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Abstract
An equation to predict the terminal rise velocity of single bubbles in stagnant Newtonian liquids is proposed. The
formulation combines a force balance obtained from the boundary layer theory for non-distorted bubbles and an
analytic equation coming from a mechanic energy balance. Without including geometric parameters, which are
difficult to assess, it is assumed that the weighting of dominant forces is enough to adequately predict the terminal
velocity in both the intermediate and inertial motion regimes. The proposed equation shows good agreement with
experimental data from bubbles rising in pure liquids. Moreover, for bubbles rising in clean water, the effect of
helical trajectories was estimated from experimental data trends and included in the formulation as a correction
factor for the terminal velocity.

Keywords: single bubble motion, terminal velocity equation, oscillatory bubble path, pure liquids.

Resumen
Se propuso una ecuación para predecir la velocidad terminal del ascenso de burbujas aisladas en lı́quidos
Newtonianos. La formulación combina un balance de fuerzas obtenido de la teorı́a de capa lı́mite para burbujas
esféricas con una ecuación analı́tica proveniente de un balance de energı́a mecánica. Sin la inclusión de parámetros
geométricos que son difı́ciles de determinar, se asume que la ponderación de las fuerzas dominantes es suficiente
para predecir adecuadamente la velocidad terminal en los regı́menes de movimiento intermedio e inercial. Las
predicciones de la ecuación propuesta presentan buen ajuste con datos experimentales para burbujas ascendiendo en
lı́quidos puros. Además, para burbujas ascendiendo en agua pura, se estimó el efecto de las trayectorias helicoidales
a partir de la tendencia de datos experimentales y se incluyó en la formulación como un factor de corrección de la
velocidad terminal.

Palabras clave: movimiento de burbujas aisladas, ecuación de velocidad terminal, trayectoria oscilatoria de
burbujas, lı́quidos puros.

1 Introduction

Motion analysis of a single bubble rising in quiescent
liquid is useful to understand and describe gas-liquid
bubbly flows. Let us consider a train of bubbles rising
unconfined through still liquid. Its rise velocity can
be approximated by that of a single bubble plus the

velocity defect caused by the wakes (Marks, 1973). If
one is dealing with bubble columns, the slip velocity
between phases can be expressed in terms of a single
bubble terminal velocity and the gas volume fraction
(Shah et al., 1982; Ruzicka et al., 2001). These facts
emphasize the importance of having equations that
predict the terminal rise velocity of single bubbles, sin-

∗Corresponding author. E-mail: bazrodriguez@gmail.com
Tel.: +52 55 58044648 Ext. 237

Publicado por la Academia Mexicana de Investigación y Docencia en Ingenierı́a Quı́mica A.C. 269



Baz-Rodrı́guez et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 11, No. 2 (2012) 269-278

ce it is a fundamental parameter in gas-liquid flows.
The shape and terminal velocity of isolated

bubbles vary as the equivalent diameter increases,
according to three regimes (Tomiyama et al., 2002):
1) dominant viscosity, 2) intermediate region, where
viscous, surface tension and inertial effects should
be taken into account, and 3) dominant inertia. Out
of the three regimes, the intermediate one presents
major difficulties since the force interactions and
their effect on the terminal velocity is not yet well
understood. Moreover, the terminal velocity is
particularly sensitive to the presence of contaminants
and even to the initial deformation induced by
injection (Tomiyama et al., 2002; Celata et al., 2007).

The intermediate regime spans an equivalent
diameter range from 0.07 to 0.65 cm for air bubbles
ascending through pure water (Mendelson, 1967;
Loth, 2010). This corresponds to particle Reynolds
numbers (Re) between 80 and 1500 for normal
pressure and temperature conditions, approximately.
This working interval is usual in many industrial
systems. When Re > 200, bubble shapes are oblate
ellipsoidal with fore-aft symmetry. This symmetry
gradually brakes as Re increases, until the bubble
motion attains the inertial spherical cap regime.
Besides, for Re ∼ 650-685, the onset of path instability
occurs, and a transition from rectilinear to zig-zag
or helical trajectories is observed (Duineveld, 1995;
Sanada et al., 2008; Veldhuis et al., 2008).

There exist three basic approaches to establish the
terminal velocity (Kulkarni and Joshi, 2005):

• Force balance. The terminal velocity equations
result from a force balance between drag and
buoyancy. The most representative solutions are
obtained from drag in creeping and potential
flows. This approximation can be adequate to
predict the rise velocity of small bubbles when
viscosity effects are still dominant.

• Dimensional analysis. Dimensionless groups
are determined from the leading variables that
govern the bubble motion. A functional relation
is proposed for these groups, and the adjustable
parameters are fitted from experimental or
numerical data (Rodrigue, 2001).

• Wave analogy. Interfacial disturbances are
assumed for bubbles whose dynamics is similar
to propagating waves in an ideal fluid, and
then the terminal velocity is estimated as a
function of the equivalent diameter and the fluid
properties (Mendelson, 1967). Even if some

doubt has been cast on the original approach
because of its lack of physical basis (Lehrer,
1976; Fan and Tsuchiya, 1990; Bozzano and
Dente, 2001), the wave analogy approach can
span some later investigations, which obtained
equations with the same basic form (Lehrer,
1976; Zudin, 1995). Predictions using this
approach fit the main trend after the bubble
size corresponding to the terminal velocity local
maximum is attained (0.14-0.18 cm for air in
water, see Fig. 1).

Other formulations for bubble terminal velocities have
been proposed from some detailed bubble shape and
external flow considerations (Moore, 1965; Bozzano
and Dente, 2001; Tomiyama et al., 2002). However,
these approaches often require additional data such
as aspect ratio (between minor and major axes)
and (hemispherical) bubble distortion factor. These
parameters are difficult to obtain. Some investigations
report the aspect ratio from experimental results on
pure and contaminated liquids as a function of the
Eötvos number (Eo) (Wellek et al., 1966; Okawa et
al., 2003; Sanada et al., 2008). Sometimes the Weber
number (We) is used instead (Moore, 1965; Wellek et
al., 1966), which seems more appropiate to establish
functional relations with this geometrical parameter
(Celata et al., 2007). Nevertheless, expressing
the aspect ratio in terms of We involves its own
dependency on the terminal velocity. Besides, for
pure liquids it is difficult to estimate aspect ratios
or distortion factors even experimentally (Tomiyama
et al., 2002), in contrast with the case of liquids
contaminated with surfactants, which act by damping
bubble shape oscillations (Celata et al., 2007).

The inclusion of drag coefficients with non-linear
Re dependency, or aspect ratio that depends on We
in any terminal velocity formulation implies solving
non-linear equations, often with fractional exponents.
This is inconvenient when the terminal velocity is not
the main objective of an engineering calculation. For
this reason, a simple equation to predict the isolated
bubble terminal velocity is proposed in the present
work. If geometrical considerations are avoided, we
believe that the proper weighting of the dominant
forces is enough to assess this important parameter for
the intermediate and inertial regimes.

The terminal velocities reported in literature
correspond to the axial component of the bubble
center of mass velocity vector. However, for the
case of air rising through water, it is important to
take into account that rectilinear trajectories become
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unstable above some critical Re. For this reason, and
considering a helical trajectory, a correction factor was
obtained as a function of the mean slope of the helix.
This procedure improves the fit to experimental data
in the equivalent diameter range that correspond to the
oscillatory motion of the bubble.

2 Terminal velocity formulation
Considering the intermediate region, inertial effects
are combined with viscosity and surface tension
effects. This suggests that an equation for the bubble
terminal velocity, which is valid when viscous effects
are still important, can be combined with another one
that is valid when surface tension effects are significant
(Fan and Tsuchiya, 1990; Jamialahmadi et al., 1994).
In the former case it is reasonable to propose an
equation developed from the force balance approach.
In the later it would be sensible to use a wave analogy
approach. Proceeding this way, an equation can be
obtained, which is valid for a wide range of equivalent
bubble diameters.

The proposed formulation for the terminal velocity
is given here by the following combination of the
corresponding effects.

VT =
1√

1
V2

T1
+ 1

V2
T2

(1)

where VT1 is the rise velocity when viscous effects are
still important and VT2 is the corresponding velocity
when surface tension effects are significant. The form
of Eq. (1) was suggested by Jamialahmadi et al.
(1994) and remains in use (Kulkarni and Joshi, 2005;
Cai et al., 2010; Duangsuwan et al., 2011); also, a
similar form but with fitting parameters was previously
proposed by Fan and Tsuchiya (1990). When viscous
effects are important and the bubble diameter is small,
Eq. (1) ensures that the contribution of VT2 is
neglected. This is important because the terminal
velocity equations from wave analogy yield values
too high below the intermediate velocity maximum,
and they are preferably valid until significant surface
tension effects appear. The opposite occurs with VT1 at
larger bubble diameter. In the intermediate region, Eq.
(1) is just the terminal rising velocity coupled between
the two velocities VT1 and VT2.

Jamialahmadi et al. (1994) proposed the equation
developed by Hadamard (1911) and that of Mendelson
(1967) for VT1 and VT2, respectively. Nevertheless,
Hadamard equation is only valid for Reynolds

numbers smaller than unity (Tomiyama et al., 2002)
and Mendelson equation seems not to have an
adequate basis to justify its deduction (Lehrer, 1976;
Bozzano and Dente, 2001).

When viscous effects are losing their influence, the
terminal velocity for a bubble in potential flow can be
used (Levich, 1962)

VT pot =
1

36
∆ρgd2

e

µL
(2)

where ∆ρ is the density difference between the liquid
and gaseous phases, de is the diameter of a spherical
bubble of equivalent volume, µL is the dynamic
viscosity of the liquid and g is the acceleration
of gravity. Contrary to Hadamard solution, which
overestimates the terminal velocity for moderate Re,
the potential solution underestimates them. Using
the governing equations of motion for the boundary
layer on a spherical bubble, Moore (1963) obtained
a correction for the potential solution of drag force
which fits particularly well for moderate regime
motion (50 < Re < 200), before the surface tension
and inertial effects start to cause deviations from the
spherical bubble shape. Consequently, the boundary
layer solution must be more appropriate when the
bubble rise at moderate Re.

Buoyancy and drag as expressed by Moore (1963)
gives the following equilibrium:

6πµLdeVT1

1 − 2.21

Re1/2
1

 =
1
6
πd3

e ∆ρg (3)

where
Re1 =

deVT1ρL

µL
(4)

Rearranging Eq. (3), the solution for the terminal
velocity for potential flow appears

1

V1/2
T pot(gde)1/2

V3/2
T1 −

V1/2
T pot

(gde)1/2 V1/2
T1 − 0.36833 = 0 (5)

Expanding a Taylor series around the potential flow
solution, and truncating to the second order term, an
equation for the terminal velocity is obtained. The
above allows obtaining an approximate solution for the
bubble velocity avoiding numerical solving of Eq. (5).
The resulting equation is as follows

VT1 = VT pot

[
1 + 0.73667

(gde)1/2

VT pot

]1/2

(6)

Eq. (6) is valid for spherical isolated bubbles rising
under the effect of a hydrodynamic boundary layer and
buoyancy force.
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When surface tension effects are important, Lehrer
(1976) states a mechanical energy balance generated
by bubble displacement in the liquid:

1
6
πd3

e
1
2
ρLν

2 = σπd2
e +

1
6
πd3

e ∆ρgde (7)

where σ is the surface tension and ν is the liquid
velocity when it is displaced by the bubble passing by.

The right hand side of Eq. (7) is the potential
energy increase of the displaced liquid due to surface
tension and buoyancy during the bubble motion over a
distance de. This potential energy is then transformed
in kinetic energy [left hand side of Eq. (7)] as the
bubble moves, and finally it is dissipated by the wake.
The liquid motion is considered uniformly accelerated.
Assuming that the necessary time for the potential
energy to be transformed into kinetic energy is that
corresponding to a displacement de of the bubble
moving at a steady velocity, the following equation is
obtained (Lehrer, 1976).

VT2 =

(
3σ
ρLde

+
gde∆ρ

2ρL

)1/2

(8)

Eq. (8) can predict the terminal velocity when
the dominant effects come from surface tension and
inertia. According to the combination proposed by Eq.
(1) it is possible to calculate the terminal velocity for
a large range of bubble sizes in pure liquids for the
intermediate and inertial regimes.

3 Results and discussion
Predictions from Eqs. (6) and (8), combined according
to Eq. (1), were compared with experimental data
from Haberman and Morton (1953), Peebles and
Garber (1953), Okazaki (1964), Aybers and Tapucu
(1969), Duineveld (1995), Blandı́n-Arrieta (1997),
Leifer et al. (2000), Okawa et al. (2003), Talaia (2007)
and Sanada et al. (2008) for gas bubbles ascending
through various pure liquids, including distilled and
ultra-purified water.

Fig. 1 shows the comparison of the experimental
data for distilled water case in a wide equivalent
diameter range with the terminal velocity predicted
from equations. The proposed formulation in this
work properly predicts the typical behavior of the
terminal velocity along the whole range. Predictions
of three other formulations are also presented. Two
of them propose a weighting similar to that of Eq.
(1) (Fan and Tsuchiya, 1990; Jamialahmadi et al.,
1994), and the other one was obtained by dimensional
analysis (Rodrigue, 2001).
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Fig. 1. Comparison between predictions of equations
and experimental data for bubble terminal velocity
through distilled water (7.4 < Re < 32500; 0.002 <
We < 245; 0.01 < Eo < 475) at 20-28 ◦C.
Markers correspond to experimental data, and lines to
predictions from the equations.

The prediction of terminal velocity by
Jamialahmadi et al. (1994) equation fails before the
local maximum, and does not fit the experimental data
at this maximum. This happens because the solution
proposed by Hadamard -and used by Jamialahmadi et
al. (1994) for dominant viscous effects-, overestimates
the terminal velocity value for Re larger than one.
A similar situation occurs with Fan and Tsuchiya
(1990) equation, which is based on a parameter
fit. Additionally, Rodrigue (2001) equation results
particularly inadequate to predict the existence of local
extrema on the typical terminal velocity curve.

Distilled water can still contain contaminants that
affect the rising motion of a single bubble. The
presence of such pollutants, especially surfactants,
changes the interface characteristics, rigidifying it
and reducing its shape oscillations during rise.
Duineveld (1995) and Sanada et al. (2008)
determined experimentally the rise velocity of bubbles
moving through ultra-purified water with rectilinear
trajectories (20 < Re < 685). Fig. 2 shows
the comparison of those experimental data with
predictions of the proposed formulation and some
other from the literature, as the equation developed by
Tomiyama et al. (2002). The latter equation requires
the knowledge of the aspect ratio. For small equivalent
diameters it is still acceptable to relate this parameter

272 www.rmiq.org



Baz-Rodrı́guez et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 11, No. 2 (2012) 269-278

to the Eo (Celata et al., 2007). Here, Sanada et al.

0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6 0 . 2 0
0
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 R o d r i g u e  ( 2 0 0 1 )  ( %  E r r  =  2 4 . 4 )

V T (c
m/s

)

d e  ( c m )
Fig. 2. Terminal velocity from experiments on
ultra-purified water (25 < Re < 685; 0.02 <
We < 3.36; 0.02 < Eo < 0.5) at 20-23 ◦C.
Markers correspond to experimental data, and lines to
predictions from the equations.

(2007) equation (Eo < 0.5) was used

E =
1

1 + 6.5Eo1.925 (9)

In Fig. 2 one can observe that the relative average
error (percentage, % Err in the figures) is significantly
smaller for the formulation proposed in this work
(3.2 % absolute). Tomiyama et al. (2002) equation,
which is the next better fit, obtain a relative average
error of 9.2 %. This seems to confirm that viscous
effects are concentrated in a thin boundary layer for the
bubble size ranging from 0.04 to 0.18 cm of equivalent
diameter, according to the approximation from Eq.
(6).

As the bubble diameter increases, up to Eo about
0.5, the onset of path instability occurs (Duineveld,
1995; Sanada et al., 2008; Velduis et al., 2008),
and trajectories become zig-zagging or helical. The
corresponding bubble size range spans between the
local extrema of the typical terminal velocity behavior
(see Fig. 1). For pure water these extrema are between
de ∼ 0.15 − 0.65 cm, approximately (Mendelson,
1967; Loth, 2010), and according to the proposed
formulation between de ∼ 0.17 − 0.67 cm. These
local extrema are important because they indicate
significant transitions in the bubble rise mechanics.
The local maximum coincides with the path instability
onset, while the local minimum indicates the point
where inertial effects become dominant over surface
tension effects in Eq. (8).
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|V|
 (c

m/s
)
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Fig. 3. Comparison between predictions of Eq. (1)
and the single bubble velocity vector magnitude from
Aybers and Tapucu (1969).

For larger bubble size, the rise regime is dominated by
inertia, and bubbles adopt the characteristic spherical
cap shape, with the trajectory becoming approximately
rectilinear again.

For the terminal velocity between the local
extrema, three bubble diameters are possible. The
lowest diameter corresponds to a motion with
rectilinear path, the middle diameter is embedded in
the intermediate regime with oscillatory trajectory,
and the largest diameter corresponds to a preferably
inertial regime and spherical cap shape for the bubble.
In this sense, the description of the bubble motion
within the oscillating trajectory range is a very
complex task, and it remains a research topic in
recents numerical and experimental works (de Vries
et al., 2002; Mougin and Magnaudet, 2006; Shew and
Pinton, 2006a; Veldhuis et al., 2008).

Even if the predictions proposed in this work fit the
experimental data with pure water for many practical
applications (Re between 25 and 685) best than other
predictions, they overestimate slightly the terminal
velocity for larger bubbles. This occurs until the
inertial regime is reached, as shown in Fig. 1. This
overestimation might be caused by the presence of
contaminants in the water or by oscillatory trajectories.

Aybers and Tapucu (1969) measured both the
velocity magnitude and its axial component (terminal
velocity) for bubbles in the equivalent diameter range
between 0.1-1 cm following helical paths. Fig. 3
shows a comparison between the predictions of Eq.
(1) [with substitutions of Eqs. (6) and (8)] to the
obtained data for the velocity magnitude. The percent
relative error has an average of 5.5 %, as compared
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with experimental data by Aybers and Tapucu (1969).
This allows us to state that if the approximation fits
into Eq. (1) (with VT ≈ |V |), then its axial component
can be determined from the bubble trajectory. For the
case of small bubbles (de < 0.17) and large ones (de >
0.67) the velocity module corresponds approximately
to its axial component, or terminal, velocity. Yet
it is necessary to know the trajectory to determine
the velocity magnitude and its axial component for
oscillating motion.

Helical trajectories are much more common that
zig-zagging ones (Shew and Pinton, 2006a), and
correspond to the observed motion well above the
nozzle (Aybers and Tapucu, 1969). Zig-zagging
trajectories are associated to an unstable wake, so
these trajectories usually become helical at large
(Ellingsen and Risso, 2001; Shew and Pinton, 2006a).
As a result, it is advisable to assume that helical
trajectories characterize the whole range of oscillatory
motion, but with a stationary terminal velocity during
the bubble ascent (Shew and Pinton, 2006a; Shew et
al., 2006).

From the vectorial description of a helical path,
Aybers and Tapucu (1969) obtained the following
relationship between the axial velocity component and
its vectorial magnitude

VT = |V| sinϕ (10)

where VT is the axial component, |V| is the velocity
magnitude and ϕ is the helix angle with respect to the
horizontal plane, which is given by

ϕ = tan−1
(

h
πDH

)
(11)

h corresponds to the vertical bubble displacement that
corresponds to a full oscillation cycle and DH is the
helix diameter. In terms of amplitude and frequency
of oscillation, one has

ϕ = tan−1
(

VT f
2πA

)
(12)

where f is the frequency and A is the amplitude.
Even if there are some investigations that explore

analytically the effect of the non-steadiness of the
flow in unconfined single rising bubbles, there are
still no adequate mathematical descriptions of the
bubble oscillatory motion and its perturbation effect
on the surrounding liquid. This is because the helix
angle determination in Eq. (10) had to be done from
empirical data.
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Fig. 4. Comparison between predictions of equations
and experimental data for bubble terminal velocity in
distilled water (560 < Re < 1500; 2.3 < We <
5.9; 0.5 < Eo < 5.9) a 20-28 ◦C. Markers correspond
to experimental data, and lines to predictions from the
equations.

There are several investigations that studied the
oscillatory motion of single unconfined bubbles
(Aybers and Tapucu, 1969; Blandı́n-Arrieta, 1997;
Ford and Loth, 1998; Brucker, 1999; Ellingsen and
Risso, 2001; Wu and Gharib, 2002; Shew and Pinton,
2006a,b; Shew et al., 2006; Veldhuis et al., 2008). It
has been observed experimentally that the oscillations
amplitude A ∼ 0.0035 m and frequency f ∼ 5 Hz
(Loth, 2010). When these values are substituted into
Eq. (12) a correction for the terminal velocity is
obtained in Eq. (10). This correction depends on
the amplitude, frequency and experimental values for
the terminal velocity. The following equation was
consequently fitted

ϕ = 71.388 − 12.054de (13)

Taking into account all the aforementioned facts, Fig.
4 plots the predictions of Eq. (10) considering the
helical paths followed by the bubbles. It should be
remarked that when de < 0.17 and de > 0.67, then
ϕ = 90◦ and the trajectory is rectilinear (sinϕ = 1).
The corrected fit is similar to that of Fan and Tsuchiya
(1990) and Jamialahmadi et al. (1994) equations, all
with a relative average error of about 5 % (absolute).

Experimental data for other liquids than water are
scarce. Aqueous solutions and water are most relevant
for practical purposes. Even, Eq. (1), along with Eqs.
(6) and (8) can also be used to calculate the bubble
terminal velocity for pure liquids.
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Table 1. Critical equivalent diameter (dec) for the onset of path instability of rising bubbles in pure liquids at
20-22 ◦C.

Liquid dec (cm) dec (cm) Reference
[Eq. (1) with (6) and (8)] (Experimental data)

Pure water 0.17 0.18 Duineveld (1995)
Methanol 0.12 0.13 Hartunian and Sears (1957)
Ethanol 0.16 0.17 Hartunian and Sears (1957)
Benzene 0.12 0.12 Hartunian and Sears (1957)
Silicone oil (DMS-T00) 0.11 0.13 Zenit and Magnaudet (2008)
Silicone oil (DMS-T02) 0.19 0.22 Zenit and Magnaudet (2008)
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Fig. 5. Relative error (%) for the predictions of the
proposed formulation compared to experimental data
for various pure liquids.

In Fig. 5 the relative errors for the formulation
predictions of this work with respect to experimental
data by Haberman and Morton (1953) and Peebles
and Garber (1953) are shown. Even if the error
values are not as small as for pure water, 72 % of
the points have a relative error less than 25 %. These
results are similar to those obtained by using Fan
and Tsuchiya (1990) and Jamialahmadi et al. (1994)
equations. With respect to the path instability critical
diameter prediction, the formulation of this work is
good for bubbles rising in pure liquids of low viscosity,
according to the comparison against experimental
results, shown in Table 1. For bubbles rising in viscous
liquids, it is possible that the oscillatory regime could
not be clearly observed, since it can be inhibited by
viscous effects. Anyway, more thorough studies for
pure liquids, other than water, are still necessary to
explain satisfactorily the motion of bubbles and their
corresponding regimes.

Conclusions
An equation was obtained for the terminal velocity
of bubbles rising in pure liquids, particularly valid
for the intermediate and inertial regimes of bubble
motion. The formulation uses a weighting of the force
balance obtained from boundary layer theory for non-
distorted bubbles and an analytical equation coming
from a mechanical energy balance. Predictions
obtained this way fit better the available experimental
data for bubbles rising through pure water (de >
0.04 cm), improving the results obtained by other
similar formulations that do not require bubble shape
geometrical parameters. Oscillatory motion is the
only situation that required the introduction of a
correction, assuming helical rising paths. In general,
the formulation proposed in this work showed to
be adequate to predict terminal velocity of rising
bubbles in pure liquids. Finally, the local extrema,
which bound the onset of the path instability (local
maximum) and the point where inertial effects begin
to dominate (local minimum), are well predicted by
the proposed formulation.

Acknowledgments
The authors respectfully acknowledge the Consejo
Nacional de Ciencia y Tecnologı́a (CONACyT -
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Nomenclature
A amplitude of mean oscillation cycle for

helical bubble motion (m).
de diameter of a spherical bubble of equivalent

volume (m).
dec critical equivalent diameter for onset of

path instability in bubble motion (m).
DH helix mean diameter for spiraling path in

bubble motion (m).
E aspect ratio between minor and mayor axes

of oblate ellipsoidal bubbles.
f frequency of mean oscillation cycle for

helical bubble motion (Hz).
g acceleration of gravity (m/s2).
h vertical bubble displacement that

corresponds to a mean oscillation cycle for
helical bubble motion (m).

|V| magnitude of the bubble motion velocity
vector (m/s).

VT terminal velocity of single bubbles (m/s).
VT1 bubble rise velocity when viscous effects

are important (m/s).
VT2 bubble rise velocity when surface tension

effects are important (m/s).
Greek letters

∆ρ density difference between liquid and
gaseous phases (kg/m3)

µL dynamic viscosity of liquid phase (Pa s)
ρL density of liquid phase (kg/m3).
σ surface tension (N/m)
ν liquid phase velocity due to bubble

displacement (m/s).
ϕ helix mean angle for spiraling path in

bubble motion (◦).
Dimensionless numbers

Eo Eötvos number (∆ρd2
bg/σ).

Re particle Reynolds number (ρLdbVT /µL).
We Weber number (ρLdbVT2/σ).
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