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Abstract

Fungal laccases are phenol oxidases that have been extensively studied due to their relevance in diverse industrial
applications including paper whitening, color reduction, elimination of phenolic compounds in wine, detoxification
of polluted environments, revaluation of industrial wastes and water treatment. The principal difficulties in the
use of these enzymes on an industrial scale are the cost of production and limitations on operation conditions
(low stability and low catalytic activity). Over the last few decades, a variety of strategies have been evaluated to
increase the productivity and improve the biochemical properties of these enzymes. The identification of inducers
and the mechanisms by which gene expression is regulated is crucial for efforts to increase laccase production
in fungi. Laccase gene transcription is regulated by various carbon and nitrogen sources, the presence of metal
ions, the addition of diverse aromatic compounds related to lignin or its derivatives (phenolic and/or non-phenolic),
and even the presence of other microorganisms. Although abundant information is available about the biochemical
properties and kinetic parameters of laccases, it is difficult to compare different laccases due to the diversity of
laccase producing strains, isoforms, laccase substrates, inducers and operating conditions. This review discusses the
literature on the induction and production of fungal laccases.

Keywords: laccase isoforms, induction, laccase regulation, laccase production.

Resumen

Las lacasas flingicas son oxidasas fendlicas ampliamente estudiadas por su relevancia en diversas aplicaciones
industriales, incluyendo el blanqueo de papel, reduccién de color, eliminacién de compuestos fendlicos en el vino, la
biorremediacién de ambientes contaminados, en la revalorizacién de residuos industriales y el tratamiento de aguas
residuales. Las dificultades en el uso de lacasas a escala industrial son el costo de la produccidn y las limitaciones en
las condiciones de operacion (baja estabilidad y actividad catalitica). En la dltima década, se han evaluado diferentes
estrategias que permiten un aumento de la productividad y la mejora de sus propiedades bioquimicas. Por ello, la
identificacién de los inductores y de los mecanismos implicados en la regulacién de la expresion génica es crucial
para el aumento de la produccién de lacasa en los hongos. La transcripcion de genes de lacasa estd regulada por
diferentes fuentes de carbono y nitrégeno, la adicién de compuestos fendlicos y no fendlicos, la presencia de iones
metélicos, y la interaccién con otros organismos. Aunque existe informacién acerca de las propiedades bioquimicas
y parametros cinéticos de las lacasas, es dificil compararlos debido a la diversidad de cepas, niimero de isoformas,
sustratos e inductores y condiciones de operacion utilizadas. En esta revision, se discuten los aspectos generales de
la induccién y produccion de lacasas fungicas.
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1 Introduction

The widespread laccase enzyme (EC 1.10.3.2
benzenediol: oxygen oxidoreductase) belongs to the
family of multi-copper enzymes and is produced
by many ligninolytic fungi (Messerschmidt et al.
1989). A diversity of industrial applications have
been proposed for laccases including in the pulp
and paper industry, textile applications, organic
synthesis, and environmental, food, pharmaceutical
and nanobiotechnological applications (Kunamneni
et al. 2008). However, its utilization in this wide
variety of fields has been ignored because of lack
of commercial availability (Imran et al. 2012).

The principal use of laccases is in the
delignification of lignocellulosic compounds in the
pulp and paper industry (Hattaka, 1994). In the
industrial preparation of paper, the separation and
degradation of lignin in wood pulp and paper was
conventionally achieved using chlorine or chemically
oxygenated oxidants. In 1994, the whitening of wood
pulp with laccase and without the use of chlorine was
patented for the first time (Hattaka, 1994).

Recently, laccases have been studied for their
ability to solve challenges in the development of
sustainable forms of energy such as bioethanol, where
laccases are used to detoxify culture media with high
furanosyl and other phenolic content derived from
raw materials of lignocellulosic origin (Larsson et al.
2001; Imran et al. 2012). These enzymes are also
applied in the production of animal feed with high
lignin content to improve digestibility (Kunamneni et
al. 2008; Sharma et al. 2013).

In the food industry, laccases are added to
enhance product quality and reduce cost. They can
be used to reduce oxygen concentration and increase
product life because molecular oxygen can negatively
affect the product quality due to unwanted oxidation
(Kunamneni et al. 2008; Osma et al. 2010). The
use of laccase to stabilize wine is one of the most
important applications in the food industry. In wine,
the mixture of different chemical compounds such
as ethanol and fatty acids (fragrance) and salts and
phenols (color and taste) is important (Osma et al.
2010; Imran et al. 2012). The use of laccases to
improve the sensory parameters of food products is
not limited to treatment processes but also extends to
diagnostic systems. Various amperometric biosensors
have been developed based on laccases to measure
polyphenol contents in food products including wine,
beer, and tea (Osma et al. 2010).

Laccase is also used in the production of anti-
microbial and detoxifying agents and personal care
products. Laccases are also used in the synthesis
of complex medical compounds such as anesthetics,
anti-inflammatory agents, antibiotics and sedatives
(Kunamneni et al. 2008; Imran et al. 2012).

One of the greatest environmental problems
in the world today is water, soil and air
pollution by toxic compounds. Together with
industrialization and excessive use of pesticides in
agriculture, environmental pollution has become
a serious problem. Certain dangerous compounds
such as polycyclic aromatic hydrocarbons (PAH),
pentachlorophenol (PCF), polychlorinated biphenyl,
DDT, toluene, benzene, and TNT are persistent in
the environment, and have been demonstrated to be
potential mutagenic agents. The capacity of fungi to
transform a wide range of toxic substances attracted
attention decades ago (Nityanand and Desai, 2006).

Laccases also have many applications in the
area of bioremediation. They can be applied to
degrade non-desirable toxic compounds, secondary
products or waste materials. They have also been
used to degrade plastic materials that contain
olefin units, where they promote chain reactions
that lead to plastic disintegration. Laccase activity
facilitates the degradation of phenolic compounds,
biphenyl derivatives (“environmental hormones”),
and alkyl phenols, and also fluorescent dyes
(Kunamneni et al. 2008). These oxido-reductases
have been used to detoxify (by oxidation) polycyclic
aromatic hydrocarbons, promoting the removal of the
aromatic rings for their subsequent mineralization/
biodegradation (Bezalel and Cerniglia, 1996). These
enzymes are used in the decolorization of textile dye
effluents to reduce processing time as well as energy
and water consumption (Pedersen and Schmidt, 1992;
Imran et al. 2012; Osma et al. 2010). Enzymatic
oxidation of dibenzothiophene by laccase has also
been reported (Villasefior et al. 2004).

The presence of phenols in agro-industrial
effluents has attracted interest for the application of
laccase-based processes to wastewater treatment and
bioremediation. The presence of phenolic compounds
in drinking and irrigation water or in cultivated land
represents a significant health and/or environmental
hazard. With government policies on pollution control
becoming increasingly stringent, various industries
have been forced to look for more effective wastewater
treatment technologies (Osma et al. 2010).
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2 Laccases: General biochemical
characteristics and behavior

The best studied laccases to date are produced by
fungi belonging to the group of basidiomycetes
that cause white rot in wood (Baldrian, 2006).
Generally, the catalytic activity and stability can
vary between enzymes depending on the origin,
temperature, pH, and culture medium used for their
production. Laccases are stable at acidic pH (3-6)
(Nyanhongo et al. 2002), but pH 3 is normally
optimal for laccase activity. Laccases can be active
over a wide range of temperature (20-55 °C), with an
optimum temperature at 55 °C. Nonetheless, thermo-
stable laccases (60-70 °C) have also been purified
and characterized (Saraiva et al. 2012). The presence
of isoforms has been reported depending on fungal
growth phase, the presence of inducers and the
conditions of the production process. Additionally, it
has been demonstrated that the isoforms produced in
a particular strain can vary in their pl values and
molecular weights. The proportion of different laccase
isoforms produced depends on the culture age and the
substrate used (Moldes et al. 2004). The genes that
codify these isoforms are differentially regulated and
can be constitutively expressed or induced during the
life of the cell (Castanera et al. 2012; Piscitelli et al.
2011).

Laccase structure. In general, the mature protein
is a holoenzyme, and in its active form it can be
monomeric, dimeric or tetrameric, with four copper
atoms for each monomer (Kunammeni et al. 2008;
Imran et al. 2012). Currently, more than 40 three-
dimensional laccase structures are accessible via
GenBank, NCBI; the majority of these are white-rot
fungal laccases (Benson ef al. 2012). The molecular
weights of these laccases range between 60 and 100
kDa. Only three species of fungi have been described
as producers of laccases with molecular weights of
100 kDa and above (Baldrian, 2006). The majority of
these enzymes are glycoproteins. These biomolecules
can exhibit different levels of glycosylation, generally
between 10 and 30 % (Baldrian, 2006). Glycosylation
plays an important role in secretion, proteolytic
stability (Bertrand, 2010), copper retention capacity
and thermal stability (Thurston, 1994). Glycosylation
is also believed to play an important role in the pl
values of laccase isoforms. Their pl values range from
3-7, and can be as high as 9 in plants (Baldrian,
2006). These enzymes usually exhibit different kinetic
parameters, for example different Km, optimum pH,

optimum temperature, and Kcat values (Schlosser et
al. 1997, Tinoco et al. 2001).

Laccase catalytic mechanism. The sites T1, T2,
T3 and T4, HWH, HSH, HGH and HCH are highly
conserved copper binding sites that form part of the
laccase active site (Figure 1). In these regions, all
the histidine and cysteine residues are critical for the
coordination of the copper atoms (Yaver et al. 1996).
Laccases are characterized by the presence of four
copper atoms per molecule, distributed among three
different sites, although one isoform was described as
having only one copper atom (Schiickel et al. 2011).
The type 1 copper site is responsible for the intense
blue color of the enzyme, with an absorbance of 605
nm. Catalysis by laccase starts with the reduction
of the site 1 copper atom by the reducing substrate.
The electron is then transferred to the copper sites
2 and 3, followed by the concomitant reduction of
molecular oxygen (O,) in the tri-nuclear site complex
(Lyashenko et al. 2006) (Figure 1). Electron transfer
from the substrate to the copper 1 site is controlled by
the difference in redox potential. The redox potential
of laccase is between 450-800 mV (Nityanand and
Desai, 2006).
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Fig. 1. The catalytic mechanism of laccase. 1-The
substrate (in this case, hydroquinone) comes into
contact with the active site of laccase. 2-The substrate
is oxidized when it loses its electrons to the Type 1
Cu, and Cu is therefore reduced. The electron (smaller
circles) is then transferred internally from Type 1 Cu
to a tri-nuclear cluster made up of the Type 2 and
Type 3 Cu atoms. 3-Two O, molecules are reduced to
water at the tri-nuclear cluster. A total of four electrons
(extracted from two hydroquinone molecules) are
needed to complete the laccase catalytic cycle.
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A low oxidation potential or a high redox potential at
the copper site 1 normally results in a greater oxidation
velocity of the substrate (Lyashenko et al. 2006).

Laccases are copper-containing proteins that are
capable of catalyzing the oxidation of polyphenols,
substituted phenols and diamines by the reduction of
oxygen to water (Osma e al. 2010; Nityanand and
Desai, 2006; Imran et al. 2012). The typical reaction
mechanism of laccases consists in the oxidation of
the phenolic substrate that generates a free radical
(phenoxyl) (Osma er al. 2010; Kunammeni et al.
2008) (Figure 1). These active species can be
converted to quinones during a second oxidation stage.
Both the quinone and the free radical undergo non-
enzymatic coupling, leading to their polymerization,
generating insoluble compounds that can be easily
retrieved (Osma et al. 2010; Nityanand and Desai,
2006; Imran et al. 2012). Laccases are inhibited by
various agents such as small anions such as halides,
azides, cyanide and hydroxyls, that act by forming
bonds with the copper sites type 2 and 3, interrupting
electron transfer. They are also inhibited by fatty acids,
di-sulfur agents, hydroglycine and cationic detergents
with quaternary ammonium structures (Riva, 2006).

Laccase mediator system (LMS). In contrast
to other ligninolytic enzymes, laccases can only
oxidize phenolic fragments of lignin due to their
random polymeric nature and to the lower redox
potential of laccase. Small natural low molecular
weight compounds with higher potentials than laccase,
called mediators, can be used to oxidize the non-
phenolic part of lignin (Nityanand and Desai, 2006;
Kunammeni ef al. 2008). In recent years, the discovery
of new and efficient synthetic mediators has extended
the laccase activity towards xenobiotic substrates
(Nityanand and Desai, 2006). A mediator is a small
molecule that acts as an “electron shuttle” between
the enzyme and the lignin and causes polymer de-
branching and degradation (Kunammeni et al. 2008).
The activity of an LMS towards lignin depends on
two main factors: first, the redox potential of the
enzyme, and second, the stability and reactivity of the
radical, resulting from the oxidation of the mediator
(Kunammeni et al. 2008).

3 Laccase genes: gene organization,
expression and induction
features

At first, differences among laccases were believed to
be due to post-translational variations in one gene.
However, various fungal species possess more than
one gene encoding for laccases enzymes (Fujihiro
et al. 2009; Kilaru et al. 2006; Palmieri et al.
2000). Phylogenetic reconstructions indicate that the
sequence diversity among fungal laccases is moderate
and that the isoforms described to date originate from
the same common ancestor (Valderrama et al. 2003;
Necochea et al. 2005). Genetic analysis confirms the
fact that isoforms sometimes originate from different
genes in the genome (Castanera et al. 2012). Two
laccase genes were detected in Agaricus bisporus
(Palmieri et al. 2000), three genomic sequences for the
basidiomycete 1-62 and Pleurotus ostreatus (Tlecuitl-
Beristain er al. 2008). Yaver et al. (1996) reported
three laccase isoforms in 7. versicolor. Four different
mRNA sequences were detected by cDNA synthesis
in Rhizoctonia solani, and five in Trametes villosa.
Seventeen non-allelic laccase genes were found in the
genome of Coprinopsis cinerea (Kilaru et al. 2006);
in the case of this specific fungus, two subfamilies
were defined based on the positions of the introns
and the similarity of the determined genome, one
with 15 members (Iccl-lcc15) and the other with
two members (Icc16, lcc17). The first subfamily of
deduced proteins forms a branch of the phylogenetic
tree with smaller groups that most likely reflect recent
gene duplication events. The diversity of laccase genes
came about by frequent codon changes, (synonymous
and non-synonymous). Synonymous codon changes
are reflected in alleles, with a total difference of up
to 12 % in the codons in a given pair of alleles.
Valderrama et al (2003) presented the reconstruction
of the fungal laccase loci evolution inferred from
the comparative analysis of 48 different sequences.
The topology of the phylogenetic trees indicated
that a single monophyletic branch exists for fungal
laccases and that laccase isozyme genes may have
evolved independently, possibly through duplication-
divergence events. Additionally, the genome of P.
ostreatus includes 12 laccase genes. Six of the genes
appear to be clustered at the sub-telomere region of
chromosome IV, and the others map to chromosomes
IV, VI, VII, VIII and XI. However, only six P. ostreatus
laccase isoenzymes have been characterized to date
(Castanera et al. 2012).
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Laccase gene regulation. Cells often respond to
changing circumstances and to signals from other cells
by altering the amount or type of proteins they express.
The fundamental units of gene regulation are the
three types of specific DNA sequences that determine
the level of expression under particular physiological
conditions. Promoters, originally defined as elements
that determine the maximal potential level of gene
expression, are recognized by RNA polymerase and
contain all the information necessary for accurate
transcriptional initiation. Operator sequences are
recognized by repressor proteins, which inhibit
transcription that would otherwise occur beginning
at the promoters. Lastly, positive control elements
are recognized by activator proteins that stimulate
transcription at the promoter. The functions of
activators and repressors can be modulated by specific
physiological conditions, thus permitting regulated
expression of the cognate genes (Struhl, 1999).

Laccases can be expressed constitutively or can
be induced; they can also be differentially expressed.
The positions of laccase genes and the control
elements under which they are located can directly
affect the regulation of these genes (Missall er al.
2005; Castanera et al. 2012). The promoters of
laccase genes have been well studied, and various
differentially distributed response elements have been
discovered. The promoter region of the T. pubescens
laccase isoenzyme LAP 2 extends up to 1420 bp
upstream of the start codon ATG. The promoter
region was found to have metal response elements
(MRE), CreA consensus sequences (related with
carbon metabolism), and also heat shock elements
(HSE) (Piscitelli et al. 2011). In fungal species
such as G. graminis C. subvermispora, P. sajor-
caju and Trametes sp., ACE elements (cupl protein
activation), NIT2, and xenobiotic response elements
(XRE) responsible for the regulation of laccases by
copper, nitrogen and aromatic compounds related with
lignin or its derivatives were observed, respectively
(Piscitelli et al. 2011; Collins and Dobson, 1997).

Castanera et al. (2012) examined the expression
profiles in different fungal strains under different
conditions (submerged and solid cultures) and in the
presence of wheat straw extract. Their results suggest
that certain isoforms (in this case Lacc2 and Laccl0)
are up-regulated in submerged cultures and down-
regulated in solid fermentation. Isoform Unk1 did not
appear to be induced by the straw wheat extract, and
could be associated with physical culture conditions
rather than with the presence of phenolic inducers.
Furthermore, the high percentage of genes with altered
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transcriptional responses in the straw wheat induced
cultures revealed a complex regulation mechanism that
could be related to the sensitivity of the laccase gene
family to phenolic compounds and sugars present in
the inducer extract. Apart from natural and synthetic
inducers, culture conditions and oxidative stress and
the presence of virulent strains affects the regulation
of fungal laccases. Cryptococcus neoformans encodes
two laccases that are both regulated by oxidative and
nitrosative stresses (Missall et al. 2005). Although
an abundance of information is available about the
response elements in the promoter regions of laccase
genes, only a few reports have been published on the
molecular mechanisms of their regulation (Collins and
Dobson, 1997; Kilaru et al. 2006; Piscitelli et al.
2011).

Investigating the regulation of the expression of
laccase genes can be very useful in understanding
the physiological roles of different isoforms produced
by the same organism (Piscitelli et al. 2011). The
physiological mechanisms that occur during mycelial
development can modulate the relative expression
levels of laccase isoforms. Some isoforms have
been detected in the lag and exponential phases of
fungal fermentation, and therefore must be involved
in substrate degradation, while other isoforms have
been detected in the stationary phase, and may be
related to morphogenesis and pigmentation processes
(Bourbonnais et al. 1995; Piscitelli et al. 2011).
Laccase synthesis and secretion are also influenced
by nutrition levels, culture conditions and the addition
of a wide range of inducers to the culture medium,
with variations in these effects observed among fungal
species and between different isoforms of the same
species. For the majority of the reported examples,
laccase expression is regulated by several factors
acting synergistically and antagonistically (Piscitelli et
al. 2011).

Compounds that have the capacity to function as
inducers of laccase synthesis have been explored in
a variety of fungal species. These compounds have
structures that are very similar to or are analogues of
lignin, and serve as cellular signals to produce specific
laccases (Bertrand et al. 2013). It has been postulated
that genes that codify various laccase isoforms are
differentially regulated, while others are constitutive
(Collins and Dobson, 1997).

There have been various reports on the
differential expression of laccase isoforms in fungal
basidiomycetes following the addition of phenolic
compounds and copper to the culture media (Bollag
and Leonowicz, 1984; Collins and Dobson, 1997,
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Goudopoulou et al. 2010). In fact, low concentrations
of various laccases are produced in solid and
submerged media, while higher concentrations are
induced with the addition of phenolic compounds such
as xylidine and ferulic acid (Bollag and Leonowicz,
1984; Collins and Dobson, 1997).

4 The laccase secretion pathway

Fungal secretomes have been described as nature’s
tool boxes. By adapting their metabolism to different
carbon and nitrogen sources, fungi secrete an arsenal
of extracellular enzymes, the secretome, which allows
for the degradation of lignocelluloses and other
biopolymers (Bouws et al. 2008). Filamentous-like
fungi species such as Aspergillus and Trichoderma
have an extraordinary capacity to secrete large
quantities of proteins, metabolites and organic acids
into the growth media (Conesa et al. 2001). White
rot of wood is possible due to the secretion
of organic acids, secondary metabolites, oxidative
metalloenzymes, heme peroxidases and laccases
codified in divergent gene families in the genomes of
these fungi (Lundell ez al. 2010).

Laccase genes (part of the secretome) in many
filamentous fungi have sequences that exhibit a
common pattern, and code for polypeptides of
approximately 520-550 amino acid residues, including
a signal peptide found on the N-terminus. Laccases
require at least three processing steps (Yaver et al.
1996). The signal peptide is involved in enzyme
maturation, guiding the laccase into the extracellular
space, a secretion route where several events occur:
A) co-translation folding in the endoplasmic reticulum
where di-sulfide bridges are formed (Freeman et al.
1993), B) the incorporation of a precursor sequence
(glucose 3 mannose 9-glucose-N-acetylglucosamine-
2) that bonds with the asparagine of the majority
of the NXT/S sequences of the protein (Gavel and
Von, 1990) and C) binding of calcium ions that
stabilize the resulting apolaccase. Subsequently, in the
Golgi apparatus, the copper ions are added (Taylor et
al. 2005) along with additional carbohydrates before
secretion (Rodriguez-Rincén er al. 2010). Laccases
also contain an N terminal secretion sequence
abundant in arginine and lysine, which suggests
processing during biosynthesis. Not all laccases are
extracellular. Missall er al. (2005) showed that
laccases are differentially localized in C. neoformans.
Lacl is localized to the cell wall, while Lac2 is
cytoplasmic. This difference may in part account for

the greater ability of Lacl to produce melanin, as a
substrate in the medium is more accessible to the cell
wall-localized enzyme and the deposition of melanin
in the cell wall would not require additional transport.
Differences in location may contribute to differences
in substrate specificity.

5 Laccase production

Laccase production by basidiomycetes of genera
Trametes,  Pleurotus,  Lentinula, = Pycnoporus,
Phanerochaete and Agaricus have been widely studied
due to the ease with which these microorganisms
are cultured in vitro, and because these laccases are
excreted into the culture medium. Studies of laccase
production have evaluated the effect of production
systems (solid or liquid media) (Lopez-Pérez et
al. 2010; Diaz et al. 2011a; Diaz et al. 2011b;
Neifar et al. 2011; Poojary and Mugeraya, 2012),
carbon source (sugars or lignocellulosic residues),
and the use of inducers (phenolic or non-phenolic
compounds, natural or synthetic compounds) using
different ligninolytic fungal strains (Table 1). These
factors affect productivity and the relative amounts of
the various secreted laccase isoforms. The observed
laccase profiles and concentrations are very important
because the different isoforms possess particular
catalytic properties.

In recent years, there has been a surge in the
tendency towards the effective use and valuation of
organic wastes such as wastes from the agriculture,
forest, and food industries as raw materials and
substrates for solid-state fermentation (Moldes et al.
2003; Risdianto et al. 2010). Moreover, the majority
of these wastes contain lignin and/or cellulose or
hemi-cellulose, which in turn act as inducers of
ligninolytic activity. Most of these wastes have high
sugar contents, making the processes more economical
(Risdianto et al. 2010). The use of these types
of wastes not only provides an alternative substrate
source but also aids in solving environmental pollution
problems (Moldes et al. 2003; Neifar et al.
2011). Solid state fermentation (SSF) is considered
one of best methods for the culture of filamentous
fungi and for the production of ligninolytic enzymes
because they are grown under conditions that emulate
their natural habitat, and as a result are able to
produce certain enzymes at high levels, as high as
those obtained in submerged fermentation conditions
(Kumar and Mishra, 2011; Neifar ef al. 2011).

Nutshells were used as lignocelullosic wastes by
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Gomez et al. (2005), resulting in a 25-fold increase in
the production of laccase using the fungus Coriolopsis
rigida by means of SSF. Moldes et al. (2003) used
grape seeds as a lignocellulosic source to increase the
activity of T. hirsute 10-fold.

The main focus of our investigations is the
production of enzymes with high impacts on
environmental biotechnology. We continue to
evaluate the advantages of the use of agro-industrial
lignocellulosic wastes such as sawdust of different
wood types and compost. Sawdust from different
wood sources is a very cheap and effective source
of natural inducers used for fungal laccase production.
We have conducted various studies on the induction
and production of laccase isoforms under conditions
of solid state and submerged fermentation using the T.
versicolor HEMIM-9 strain. High laccase production
levels were achieved under these conditions.
Additionally, the lignocellulosic source was shown to
have a direct effect on the laccase isoforms secreted,
and these isoforms exhibited significant biochemical
differences in their capacities to oxidize synthetic
Azo-dyes (Bertrand er al. 2013). We are currently
evaluating the potential of these isoforms (presented
as a cocktail) in fungal supernatants for their potential

use in the oxidation of diverse compounds with
high environmental impacts in the area of water and
soil pollution. In the same way, we assessed the
production of laccases for the oxidation of phenol and
polyphenolic compounds using aqueous extracts of the
residual culture medium of the mushroom Agaricus
bisporus (compost). Our results demonstrated that
the residual compost after culturing A. bisporus is
a potential source of laccase that could become a
cost-effective waste management alternative for some
phenolic compounds (Trejo-Hernandez er al. 2001)
and polyaromatic hydrocarbons (Mayolo-Deloisa et
al. 2011).

6 Improvement of laccase
production by different types of
inducers

Ligninolytic enzyme production by wood rotting fungi
is a phenomenon involving the interaction between
fungal physiology and the composition of the essential
media used for cultivation (Table 2) (Bakkiyaraj et al.
2013).

Table 1. Laccase production using different types of substrates.

Species Inducer Laccase production Improvement Reference
Schyzophyllum Corn stover and 1270000 U L! 1.3-fold Yasmeen et al. (2013)
commune Banana stalk
Pleurotus Glucose  Yeast 906000 U L! 0.8 fold Periasamy  and
ostreatus extract Malt Palvannan (2010)

extract
Coriolous Nut shell and 163000 U L! 2.6-fold Mishra et al. (2008)
versicolor Cyanobacteria
MTCC138 biomass
Phellinus noxius  Glucose 780 U L' 1.4-fold Poojary and Mugeray (2012)
hpF17 Ammonium
tartate Tween 80
T. hirusta Barley 25889 U L™! 1.8-fold Bakkiyaraj et al. (2013)
Rigidoporous sp.  Rice bran, Wheat 425U g™! 3.5-fold Sridah et al. (2012)
bran and Corn
husk
Fomes Wheat bran 150U g ! 2.3-fold Niefar et al. (2011)
fomentarius
WREF-1 Nut shell and 352U ¢! 1.3-fold Kumar and Mishra (2011)
Cyanobacteria
biomass
Coriolus sp. Barley 2661 U g! 6.5-fold Mathur et al. (2013)
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Table 2. Improvement of laccase production using synthetic inducers.

Species Inducer Laccase production Improvement Reference
Cerrena unicolor Pyrogallol 151600 U L~! 2.5-fold Elisashvili et al. (2010)
T. versicolor TNT 8400 U L! 2.8-fold
Coprinus comatus Copper 150U L} 3.4-fold Lu and Ding (2010)
Managnese 225U Lt 4.4-fold
Caffeic acid 188 UL™! 3.3-fold
Pleurotus ostreatus copper 8000 U L! 4.0-fold Tinoco et al. (2011)
Pleurotus ostreatus ~ Copper + lignin 12000 U L™! 10-fold Tinoco et al. (2011)
P. plumonarius Ferulic acid and 250000 U g‘1 10 fold D’souza (2004)
vanillin
T. versicolor Grey Lanaset 1200 U g! 7.0-fold Casas et al. (2013)
(GLG) and
Alizarin Red
(AR)
G. applanatum Copper 18830 U g7! 49.2-fold Fonseca et al. 2010
Peniophora sp Copper 27132 U g! 19.7-fold
(A) (B) (c)
Induction — 1 Production —1—>  Enzyme characterization
A A A
[ 1 1 I

Chemical agents

(Temperature, pH,
Nutrients)

g&‘"
(o] u
CH,OU\)‘\ 63.55 / plvalue

OH 10

HO H1C NH, 46

48

CH3 50

. 5.4

¢ Environmental 5.6

conditions 5.8

High catalytic activity
High vyields
High stability

Isoform diversity

Fig. 2. Strategies for increasing laccase production. The first step is to determine an adequate way to induce laccase
production. The second step to produce laccase isoforms in shaking flasks or in fermentation reactors. The third
step is the biochemical characterization of laccase isoforms to look for features such as high enzyme activity and
stability.
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Laccase production by ligninolytic fungi has been
comprehensively investigated due to the ability
of these microorganisms to grow on economic
substrates, excrete enzymes and oxidize xenobiotic
compounds with a useful capacity (Shah and Nerud,
2002; Ikehata et al. 2004). Although laccase
production is principally related to lignin degradation,
these enzymes have a wide range of physiological
functions including biosynthesis of the pigments
of conidia, and participation in the detoxification
of phenols through polymerization (generated as
a defense mechanism by plants against attack by
phytopathogens) (Mayer, 1986; Baldrian, 2005).
Additionally, laccase production is stimulated under
conditions of limited nutrition, in particular under
limited carbon and nitrogen conditions (Kirk and
Farell, 1987; Valderrama et al. 2003).

For efficient laccase expression, it is essential to
optimize all conditions and compositions of the media
used for production. Figure 2 shows various strategies
to increase the production of the extracellular laccase
and its activity and to achieve various industrially
desirable features such as high yield, high catalytic
activity, isoform diversity and high stability. Various
authors have implemented experimental designs such
as RSM, Plackett-Burman, and Box-Behnken to
optimize laccase production using their systems
(Kumar and Mishra, 2011; Poojary and Mugeraya,
2012; Nandal et al., 2013; Srihdar et al., 2012;
Neifar et al., 2011). Media supplemented with barley
enabled 200 times greater production of laccase than
the control culture (Moldes et al., 2004). This study
demonstrated that the type of substrate also has a
significant influence on the relationship between the
two laccases produced (Lacll/Lacl), varying from
0.9 U L7! (barley bran) to 4.4 U L~! (grape pulp).
The profiles obtained are very important because in
the case of effluent decolorization from the textile
industries, Lacl exhibits more attractive catalytic
properties. Selective induction of laccases by Trametes
sp. was reported by Xiao et al. (2004). These authors
revealed that cultures supplemented with cellobiose
increased the production of several isoforms, while
cultures where 3, 5- dihydroxytoluene was added
produced only one isoform.

Note that even though the great majority of
studies on laccase induction and production have
been performed in submerged cultures, SSF cultures
of ligninolytic fungi are also a potential source
of laccase (Diaz et al. 2011a and b). The most
important reports in this area are related to the
use of compost waste, generated after the harvest

of edible fungi, as a rich source of laccases with
interesting catalytic characteristics. One of the first
reports of laccase production in the fungus Agaricus
bisporus was presented by Bonnen ez al. (1994).
Their main objective was to study the role that these
enzymes play in lignin degradation during commercial
production. Rodriguez-Couto et al. (2002) described
the production of laccase by T. versicolor in the
semi-solid state using different supports (polyurethane
foam, wheat straw, barley straw, wood shaving
and barley bran). This group claimed that the best
conditions were achieved with barley bran, reaching
an activity level of approximately 1200 U L.

7 Laccase induction by phenolic
compounds

Laccase production by ligninolytic fungi can be
considerably stimulated by a wide variety of aromatic
compounds related to lignin and its derivatives
(Marques de Souza et al. 2004). Aromatic compounds
or phenols are generally considered laccase inducers
not only because they increase laccase production
but also because they modify the isoform profile.
The type and composition of the medium culture
and the use of inducers play important roles in the
productivity and profile of the laccases obtained. For
example, in Trametes sp., the genes lccl and lcc2
were induced in cultures where veratrilic acid was
added, while the gene lcc3 was not induced by this
compound and was repressed by glucose (Mansur et
al. 1998). The use of ferulic acid and vanillin increased
laccase production 10 times in submerged cultures
of Pleurotus pulmonaris (Marques de Souza et al.
2004). These authors demonstrated that while Lacl
and Lacll were produced in non-induced cultures,
the cultures supplied with vanillin and ferulic acid
only produced lacll and lacIIl. Rodriguez-Couto et al.
(2002) reported the production of laccase in Trametes
versicolor in semi-solid state fermentation and proved
that the addition of xilidine caused laccase activity to
reach approximately 1700 U L~!. These authors argue
that the change in the laccase isoform profile most
likely represents a detoxification mechanism of the
microorganism in response to the inducers in question.
These findings are supported by the fact that high
concentrations of the inducers can be detrimental to
cellular health (Bertrand et al. 2013; Bourbonnais et
al. 1995).
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8 Laccase induction by metal ions

The induction of laccase by toxic metals can be
explained in terms of defense from toxic stress, as
laccase is involved in the synthesis of pigments to
prevent metal uptake (Lorenzo et al. 2006). Different
isoforms exhibit different characteristics with respect
to copper in P. ostreatus (Tinoco et al. 2001). The
addition of copper sulfate (150 M) to the medium
culture resulted in an increase in the production (up
to 500-fold) of certain laccase isoforms, as in the
case of laccase isoform POXA1b, while isoforms
were not affected, such as POXAlw (Palmieri et
al. 2000). Genetic regulation at the transcriptional
level by copper and nitrogen was demonstrated in 7.
versicolor 290. RT-PCR demonstrated an increase in
the levels of laccase mRNA with increases in copper
and nitrogen concentrations (Collins and Dobson,
1997). The presence of Mn?*, Cd** or Zn?* in the
culture medium increased the Lacl/Lacll proportion
by nearly 100% in comparison to the control cultures.
Furthermore, the metal concentration added to the
culture medium affected the Lacl/Lacll ratio. The
highest Lacl/Lacll activity ratio (approximately 0.51)
was obtained from cultures with 5 mM copper sulfate,
attaining values 360% and 155% higher than those
obtained from cultures with 2 to 3.5 mM copper
sulfate, respectively (Lorenzo et al. 2006). Pleurotus
ostreatus produces four different laccases in potato-
dextrose medium supplemented with yeast extract
and CuSO, (Palmieri et al. 2000). Likewise, the
same authors demonstrated that copper increases the
transcription of the laccase genes poxc and poxa
1b of Pleurotus ostreatus (Faraco et al. 2003). In
other studies, Klonowska et al. (2001) reported that
Marasmius quercophilus produces only one laccase
(Lacl) in liquid medium with malt extract. This
same medium supplemented with CuSO,4 permits the
induction of three other isoforms, increasing the total
activity10 times. Additionally, cultures supplemented
with CuSO, and p-hydrobenzoic acid exhibited a 30-
fold increase in total activity compared to the basal
production. Considering that laccase contains four
copper atoms in its active site, it is not surprising that
copper has an effect on laccase activity.

9 Laccase induction by biological
interaction

Laccases are thought to be important to the virulence
of many fungal pathogens or as a defense mechanism

in lignolytic fungi (Missall et al. 2005). Laccase
induction and production have been examined in
cultures of Lentinula edodes, Trametes versicolor and
Pleurotus ostreatus infected with Trichoderma sp.
Some authors suggest that laccase plays an important
role in the basidiomycete defense mechanisms
against the microparasite. Researchers are primarily
interested in these types of responses because some
Trichoderma strains are aggressive microparasites
of edible lignolytic fungi (Pleurotus, Agaricus and
Lentinula), leading to serious economic losses in
commercial cultures. In the same way, Savoie et
al. (1998) reported the induction of laccase from
Lentinula edodes in liquid cultures challenged with
Trichoderma sp. These authors made evident that
induction occurs to a greater extent in co-cultures.
However, the supernatant obtained apart from the
Trichoderma culture also increased laccase production
in liquid media. Subsequently, the same group showed
that laccase induction in co-cultures was not from
Trichoderma, but likely from Lentinula as a defense
mechanism against the micro-parasite (Savoie and
Mata, 1999). Hatvani et al. (2002) also studied the
effects of changes in extracellular enzymatic activities
during fungal co-cultures. Their results established the
existence of laccase repression in Lentinula during
co-culture with different strains of Trichoderma and
induction with their supernatants.

Baldrian (2006) reported an increase in production
in solid-state laccase cultures by 18 strains of
ligninolytic fungi in response to a strain of
Trichoderma harzianum. On analyzing the laccase
production by a Trametes versicolor strain in liquid
medium, only the co-cultures (Trametes-Trichoderma)
exhibited an increase in laccase production, and
no increase was observed when Trichoderma
supernatants were used.

The production and profile of laccase isoforms
from Agaricus bisporus and Pleurotus ostreatus as a
function of the type of infection with Trichoderma sp.
was explored by Flores et al. (2009). In their studies,
solid cultures were used to evaluate the effects of
the interaction with extracellular metabolites. These
results revealed an increase in the production of
laccase in in vitro cultures (in a solid medium) of
Agaricus bisporus and Pleurotus ostreatus infected
with non-laccase producing strains of Trichoderma
(Flores et al. 2009). Additionally, an increase
in laccase production was observed by Pleurotus
ostreatus and Trichoderma viride co-cultures in
submerged fermentation (Flores et al. 2010).
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Concluding remarks

Abundant information published over the last decade
or so reflects the significant industrial potential of
laccases in the environmental (bioremediation of
soil and water), food processing (alcoholic beverage
stabilization and fruit juice) and pharmacy (morphine
determination and ascorbate) fields.

Despite the discovery of new laccase producing
fungal strains with high productivities, the most
important limitation remains the high cost of enzyme
production. This has contributed to the search for
lower cost production processes and to the use of
cheap substrates including residues and wastewater
from the agriculture, food, and paper industries.
The reduction of production time through the use
of enzyme inducers has been widely demonstrated,
and increases in production levels have been reported
up to 500%. Additionally, these processes must be
optimized to enable industrial scale application, as
most studies have been conducted at the laboratory
level in shaking flasks using experimental designs.

Laccases are relatively stable in extracellular
extracts for long periods of time, but enzyme stability
must be improved to enable industrial use. On
the other hand, it is important to highlight the
analysis of the effects of regulators on laccase gene
transcription, and in the presence of specific responses
that are translated into the induction of enzyme
production. Few studies have elucidated the molecular
mechanisms that prevail in laccase regulation as a
response to different stimuli. The current analyses
suggest the existence of a set of complex phenomena
regulating laccase expression. However, much more
work must be performed to fully understand the
general mechanisms of the regulation of laccase
transcription.
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