Rising velocity for single bubbles in pure liquids

 

S. Baz-Rodríguez, A. Aguilar-Corona and A. Soria-López

 

 

An equation to predict the terminal rise velocity of single bubbles in stagnant Newtonian liquids is proposed. The formulation combines a force balance obtained from the boundary layer theory for non-distorted bubbles and an analytic equation coming from a mechanic energy balance. Without including geometric parameters, which are difficult to assess, it is assumed that the weighting of dominant forces is enough to adequately predict the terminal velocity in both the intermediate and inertial motion regimes. The proposed equation shows good agreement with experimental data from bubbles rising in pure liquids. Moreover, for bubbles rising in clean water, the effect of helical trajectories was estimated from experimental data trends and included in the formulation as a correction factor for the terminal velocity.