (2021), report a non-
significant increase in SV values of acetylated starches
compared to native samples, as a result of leached
amylose, granular size, and the presence of rigid
and non-fragmented swollen granules. Final viscosity
(FV) also decreased significantly in the modified
samples compared to native control, exception for
HMTA which showed a significant increase, possibly
due to depolymerization of leached amylose and
amylopectin.

3.7 Gelatinization properties

Temperature sweep tests have been used to study
the behavior of native and modified cassava
starches during the gelatinization process. The
results show that the elastic moduli (G') of the
starch hydrogels predominated over the viscous
moduli (G"), suggesting an elastic structure for
the hydrogels of starch (Serna-Fadul, 2022). The
onset temperatures (To), peak temperatures (Tp),
termination temperatures (Tc) and temperature range
(Tc-To) of gelatinization of cassava starches in their
native and modified forms were estimated through
dynamic-oscillatory tests as a function of temperature
and are presented in Figure 5. Initially, the ACS
treatment showed a significant decrease for To, Tp
and Tc compared to NCS. This behavior could be
explained by a weakening of the internal hydrogen
bonds of the granule, due to the reduction of hydroxyl
groups partially substituted by hydrophobic acetyl
groups (Hong et al., 2016). Results are similar to
previous reports estimated by differential scanning
calorimetry (DSC) on cassava starches acetylated with
acetic anhydride (Osundahunsi & Mueller, 2011).
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Fig. 5. Gelatinization properties estimated by
oscillatory temperature sweeps on native and modified
cassava starches. A) Elastic modulus behavior (G');
B) Viscous modulus behavior (G''). NCS: Native
cassava starch; ACS Acetylated cassava starch;
ANNA: Starch modified with annealing treatment
and acetylation; HMTA: Starch modified with heat-
moisture treatment and acetylation; UTSA: Starch
modified with ultrasound treatment and acetylation;
HMGA: Starch modified with homogenization
treatment and acetylation.

On the other hand, it has been found
that hydrothermal modifications can change the
gelatinization temperatures of starches, depending on
the moisture level of the sample, the starch source,
and the amylose content. This has been attributed
to short-range changes at structural level within
the starch granules involving amylose-amylose and
amylose-lipid interactions (Adebowale et al., 2009).
Similarly, it has been reported that acetyl groups
added to the polymer chains cause a decrease in the
energy required to hydrate the granule, leading to a
decrease in transition temperatures and an increase in
swelling by the reduction of the crystalline structures
(Osundahunsi & Mueller, 2011). Which in turn,
decreased To, Tp and Tc of dual treated samples
with hydrothermal pretreatment ANNA and HMTA,
behavior reported for potato starches treated with
annealing and acetylation (Zdybel et al., 2021).

Significant decreases in starch gelatinization
temperature parameters were also observed for the
UTSA and HMGA treatments, compared to the
control sample. This could be explained by a loss in
the crystallinity after the dual modification because
water molecules require less time to penetrate the
crystalline area of the polymeric chains. As a
consequence, a lower temperature would be required
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to produce the swelling of the granule (Moorthy-
Subramony, 2002; Odeku & Picker-Freyer, 2007).
These effects were observed previously in cassava
starches doubly modified with acetylation and electric
fields (Gagneten et al., 2023).

Conclusion

Physical and chemical treatment combinations
allowed the obtention of dual-modified cassava
starches with short- and long-range conformational
changes. Physical treatments prepared the granular
surface of the starch for its subsequent acetylation,
achieving better penetration of the esterifying reagent
and increasing the degrees of substitution. The results
reveal that the HMTA and UTSA treatments were
the most suitable to obtain a higher efficiency in
the acetylation reaction, leading to reduced steric
hindrance and increasing the GS. Moreover, dual
modification reduces up to 49% of the apparent
amylose, to 56% of the relative crystallinity, and
changes in granular morphology, pasting, and
gelatinization properties of cassava starch.

These results suggest that dual-modified cassava
starches could be suitable for biomaterial applications.
The significant decrease in apparent amylose content
and relative crystallinity indicates that these starches
may have improved properties in terms of flexibility
and degradability, which are desirable characteristics
in bioplastics. In addition, changes in granular
morphology and gelatinization properties may favor
the formation of more uniform and stable films, thus
increasing their applicability in the biodegradable
packaging industry. Furthermore, these findings
suggest potential applications in the textile industry,
improving the quality and strength of natural fibers.
In the field of adhesives, the modified properties of
these starches could result in products with enhanced
adhesion and water resistance capabilities.
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