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1Departamento de Ingenierı́a Metalúrgica, Facultad de Ingenierı́a y Ciencias Geológicas, Universidad Católica
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Abstract
For polydisperse suspensions with equal-density solid particles and continuous particle size distribution, design and
operation methodologies of a liquid fluidized bed classifier (LFBC) are introduced, both based on a modified version
of the generalized clarifier-thickener (GCT) model presented by Bürger, Garcı́a, Karlsen, y Towers (2008)Computers
and Chemical Engineering 32, 1181-1202. The LFBC is a special case of the GCT characterized by an upwards-
directed flow of liquid at the lower end of the unit. Moreover, a versatile way to discretize the particle size variable
for the numerical solution of this equation is presented. Numerical examples illustrate the performance of the model
and the effectiveness of design and operation methodologies.

Keywords: suspension, fluidization, modeling, simulation, classifier, design, operation.

Resumen
Para suspensiones polidispersas de partı́culas sólidas de la misma densidad y distribución continua de tamaño, se
presentan metodologı́as de diseño y operación de un clasificador de lecho fluidizado lı́quido (LFBC), ambos basados
en una versión modificada del modelo del clarificador-espesador generalizado (GCT) presentado por Bürger, Garcı́a,
Karlsen, y Towers (2008)Computers and Chemical Engineering 32, 1181-1202. El LFBC es un caso especial del
GCT que se caracteriza por un flujo de lı́quido dirigido hacia arriba en el extremo inferior de la unidad. Por otra
parte, se presenta una forma versátil de discretizar la variable de tamaño de las partı́culas para la solución numérica
de esta ecuación. Ejemplos numéricos ilustran el funcionamiento del modelo y la eficacia de las metodologı́as de
diseño y operación.

Palabras clave: suspensión, fluidización, modelado, simulación, clasificador, diseño, operación.

1 Introduction

Mixtures of disperse solid particles of diverse
size and/or density in a fluid, called solid-fluid
polydisperse suspensions, are encountered in
operations as diverse as mineral processing and food

industry, where usually, it is important to group
together particles of similar sizes or densities, which
is called classification. The classification of particles
in solid-liquid systems has been the subject of many
theoretical and experimental investigations for several
decades.
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When a polydisperse suspension is subject to
sedimentation, particles of different densities and
sizes settle at distinct velocities. Consequently, the
final sediment consists of several layers of different
composition of particles. This form of segregation
is known as differential sedimentation, with faster
settling species forming the bottom-most layers, and
is commonly used to classify particles in industrial
processes. For a system consisting of N different sizes,
but equal densities, of particles, N zones of settling
suspension are formed, with clear liquid above and
a sediment layer at the bottom. The lowest zone,
just above the early sediment boundary, contains all
particle species at their initial concentration, whereas
the region immediately above it is devoid of the largest
particles. Each successive zone contains one fewer
species than the zone below, with the upper zone
containing only the smallest particles.

The author and collaborators (Bürger et al.,
2008) present a model for continuous separation
and classification of polydisperse suspensions, which
extends the model of clarifier-thickener (CT) (Berres
et al., 2004; Bürger et al., 2004; Diehl, 2006; Zeidan
et al., 2004). The feature is singular sinks describing
the continuous discharge of products at several points,
whose composition will vary during a transient startup
procedure. The well-posedness of the resulting model
and the convergence of a numerical scheme for N =

1 are proved by Bürger et al. (2006). They therein
formulate a model for a generalized clarifier-thickener
(GCT) setup, which may include several sinks, can be
operated as a fluidization column, and is allowed to
have a varying cross-sectional area. They also define a
numerical scheme for its simulation.

Several groups of researchers have conducted
experiments with separation devices that are special
cases of the GCT setup, and proposed mathematical
models for them. Nasr-el-Din et al. (1988; 1990;
1999) study columns for the gravity separation and
classification of polydisperse suspensions, that have
a feed source at a central depth level and, which
are tapped near the top and bottom ends. They also
present a mathematical model for the steady-state case
only. Experimental results for a similar setup are also
presented by Spannenberg et al. (1996). Chen et
al. (2002a; 2002b) carry out experiments and develop
models of a liquid fluidized-bed classifier for steady
state (Chen et al., 2002a) and for the transient case
(Chen et al., 2002b). A closely related experimental
study is that of Mitsutani et al. (2005).

There are many papers about design and operation
for separators and classifiers. On design of thickeners

with methods based on Kynch’s theory exist the papers
by Talmage and Fitch (1955), Hassett (1958; 1968),
Moncrieff (1963/64), Wilhelm and Naide (1981), Lev
et al. (1986), Waters and Galvin (1991), Yong
et al. (1996) and Chancelier et al. (1997), see
also the reviews by Concha and Barrientos (1993)
and Schubert (1998); based on computational fluid
dynamics (CFD) and numerical simulation there are
the articles of Kahane et al. (2002), Garrido et al.
(2003), Martin (2004) and Burgos and Concha (2005).
On design of hydrocyclones with empirical models,
there are the works by Castilho and Medronho (2000)
and Kraipech et al. (2006); and with CFD there are the
articles of Olson and Van Ommen (2004), Slack et al.
(2003) and Delgadillo and Rajamani (2005a; 2005b;
2007).

In this paper, we propose a methodology to
design a liquid fluidized bed classifier (LFBC) for
suspensions with solid particles of equal-density and
continuous particle size distribution, and present a
methodology of operation of a LFBC. We also modify
the model for continuous separation and classification
of polydisperse suspensions proposed by Bürger et
al. (2008), by considering a hindered-settling factor
whose exponent depends on the size particle and a
continuous formula for that exponent, among others.
Moreover, a versatile way to discretize the particle size
variable for the numerical solution of this equation is
introduced. We present numerical examples, in part
adopting data from the literature.

2 Mathematical model of
polydisperse suspension
sedimentation

Kinematic models are common approximate
descriptions for multiphase flows that are essentially
one-dimensional, for example in columns and ducts
that are aligned with the driving body force. Usually,
in these applications one continuous phase (for solid-
liquid suspensions, the fluid), and N disperse phases
(solid species) are distinguished. We here consider
polydisperse suspensions with a finite number N of
solid particle species, where particles of species i have
mean diameter di and density ρi, and di , d j or ρi , ρ j

for i , j.
Kinematic models are based on the specification of

the velocity of each species relative to that of the fluid
as a function of the local concentrations of all species.
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Fig. 1. Generalized clarifier - thickener (GCT).

For batch settling, this leads to a strongly coupled
system of N nonlinear and spatially one-dimensional
scalar conservation laws for the vector Φ :=
(φ1, ..., φN)T of volume fractions of all species.
The extension to a continuously operated clarifier-
thickener (CT) unit with a singular feed source leads
to a system with an additional transport flux whose
velocity is a discontinuous function of the spatial
position.

A one-dimensional description is adequate, since
for small particles in liquid-solid fluidized beds,
velocities and compositions are mostly constant on the
perpendicular plane to the direction of gravity force.
In addition, the model used herein is supposed to form
the basis of design and control calculations, for which
low computational cost is desirable. This view is
implicitly adapted in many engineering treatments of
fluidized beds, see for example (Chen et al., 2002a;
Chen et al., 2002b; Greenspan and Ungarish, 1982;
Kim and Klima, 2004; Nasr-El-Din et al., 1988; Nasr-
El-Din et al., 1990; Nasr-El-Din et al., 1999; Zeidan
et al., 2004), and other work cited herein.

2.1 Model equations

We consider a vessel as shown in Fig. 1. We denote
by φ : = φ1 + ... + φN the total solids concentration.
If v f is the fluid phase velocity, and S (x) is the cross-
sectional area of the vessel at depth x (x-axis has the
origin at the level of feeding and growing downward),
then the one-dimensional continuity equations for the
N solids phases can be written as

S (x)
∂φi

∂t
+
∂

∂x
(S (x)φivi) = 0, i = 1, . . . ,N, (1)

− S (x)
∂φ

∂t
+
∂

∂x
(S (x)(1 − φ)v f ) = 0. (2)

Introducing the volume flow,

Q(x, t) := S (x)(φ1v1 + · · · + φNvN + (1 − φ)v f ), (3)

we obtain by adding eqs. (1) and (2) the mixture
continuity equation ∂Q(x, t)/∂x = 0. Since a
constitutive equation will be introduced for the solid-
fluid relative velocities or slip velocities ui := vi − v f ,
i = 1, ...,N , we use Eq. (3) and ∂Q(x, t)/∂x = 0 to
rewrite Eq. (1) as

S (x)
∂φi

∂t
+
∂

∂x

Q(x, t)φ + S (x)φi

ui −

N∑
j=1

φ ju j


 = 0,

i = 1, . . . ,N. (4)

We define the parameters δi := di/d1 and ρ̄i := ρi − ρ f

for i = 1, ...,N , and µ := gd1/(18µ f ), where ρ f

and µ f are the density and the viscosity of the fluid,
respectively, and g is the acceleration of gravity, in
addition, we specify the phase space of physically
relevant concentrations as

Dφmax := {(φ1, ..., φN) : φ1 > 0, ..., φN > 0, φ 6 φmax} ,
(5)

where 0 < φmax 6 1 is the maximal solids
concentration.

Within the Masliyah-Lockett-Bassoon (MLB)
model (Lockett and Bassoon, 1979; Masliyah, 1979),
ui is specified as

ui = ui(Φ) =
µδi

1 + 0.15Re0.687
i

Vi(φ)(ρ̄i − ρ̄
T Φ)

i = 1, . . . ,N. (6)

for Rei < 1000, where ρ̄ := (ρ̄1, . . . , ρ̄N)T and Vi(φ)
is a hindered settling factor that takes into account
the presence of other particles. This function can for
example, be chosen as

Vi(φ) =

 (1 − φ)ni−2 for φ ∈ [0, φmax],
0 otherwise,

ni > 2, (7)
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according to Richardson and Zaki (1954), where ni is
a number specified later.

To ensure that the solution assumes values in Dφmax ,
we herein choose Vi(φ) as

Vi(φ) =


(1 − φ)ni−2 for φ ∈ [0, φq),

(1 − φq)ni−2 φmax − φ

φmax − φq
for φ ∈ [φq, φmax],

0 otherwise,

ni > 2, (8)

which continuously goes to zero as φ → φmax and,
where 0 < φq < φmax is a parameter.

Rei is the particle Reynolds number for species i,

Rei := |ui| (1 − φ)
diρ f

µ f
(9)

The pair of equations (6) and (9) defines ui implicitly.
To avoid this implicit form and to be consistent with
previous work, in particular, with the stability analysis
of Basson et al. (2009), we approximate Rei by

Rei ≈ R̃ei := µδi |ρ̄i| β(1 − φmax)ni
diρ f

µ f
(10)

where β > 0 is a constant parameter that has to be
adjusted, and the exponent ni is specified below. Then,
we utilize

ui = µδ̃iVi(φ)(ρ̄i − ρ̄
T Φ),

δ̃i = δi/(1 + 0.15R̃e
0.687
i ), for R̃ei < 103,

i = 1, . . . ,N.

(11)

For spherical particles, the exponent ni depends on the
particle Reynolds number at infinite dilution, Re∞,i,
and may be given by

ni =
5.1 + 0.27 Re0.9

∞,i

1.0 + 0.1 Re0.9
∞,i

for all Re∞,i, i = 1, . . . ,N,

(12)
according to Garside and Al-Dibouni (1977). Re∞, i :=
ρ f v∞, idi/µ f is the particle Reynolds number based on
the particle settling velocity at infinite dilution, v∞,i,
which we calculate as follows (Kunii and Levenspiel,
1991):

v∞, i =
(µ f ρ̄ig)1/3

ρ2/3
f (18/(di

∗)2 + 0.591/(di
∗)0.5)

,

d∗i := di

ρ f ρ̄ig

µ2
f

1/3

, i = 1 , ... , N.

(13)

Inserting Eq. (11) into Eq. (4) yields the system of
conservation laws

S (x)
∂Φ

∂t
+

∂

∂x

(
Q(x, t)Φ + S (x) f M(Φ)

)
= 0, (14)

where the components of the vector

f M(Φ) := ( f M
i (Φ), ..., f M

N (Φ))T (15)

are the MLB flux functions given by

f M
i (Φ) := µφi

Vi(Φ)δ̃i

ρ̄i −

N∑
j =1

ρ̄ jφ j


−

N∑
k = 1

Vk(Φ)δ̃kφk

ρ̄k −

N∑
j =1

ρ̄ jφ j


 , i = 1, ...,N.

(16)
For the stability analysis of the model for the slip
velocity presented here, the reader may refer to work
of Basson et al. (2009).

3 The renewed generalized
clarifier-thickener (GCT)
model

Bürger et al. (2008) consider a vessel with
axisymmetric circular interior cross-sectional area and
circular cylindrical outer pipes as shown in Fig. 1.
This unit can be operated continuously in two modes,
the clarifier-thickener (CT) mode and the fluidization
column (FC) mode. In the CT mode, the feed
flow is divided into upwards- and downwards-directed
bulk flows, and the upper and lower ends of the
unit are identified as overflow and underflow levels,
respectively, whereas in the FC mode, there is an
additional counter-gravity bulk inflow of liquid from
x = xR.

We herein subdivide the unit into four different
zones: the overflow zone (x < xL), the clarification
zone (xL < x < 0), the settling zone (in CT mode) or
fluidization zone (in FC mode) (0 < x < xR), and the
underflow zone (in CT mode) or water inflow zone (in
FC mode) (x > xR). The vessel is continuously fed at
depth x = 0, the feed level, with fresh feed suspension,
and it has discharge outlets for products at different
depths located above and below the feed point.

3.1 Suspension bulk flows

The suspension is fed at the volume rate QF(t) ≥ 0
and, QO(t) and QU(t) are the volume bulk flows at
overflow and underflow, respectively, where QU(t) > 0

516 www.rmiq.org
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and QU(t) ≤ 0 in the CT and FC modes, respectively,
and QO(t) ≤ 0.

Now let us include discharge openings located at
0 > x1

L > . . . > xnL
L > xL and 0 < x1

R < . . . < xnR
R < xR

associated with the respective discharge rates Q1
L(t) 6

0, ..., QnL
L (t) 6 0 and Q1

R(t) 6 0, ..., QnR
R (t) 6 0. We can

write the bulk flow as

Q(x, t) =


QO(t) +

nL∑
j=1

Q j
L(t)H(x − x j

L) for x < 0,

QU(t) −
nR∑
j=1

Q j
R(t)H(x j

R − x) for x > 0.

H(ξ) :=
 1, si ξ > 0,

0, si ξ < 0,
(17)

3.2 Solids feed and sink terms

As in Bürger et al. (2008), we assume that for x > xR

and x < xL, the cross sectional area shrinks to a very
small value, so that these zones actually correspond
to transport pipes in which all solids (if any) move
with the velocity of the fluid. Consequently, the
slip velocities u1, ..., uN are “switched off” outside the
vessel interior (xL, xR) by the discontinuous function

γ1(x) :=
 S (x) if xL < x < xR,

0 otherwise.
(18)

The next step is to replace Eq. (14) by the system of
equations

S (x)
∂Φ

∂t
+

∂

∂x

(
Q(x, t)Φ + γ1(x) f M(Φ)

)
= 0, (19)

where Q(x, t) is given by Eq. (17). Next, we consider
that at x = 0, the unit is fed at a volume rate QF(t) ≥ 0
with feed suspension that contains solids of species 1
to N at the volume fractions φF

1 (t) to φF
N(t). We assume

that

ΦF(t) := (φF
1 (t), ..., φF

N(t))T ∈ Dφmax for all t > 0.
(20)

The feed mechanism gives rise to an additional
singular source term to Eq. (19), so that we now
consider the equation

S (x)
∂Φ

∂t
+

∂

∂x

(
Q(x, t)Φ + γ1(x) f M(Φ)

)
= δ(x)QF(t)ΦF(t),

(21)

where δ(x) is the Dirac delta function centered at
x = 0. Using the Heaviside function we may

absorb the right-hand side of Eq. (21) into the flux
function. Furthermore, we take into account that
the sink terms model the discharge of suspension of
unknown concentration. This leads to the equation

S (x)
∂Φ

∂t
+

∂

∂x

(
Q(x, t)Φ + γ1(x)fM(Φ)

−H(x)QF(t)ΦF(t)
)

=

nL∑
m = 1

H(x − xm
L )Qm

L (t)Φ(x, t)

+

nR∑
l = 1

H(x − xl
R)Ql

R(t)Φ(x, t),

which can be rewritten as

S (x)
∂Φ

∂t
+

∂

∂x

(
Q(x, t)Φ + γ1(x)fM(Φ) + K(x, t)Φ

−H(x)QF(t)ΦF(t)
)

= K(x, t)
∂Φ

∂x
, (22)

where we define the piecewise constant (with respect
to x) function

K(x, t) := −
nL∑

m = 1

H(x − xm
L )Qm

L (t)−
nR∑

l = 1

H(x − xl
R)Ql

R(t).

(23)

3.3 Final form of the mathematical model

We assume that the control variables QF(t), QU(t) and
QO(t) as well as the discharge fluxes controlling the
sink terms are constant. Then, in view of Eq. (17),
and adding the constant vector −QOΦF into the spatial
derivative of the left-hand side of Eq. (22), we can
rewrite Eq. (22) as

S (x)
∂Φ

∂t
+
∂

∂x
g(x,Φ) = K(x)

∂Φ

∂x
,

where we define

g(x,Φ) :=

 QO(Φ − ΦF) + γ1(x)fM(Φ) for x < 0,

(QO + QF)(Φ − ΦF) + γ1(x)fM(Φ) for x > 0,

and K(x) is the time-independent version of K(x, t).
Defining the discontinuous parameter

γ2(x) :=
 QO for x < 0,

QO + QF for x < 0,
(24)

and the vector γ(x) := (γ1(x), γ2(x)), we obtain

g(x,Φ) = f (γ(x),Φ) := γ1(x)fM(Φ) + γ2(x)(Φ − ΦF).
(25)
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Fig. 2. A Liquid Fluidized Bed Classifier (LFBC) with
one lower sink.

This yields the governing equation

S (x)
∂Φ

∂t
+

∂

∂x
f(γ(x),Φ) = K(x)

∂Φ

∂x
(26)

This system is solved together with the initial
condition

Φ(x, 0) = Φ0(x) := (φ0
1(x), ..., φ0

N(x))T ∈ Dφmax .
(27)

4 The liquid fluidized bed
classifier

4.1 Preliminaries

In this section, we determine conditions on the cross-
sectional area and volume flow rates of a Liquid
Fluidized Bed Classifier (LFBC) (see Fig. 2) under
which the MLB mathematical model predicts the
existence of different compositions inside the unit and
of the overflow, underflow and discharge streams, for
given volume flow rates QF and QU , and concentration
vector ΦF . We consider suspensions in which the solid

species differ in size only (i.e., ρ1 = ρ2 = ... = ρN =:
ρs), then Eq. (16) simplifies to the following equation:

f M
i (Φ) := µ

(
ρs − ρ f

)
φi (1 − φ)

Vi(Φ)δ̃i −

N∑
k = 1

Vk(Φ)δ̃kφk

 ,
i = 1, ...,N. (28)

4.2 Design of a LFBC

4.2.1. Criterion 1

We choose as first criterion for design of a LFBC that
particles of the largest species (species 1) do not leave
the column by the underflow, with the purpose of do
not block the pipe for the fluidization liquid. Then, in
the zone below the lowest sink, the value of the flux of
the largest species must be less than or equal to zero,
i.e.

S (x) f M
1 (Φ) + QUφ1 6 0, x > xnR

R ,

from which we obtain

S (x) 6 −
QUφ1

f M
1 (Φ)

, x > xnR
R .

Moreover, we may expect that the largest species is the
only present in that zone, so the volume fraction vector
has the form

Φ = Φ̂ := (φ̂1, 0, . . . , 0)T . (29)

Therefore, for given QU < 0 and φ̂1 such that 0 < φ̂1 6
φmax, the maximum cross-sectional area of the column
in the fluidization zone is given by

S R
max := −

QU φ̂1

f M
1 (Φ̂)

. (30)

4.2.2. Criterion 2

A second criterion for design of a LFBC is that
particles of the smallest species (species N) do not
leave the column by the overflow, with the purpose of
obtaining a clean liquid. Then, in the zone over the
uppermost sink, the value of the flux of the smallest
species must be greater than or equal to zero, i.e.

S (x) f M
N (Φ) + QOφN > 0, x 6 xnL

L ,

from which we obtain

S (x) > −
QOφN

f M
N (Φ)

, x 6 xnL
L .

Moreover, we may suppose that the smallest species is
the only present in that zone, so the volume fraction
vector has the form

Φ = Φ̃ := (0, . . . , 0, φ̃N)T . (31)
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Therefore, for given QO < 0 and φ̃N such that 0 <
φ̃N 6 φmax, the minimum cross-sectional area of the
column in the clarification zone is given by

S L
min := −

QOφ̃N

f M
N (Φ̃)

. (32)

4.3 Operation of a LFBC

We denote x+ and x− as the right and left limits of x,
respectively. Furthermore, in this section for a general
function G(x, t), because t = t0 is given, we simplify
the notation in the following way: G(x+) := G(x+, t0),
G(x−) := G(x−, t0).

4.3.1. Volume balance for each species in a node with
singular source or sink located at x = x̃

This volume balance will be useful for studying the
bulk flows and concentrations around singular sources
and sinks. For species i, Fi(x, t) represents the flux
function in x-direction and FS

i (t) is the singular flux
term located at x = x̃, then the volume balance for
species i in a control volume with center at x = x̃ and
thickness 2δ is the following∫ x̃+δ

x̃−δ
S (x)

∂φi

∂t
dx = −Fi(x̃ + δ, t) + Fi(x̃ − δ, t) + FS

i (t),

i = 1, . . . ,N. (33)

Let δ → 0, then the volume balance for each species
at x = x̃ results

FS
i (t) = Fi(x̃+, t) − Fi(x̃−, t), i = 1, . . . ,N,

And as t = t0 is given, we simplify the notation of the
above equation as follows:

FS
i = Fi(x̃+) − Fi(x̃−), i = 1, . . . ,N. (34)

Then, for the volume balance at x = 0 for each species,
we apply the Eq. (34) to yield

QFφ
F
i =QRφi(0+) + S (0+) f M

i (Φ(0+)) (35)

− QLφi(0−) − S (0−) f M
i (Φ(0−)), i = 1, . . . ,N,

4.3.2. Condition 1: Separation of species 1, . . . ,m
from species m + 1, . . . ,N in the feed point at x = 0

This condition means that no particles of species 1 to
m in x < 0, and no particles of species m + 1 to N in
x > 0, or equivalently particles of species 1 to m move
downward in x < 0, and particles of species m + 1 to

N move upward in x > 0. Then, the following flux
relations are valid

QLφi(0−) + S (0−) f M
i (Φ(0−)) > 0, i = 1, . . . ,m,

QRφi(0+) + S (0+) f M
i (Φ(0+)) < 0, i = m + 1, . . . ,N,

which we replace in Eq. (35) to produce the following
relations

−QFφ
F
i +QRφi(0+)+S (0+) f M

i (Φ(0+)) > 0, i = 1, . . . ,m.
(36)

QFφ
F
i +QLφi(0−)+S (0−) f M

i (Φ(0−)) < 0, i = 1+m, . . . ,N.
(37)

Because of the numeration of solid particles species of
same density, relations (36) and (37) can be reduced to
the following ones

−QFφ
F
m + QRφm(0+) + S (0+) f M

m (Φ(0+)) > 0,

QFφ
F
m+1 + QLφm+1(0−) + S (0−) f M

m+1(Φ(0−)) < 0,

from which we obtain the relation for our Condition 1

LQL (m + 1) < QL < UQL (m) (38)

with

LQL (m + 1) :=
−QFφ

F
m+1 − S (0−) f M

m+1(Φ(0−))
φm+1(0−)

(39)

and

UQL (m) :=
QFφ

F
m − S (0+) f M

m (Φ(0+))
φm(0+)

− QF (40)

4.3.3. Condition 2: Separation of species m from
species 1, . . . , m − 1 in the sink point at x = x1

R

This condition means that all particles of species m
in x > 0 go through the sink at x = x1

R. The
generalization of this case to others sink points is
simple.

First, we require that particles of species m move
downward, i.e.

Fm(x1−
R ) := QRφm(x1−

R ) + S (x1−
R ) f M

m (Φ(x1−
R )) > 0.

(41)
Second, we need that all particles of species m in x > 0
go through the sink, then

Fm(x1−
R ) = −Q1

Rφ
R1
m . (42)

Finally, because the water flow for fluidization, the
volume fraction of species m in the sink is less or equal
than that above the sink level, i.e.

φR1
m 6 φm(x1−

R ). (43)

www.rmiq.org 519
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The Condition 2 of separation of species is obtained
combining the relations (41), (42) and (43), in the
following one

0 < Fm(x1−
R ) 6 −Q1

Rφm(x1−
R ). (44)

For the scalar case, the above relation (44) can be
derived from the jump conditions given by Bürger et
al. (2006).

5 Numerical scheme

5.1 Discretization of the interior of the
GCT

We discretize the spatial domain into cells I j :=[
x j−1/2, x j+1/2

)
, j ∈ {0,±1,±2, ...}, where xk = k∆x

for k ∈ {0,±1/2,±1,±3/2, ...}. Similarly, the time
interval (0,T ) is discretized via tn = n∆t for n ∈
{0, ...,N}, where N = [T/∆t] + 1, which results in
the time strips In := [tn, tn + 1), n ∈ {0, ...,N − 1}.
Here ∆x > 0 and ∆t > 0 denote the spatial and
temporal discretization parameters, respectively. We
set ∆x := L/(J+1) where L is the height of the column
and J is a natural number, and ∆t is chosen so that the
following stability condition (CFL condition) holds:

∆t
∆xS min

(max ρ(Jf(γ,Φ)) + max
x ∈ (−∞,∞)

K(x)) 6
1
8
,

where ρ(·) denotes the spectral radius, Jf(γ,Φ) the N×
N Jacobian of f (γ,Φ), and S min = minx ∈ (−∞,∞)S (x).

In the numerical scheme, we approximate
max ρ(Jf(γ,Φ)) by

α := max
x ∈ (−∞,∞)

∣∣∣γ2(x)
∣∣∣ + S max max

16 i6N

{ ∣∣∣vi
∞

∣∣∣ } , (45)

where S max = maxx ∈ (−∞,∞)S (x), and vi
∞ is given

by Eq. (13) with d and ρs replaced by di and ρi,
respectively.

We denote by G(x−) the limit of a function G(ξ) for
ξ → x, ξ < x, and introduce the difference operators
∆−V j := V j − V j− 1 and ∆+V j := V j + 1 − V j.

Our scheme is a direct modification of the one
described by Kurganov and Tadmor (2000). Let
Un

j := (Un
1, j, ... , Un

N, j)
T denote our approximation

to Φ(x j, tn). Expressed in terms of the forward Euler
solver, we consider the one-parameter family of

Runge-Kutta schemes

U(1)
j = Un

j − λ j∆−h(γ j+1/2 , Un
j = 1, ... , Un

j + 2) + λ jK j∆ +Un
j ,

U(k + 1)
j = (1 − ηk)

[
U(k)

j − λ j∆−h(γ j + 1/2, U(k)
j−1, ... , U(k)

j + 2)

+ λ jK j∆+U(k)
j

]
+ ηkUn

j , k = 1, 2, ... , s − 1,

Un + 1
j := U(s)

j ,

(46)
where γ j + 1/2 := γ(x−j + 1/2), λ j := ∆t/(S j∆x) with
S j := S (x−j ), K j := K(x−j ), and U0

j := Φ0(x−j ).
We employ second-order time differencing (s = 2),
for which η1 = 1/2; for third-order time differencing
(s = 3), the appropriate values are η1 = 3/4 and
η2 = 1/3.

The numerical flux vector h appearing in Eq. (46)
is given by

h(γ j + 1/2, Un
j−1, ... , Un

j + 2) :=
1
2

[
f(γ j + 1/2, U+

j + 1/2(tn))

+ f(γ j + 1/2, U−j + 1/2(tn))
]

−
1
2

an
j + 1/2

[
U+

j + 1/2(tn) − U−j + 1/2(tn)
]
, (47)

which is expressed in terms of the intermediate values

U+
j + 1/2(tn) := Un

j + 1 −
∆x
2

(Φx)n
j +1,

U−j + 1/2(tn) := Un
j −

∆x
2

(Φx)n
j , (48)

and the local speeds of propagation an
j + 1/2, which we

estimate by

a j + 1/2 = γ1(x−j + 1/2) max
{∣∣∣v1
∞

∣∣∣ , ... , ∣∣∣v N
∞

∣∣∣} +
∣∣∣γ2(x−j + 1/2)

∣∣∣ .
(49)

The numerical derivatives are determined by

(Φx)n
j :=

1
∆x

MM
{
θ(Un

j − Un
j−1),

1
2

(Un
j + 1 − Un

j−1)

, θ(Un
j + 1 − Un

j )
}
, (50)

where θ ∈ [1, 2] is a parameter and MM(·, ·, ·) is the
minmod function:

MM(a, b, c) :=


min {a, b, c} if a, b, c > 0,
max {a, b, c} if a, b, c < 0,
0 otherwise.

(51)
As stated by Kurganov and Tadmor (2000), in the
scalar case (N = 1) the value θ = 2 corresponds to the
least dissipative limiter, while θ = 1 ensures the non-
oscillatory nature of the approximate solution. The
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best choice of θ depends on the model considered. For
systems, the optimal values of θ vary between 1.1 and
1.5 (Kurganov and Tadmor, 2000). As a compromise,
and following previous works (Berres et al., 2004;
Qian et al., 2005), we choose θ = 1.3 in all examples.

For the justification of the numerical scheme the
reader may refer to work of Bürger et al. (2008).

6 Discretization of a suspension
with CPSD

6.1 Reduced size

Definition 1. Let d be the particle diameter, dmax

be the diameter of the largest particle, and k > 0 a
parameter. We define the Reduced Size as

ξ =

(
d

dmax

)k

, d ∈ [0, dmax] . (52)

In function of ξ, the Rosin-Rammler particle size
distribution is written as

FRR(ξ) := 1 − exp
(
−

[
dmax

l
ξ1/k

]m)
, ξ ∈ [0, 1]

where l is a characteristic size and m is a uniformity
coefficient.

Definition 2 (Normalized Rosin-Rammler). Since
FRR(1) < 1, we define the Normalized Rosin-Rammler
particle size distribution as

FRRn(ξ) := FRR(ξ)/FRR(1), ξ ∈ [0, 1] (53)

6.2 Discretization of a CPSD

We discretize the Reduced Size by defining

ξi+1/2 := (N − i)∆ξ, (54)

for i = 0, ...,N, where N ∈ N and ∆ξ := 1/N.
Definition 3 (Species in a CPSD). We call

“Species i” for i = 1, . . . , N, the solid particles
with sizes between ξi+1/2 and ξi−1/2.

Herein, we assign to species i the mean reduced
size

ξi =
1
2

(ξi+1/2 + ξi−1/2)

If φF(t) denotes the total solids volume fraction of
a feed suspension, the feed volume fraction of the

species i is given by

φF
i (t) =

∫ ξi− 1/2

ξi + 1/2

φF(t)F′RRn(ξ)dξ

= φF(t)
[
FRRn(ξi− 1/2) − FRRn(ξi + 1/2)

]
,

t > 0, i = 1, . . . ,N. (55)

Remark 1. Our definition of the Reduced Size
is very useful. For example, when Gates-Gaudin-
Schumann CPSD, FGGS (d) := (d/dmax)m, d ∈

[0, dmax], m > 0 is used and if we choose k = 1/m, then
φF

i (t) = φF(t)/N. Moreover, if k = 1, then di = dmaxξi,
for i = 1, ...,N.

Remark 2. Herein we use the arithmetic mean
to determine the mean reduced size of each species,
but it is possible to improve the calculation of that,
considering the particle size distribution inside each
species. Of course, while the number of species be
greater, the difference between both means will be
less.

Table 1. Physical parameters for the model fit.

Parameter Quantity

N 2
d1 [m] 9.0 × 10−4

d2 [m] 5.5 × 10−4

ρ1 [kg/m3] 2470
ρ2 [kg/m3] 2470

n1 2.96
n2 3.24

ρ f [kg/m3] 998.2
µ f [kg/m3] 1.005 × 10−3

7 Numerical examples

7.1 Example 1: Model fit

We here adopt experimental data from the work of
Chen et al. (2002a) for the steady-state separation
of a bidisperse suspension in a liquid fluidized bed
classifier. The vessel, Fig. 2, corresponds to
equipment “T-2” of Chen et al. (2002a), and is
described by its interior cross-sectional area

S (x) :=


4.54 × 10−3 m2 for x 6 −0.165 m,

0.0287 m2 for − 0.165 m < x 6 0.915 m,

S 1(x) m2 for 0.915 m < x 6 1.709 m,

2.04 × 10−3 m2 for x > 1.709 m,
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including a conical segment defined by

S 1(x) :=
1

0.7942

[
1.709

√
0.0287 − 0.915

√
2.04 × 10−3

+

( √
2.04 × 10−3 −

√
0.0287

)
x
]2

The solids parameters correspond to glass beads of
two sizes. For this suspension, we use Eq. (8) with
φq = 0.63 and φmax = 0.68, and use Eq. (10) with
β = 0.19.

The physical and operation parameters are given in
tables 1 and 2, respectively.

In this example we record an approximate L1 error
defined with respect to a reference solution, to evaluate
the performance of the scheme. We introduce a L1

error, denoted by e1, which is defined by

e1 := ∆̃x
MR∑

i=ML

m∑
j=1

N∑
k=1

∣∣∣Ũn
k,m(i−1)+ j − Un

k,i

∣∣∣,
where Ũn

k,i and Un
k,i are the reference solution at x = xi

and the approximate solution at x = xi, respectively,
both for species k at t = tn; m is the value of the
division between ∆x of the approximate solution and
that of the reference solution; ML and MR are the
indices of the positions between which we calculate
the errors of the numerical approximation; and ∆̃x is
the spatial discretization parameter of the reference
solution. The reference solution was calculated with
the discretization parameters ∆x = 3.470×10−3 m and
∆t = 7.352 × 10−5 s.

Table 2. Operation parameters for the model fit.

Parameter Quantity

φF
1 0.0676
φF

2 0.0624
QF [m3/s] 5.960 × 10−3

QR [m3/s] −1.444 × 10−3

QL [m3/s] −7.404 × 10−3

QR
1 [m3/s] −3.668 × 10−4

Table 3. Physical data and feed volume flow
for numerical examples 2 to 5.

Parameter Quantity

ρs [kg/m3] 2470
ρ f [kg/m3] 998.2
µ f [kg/m3] 1.005 × 10−3

QF [m3/s] 5.0 × 10−4

Fig. 3. Comparison of total concentration φ in
steady state predicted by the model with experimental
data extracted from the work of Chen et al. (2002a).

Fig. 4. Comparison of three discretization sizes for
the solution of the total concentration φ in steady state.

Fig. 5. Approximate L1 errors of the solution of
the total concentration φ in steady state for different
discretization sizes.

Fig. 3 indicates that the model fits reasonably well
the experimental data reported in Fig. 3 by Chen et al.
(2002a) that have been obtained by sampling.

In figs. 4 and 5 we observe that the numerical
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scheme converges to the reference solution.

Data for next examples

In all next examples, the vessels are similar to that
of the model fit (Fig. 2), i.e., it has one only sink
located under the feed point. On the other hand, the
fluid is water at 20 oC, the solid is a chalcopyrite
concentrate with continuous particle size distribution
with Rosin-Rammler parameters dmax = 1.13 × 10−3

[m], m = 0.7254 and l = 8.0495, and the reduced size
parameter k = 0.5.

The common physical and operational data for the
examples are given in Table 3.

For Examples 2, 3 and 4 the set of particles with
continuous size distribution is divided in 5 species.
The calculated parameters for they are given in Table
4.

For Example 5 the set of particles with continuous
size distribution is divided in 10 species. The
calculated parameters for it are given in Table 5.

The operational parameters for numerical
examples 2 to 5 are given in Table 6.

Table 4. Calculated parameters for Examples 2 to 4.

Species di [m] φF
i ni

1 9.15 × 10−4 5.53 × 10−2 3.12
2 5.54 × 10−4 4.94 × 10−2 3.56
3 2.83 × 10−4 4.24 × 10−2 4.40
4 1.02 × 10−4 3.36 × 10−2 5.03
5 1.13 × 10−5 1.94 × 10−2 5.10

Table 5. Calculated parameters for Example 5.

Species di [m] φF
i ni

1 1.02 × 10−3 2.83 × 10−2 2.92
2 8.16 × 10−4 2.69 × 10−2 3.00
3 6.36 × 10−4 2.55 × 10−2 3.14
4 4.77 × 10−4 2.39 × 10−2 3.36
5 3.42 × 10−4 2.22 × 10−2 3.73
6 2.29 × 10−4 2.02 × 10−2 4.25
7 1.38 × 10−4 1.81 × 10−2 4.76
8 7.06 × 10−5 1.55 × 10−2 5.03
9 2.54 × 10−5 1.23 × 10−2 5.10

10 2.82 × 10−6 7.09 × 10−3 5.10

Table 6. Operational data for numerical examples 2 to 5.

Example QR [m3/s] QL [m3/s]

2 −5.0 × 10−4 −1.0 × 10−3

3 4.9 × 10−4 −1.0 × 10−5

4 −3.0 × 10−3 −3.5 × 10−3

5 −3.0 × 10−3 −3.5 × 10−3

Example Q1
R [m3/s] QU [m3/s]

2 −1.8 × 10−3 −2.3 × 10−3

3 −5.4 × 10−4 −5.0 × 10−5

4 −3.5 × 10−3 −5.3 × 10−3

5 −3.5 × 10−3 −6.5 × 10−3

7.2 Example 2: Design of a classifier
according to Criterion 1

In this example, the criterion for designing a classifier
is that the largest particles must not leave the column
by the underflow. The vessel is described by

S (x) :=


4.54 × 10−3 m2 for x 6 −0.165 m,

S R
max for − 0.165 m < x 6 0.915 m,

S 2(x) for 0.915 m < x 6 1.709 m,

2.04 × 10−3 m2 for x > 1.709 m,

including a conical segment defined by

S 2(x) :=
1

0.7942

[
1.709

√
S R

max − 0.915
√

2.04 × 10−3

+

(√
2.04 × 10−3 −

√
S R

max

)
x
]2

.

The expected volume fraction of species 1 in the zone
below the sink is φ1 = 0.03. Then, according to Eq.
(30), the maximum cross-sectional area in the zone
below the sink is S R

max = 1.851 × 10−2 [m2].

Figs. 6 and 7 show the simulated volume fractions
until steady state is reached of species 1 and 3 and,
species 5 and total, respectively. Fig. 8 shows the
volume fractions of each species and total, versus x in
steady state. Fig. 8 shows that the species 1, which is
the largest, not output from the underflow and reaches
a volume fraction equal to 0.03, which is the expected
concentration. Furthermore, it is seen that 1 is the only
species present in the area below the sink.
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Fig. 6. Example 2: Simulated volume fractions (a) φ1
(Species 1), (b) φ3 (Species 3).

Fig. 7. Example 2: Simulated volume fractions (a) φ5
(Species 5), (b) φ (Total solids).

Fig. 8. Example 2: Simulated volume fractions at steady state.
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7.3 Example 3: Design of a classifier
according to Criterion 2

In this example, the criterion for designing a classifier
is that the smallest particles must not leave the column
by the overflow. The vessel is described by

S (x) :=


4.54 × 10−3 m2 for x 6 −0.165 m,

S L
min for − 0.165 m < x 6 0.915 m,

S 3(x) for 0.915 m < x 6 1.709 m,

1.836 × 10−2 m2 for x > 1.709 m,

including a conical segment defined by

S 3(x) :=
1

0.7942

[
1.709

√
S L

min − 0.915
√

1.836 × 10−2

+

( √
1.836 × 10−2 −

√
S L

min

)
x
]2
.

The expected volume fraction of species N in the
zone above the uppermost sink is φN = 0.04. Then,
according to Eq. (32), the minimum cross-sectional
area in that zone is S L

min = 0.1208 [m2].
Figs. 9 and 10 show the simulated volume fractions

until steady state is reached of species 1 and 3, and
species 5 and total, respectively. Fig. 11 shows the
volume fractions of all species and total, versus x
in steady state. Fig. 11 shows that the species 5,
which is the smallest, not output from the overflow.
Furthermore, it is seen that 5 is the only species present
in the area above the feeder.

7.4 Example 4: Operation of a classifier
enforcing Condition 1

In this example, the condition for operation is that no
particles of species 1 to m in x < 0, and no particles of
species m + 1 to N in x > 0. The vessel is described by

S (x) :=


4.54 × 10−3 m2 for x 6 −0.165 m,

0.0574 m2 for − 0.165 m < x 6 0.915 m,
S 1(x) for 0.915 m < x 6 1.709 m,

2.04 × 10−3 m2 for x > 1.709 m,

Fig. 9. Example 3: Simulated volume fractions (a) φ1
(Species 1), (b) φ3 (Species 3).

Fig. 10 Example 3: Simulated volume fractions (a) φ5
(Species 5), (b) φ (Total solids).
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Fig. 11 Example 3: Simulated volume fractions at steady state.

Figs. 12 and 13 show the simulated volume
fractions of species 2 and 3, and total, respectively,
until steady state is reached. Fig. 14 shows the volume
fractions of each species and total, versus x in steady
state. Fig. 14 shows that species 2 and 3 are separated
into the feeder. The species 2 that is larger is directed
downward, while the species 3 is smaller than species
2 is directed upwards.

In Table 7, the values of the lower and upper
bounds of the relation (38) at time t = 200 (s), when
the system is in steady state, are given. Table 7
confirms what is observed in Figs. 12 and 14, in the
sense that species 2 and 3 are separated in the feed
point, as for the species 2 is satisfied the relation (38).

Table 7. Example 4: Values of the lower and upper
bounds of the relation (38) in steady state (t = 200
(s)). Note that species 2 satisfies the relation (38)

because QL = −3.5 × 10−3 [m3/s].

Species LQL (i + 1) UQL (i)

1 −3.5023 × 10−3 -3.6975
2 −3.5013 × 10−3 −3.4997 × 10−3

3 0.1487 −3.5003 × 10−3

4 28.3176 −3.5002 × 10−3

5 60.1320 ∞

Fig. 12 Example 4: Simulated volume fractions (a) φ2
(Species 2), (b) φ3 (Species 3).
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7.5 Example 5: Operation of a classifier
enforcing Condition 2

Here, the condition for operation is that all particles of
species m in x > 0 go through the sink at x = x1/R.
The vessel is the same of the Example 4.

Figs. 15 and 16 show the simulated volume
fractions of species 2 and 3, and 5 and total,
respectively. Fig. 17 shows the volume fractions of
each species and total, versus x near steady state. Fig.
17 shows that in steady state the species 3 does not
lower the level of the sink located at x1/R and leaves
the unit for it. Species 1 and 2 which are larger, lower-
level sink at x1/R.

Fig. 13. Example 4: Simulated total volume fraction
of solids.

Fig. 14. Example 4: Simulated volume fractions in steady state (t = 200 (s)).

Fig. 15. Example 5: Simulated volume fractions (a) φ2 (Species 2), (b) φ3 (Species 3).
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In Table 8, the values of the species flux and upper
bound of the relation (44) at time tss = 100 (s), when
the system is near steady state, are given. Table 8
shows that not only species 3 and 4 do not cross the
level of the sink, as shown in Fig. 17, but so does
the species 5, as for these three species satisfies the
relation (44).

Fig. 16. Example 5: Simulated volume fractions (a) φ5
(Species 5), (b) φ (Total solids).

Fig. 17. Example 5: Simulated volume fractions in steady state.
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Table 8. Example 5: Values of the species flux and
upper bound of the relation (44) near steady state
(tss = 100 (s)). Note that species 3, 4 and 5 satisfy

this relation.

Species Fi(x1−
R , tss) −Q1−

R φi(x1−
R )

1 1.4151 × 10−5 1.0490 × 10−5

2 1.3457 × 10−5 1.1475 × 10−5

3 1.2711 × 10−5 1.4055 × 10−5

4 1.1865 × 10−5 2.2408 × 10−5

5 5.816 × 10−15 7.468 × 10−14

6 0 0
7 0 0
8 0 0
9 0 0

10 0 0

Conclusions
The contribution of this work is summarized as
follows:

• Progress in the model of the generalized
clarifier-thickener, presented by Bürger et al.
(2008), primarily through the adoption of a
hindered settling function for each kind of solid
particles.

• Proposition of a method to discretize the
variables particle size and volume fraction of
species, of a suspension with continuous particle
size distribution.

• Presentation of a methodology for designing a
liquid fluidized bed classifier (LFBC), in the
sense of calculating cross-sectional areas as
operational constraints of the equipment, i.e. the
non-blocking with solid particles of the pipe that
feeds water for fluidization and the collection of
clear water by the upper duct.

• Development of a methodology of operation
of a LFBC, in the sense of handling the
control variables such as volumetric flow at the
entrances and exits of the unit, to obtain the
desired products.

In the work of Bürger et al. (2008), for all
species of particles one hindered settling function
V(φ) are considered, specifically the same exponent
in this function, which is calculated as the arithmetic
average of the exponents calculated for each species of
particles. This assumption we believe is improvable,
as in steady state, in the equipment zones of different

composition of particles are produced according to
their size and density, for example in the case of
a suspension of particles of the same density, the
lower zone of the equipment is occupied by larger
particles, and the upper zone, by smaller particles,
so we believe that every species must have its own
hindered settling function. Other changes to the model
presented by Bürger et al. (2008) are the elimination
of the discontinuity in Rei = 0.1 for the formula of
the solid-fluid relative velocity ui, the change in the
formula for calculating the exponent of the hindered
settling function, from the formula of Richardson and
Zaki (1954), which is discontinuous, to the formula of
Garside and Al-Dibouni (1977), which is continuous,
and the relocation of the adjustable parameter in the
formula for Rei, so as to increase their range of
validity. This work could be useful not only for
the design and operation of a LFBC, but also for all
equipment whose operation can be modeled with the
equations presented here, such as sedimentation of
non-flocculated suspensions.

Nomenclature

di diameter of species i, m
dmax diameter of the largest particle species, m
Dφmax phase space of physically relevant

concentrations defined by Eq. (5)
f M
i (Φ) MLB flux function for species i defined by

Eqs. (16) or (28), m/s
g acceleration of gravity, m/s2

g(x,Φ) vector of flux functions defined by Eq. (25),
m3/s

h numerical flux vector defined by Eq. (47),
m3/s

h numerical flux vector defined by Eq. (47),
m3/s

H Heaviside function defined in Eq. (17)
J number of discretization intervals of space
K(x) piecewise constant function defined by Eq.

(23), m3/s
L classifier height, m
l characteristic size of the distribution

function of Rosin-Rammler, m
LQL lower limit of condition 1 for operation of a

LFBC defined by Eq. (39), m3/s
m exponent of the distribution function of

Rosin-Rammler
MM minmod function defined in Eq. (51)
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ni exponent of the hindered settling function
for species i

N number of species in the suspension solid
QF volume flow of the suspension at the feed,

m3/s
QO volume flow of the suspension at the

overflow, m3/s
QU volume flow of the suspension at the

underflow, m3/s
Q j

L volume flow of the suspension at the upper
side discharge j, m3/s

Q j
R volume flow of the suspension at the lower

side discharge j, m3/s
Rei particle Reynolds number for species i

defined by Eq. (9)
Re∞,i particle Reynolds number at infinite

dilution for species i
S (x) cross-sectional vessel area function, m2

S j variable defined as , m2

S max maximum cross-sectional area of the
column, m2

S min minimum cross-sectional area of the
column, m2

S R
max maximum cross-sectional area of the

column in the fluidization zone defined by
Eq. (30), m2

S L
min minimum cross-sectional area of the

column in the clarification zone defined by
Eq. (32), m2

T total simulation time, s
ui solid-fluid relative velocity or slip velocity

of species i, m/s
UQL upper limit of condition 1 for operation of a

LFBC defined by Eq. (40), m3/s
Un

i, j approximation to φi(x j, tn)
Un

j vector of approximations to Φ(x j, tn)
v f fluid phase velocity, m/s
v∞,i particle settling velocity at infinite dilution,

m/s
Vi(φ) hindered settling function defined by Eqs.

(7) or (8)
x depth, m

Greek symbols

α approximation of the maximum spectral
radius of the Jacobian of f(γ,Φ) defined by
Eq. (45), m3/s

β parameter adjustment model solid-fluid
relative velocity

γ1 factor in the vector of flux functions g(x,Φ)
defined by Eq. (18), m2

γ2 factor in the vector of flux functions g(x,Φ)
defined by Eq. (24), m3/s

γ vector defined as (γ1, γ2)
γ j+1/2 variable defined as γ j+1/2 := γ(x−j+1/2)
δi parameter defined as di/d1
η1, η2 coefficients in the numerical scheme
θ weight factor in the minmod function
λ j variable defined as λ j := ∆t/(S j∆x), s/m3

µ f fluid viscosity, Pa·s
φ total solid volume fraction
φi volume fraction of species i
Φ vector of volume fractions of species
Φmax maximum solid volume fraction
Φq parameter of the hindered settling function
φF

i volume fraction of species i in the feed
ΦF vector of volume fractions of species in the

feed
φF

tot total volume fraction of solids in the feed
φ0

i volume fraction of species i at the initial
time

Φ0 vector of volume fractions of species at the
initial time

Φ̂ vector of volume fractions for criterion 1 of
LFBC design defined by Eq. (29)

Φ̄ vector of volume fractions for criterion 2 of
LFBC design defined by Eq. (31)

ρ f fluid density, kg/m3

ρs solid density, kg/m3

ρi density of species i, kg/m3

ρ̄i relative density of species i defined as ρi −

ρ f , kg/m3
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