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Abstract
The main objective of this work is to design a new state observer for a switched nonlinear system. The proposed observer
contains a standard proportional term and a bounded feedback that improves the performance of the estimation process
compared with other methodologies such as extended Luenberger-type observers. A theoretical analysis of the convergence
of the proposed observer through an analysis of multiple Lyapunov functions is provided. The estimation strategy is applied
to a bioreactor batch, where is performed a process of sulfate-reducing considering a hypothetical change in kinetic regime.
The evolution of the reaction kinetics is described in three stages: the first stage is described by the Haldane-Boulton kinetic
model; the second transitional stage called an interaction between the Haldane-Boulton and Moser-Boulton kinetic models;
and the third stage is represented by the model Moser-Boulton. Sulfide concentration is considered as a measured variable
of the bioreactor to implement the proposed observer. Numerical experiment results shown satisfactory performance of the
considered methodology.

Keywords: nonlinear observer, switched system, adaptive modeling, batch bioreactor.

Resumen
El objetivo principal del trabajo es diseñar un nuevo observador de estados para un sistema no lineal conmutado. El
observador propuesto contiene un término proporcional estándar y una retroalimentación acotada que mejora el desempeño
del proceso de estimación en comparación con otras metodologı́as, como los observadores de tipo Luenberger extendidos.
Se proporciona un análisis teórico sobre la convergencia del observador propuesto a través de un análisis de funciones
múltiples de Lyapunov. La estrategia de estimación es aplicada a un biorreactor en lote, donde se lleva a cabo un proceso
de sulfato-reducción considerando un cambio hipotético de régimen cinético. La evolución de la cinética de reacción es
descrita en tres etapas: la primera etapa es descrita por el modelo cinético de Haldane?Boulton; la segunda etapa llamada de
transición se asume una interacción entre el modelo de Haldane-Boulton y el modelo cinético Moser-Boulton; y la tercera
etapa es representada por el modelo de Moser-Boulton. La concentración de sulfuro se considera como una medida de la
salida del biorreactor para implementar el observador propuesto. Los resultados de los experimentos numéricos muestran
un desempeño satisfactorio de la metodologı́a considerada.

Palabras clave: observador no lineal, Sistema cambiante, Modelo adaptable, Biorreactor por lote.

1 Introduction

The problem with the complexity of dynamic
nonlinear systems appears in a great number

of scientific and engineering domains. Some
decomposition and simplification techniques were
developed in the last years to make a complexity
reduction, according to objectives like identification,
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controller design or stability analysis. Simulations
on mathematical model of actual bioreactor runs
suggest how process variables, such as substrate
and product concentrations, change and how nutrient
feeding should be tuned-in to time, concentration, and
composition to reach a desired response. Insights
gained from modeling can guide us in the adjustment
of a process, reducing the number of characterization
rounds required. Furthermore, comparing actual
experimental results with model predictions helps to
improve the models themselves. It is important to
note that outputs can vary in unpredictable ways
if processes are simulated outside boundaries set
by the models that describe them, especially if
the real operating ranges of actual processes are
obtained inadequately (Dang et al., 2011). As
these models are more complex, they can correctly
describe the interactions between microorganisms,
proteins and substrates in a reactor, but sampling
on-line key process variables is often the problem
and usually there is missing information until the
samples are properly processed and analyzed (Yuan
et al, 2008). Thus, the named state observers have
been a successful way to predict these non-measurable
process variables. Several observers’ structures have
been proposed to cover different requirements, also
presenting different mathematical structures (Alvarez
and Simutis, 2004).

Although the state observers may give the missing
information, the model may still lack in terms of
explaining when the system has external perturbations,
forcing a change in the kinetic behavior of the
microorganism contained in the reactor. When an
external perturbation (eg. change in temperature,
pH, a new electron donor/acceptor, agitation, aeration
(Hamilton et al., 2005) is present and the model, which
is usually made-up of standard fixed kinetic models,
cannot follow the new kinetic behavior and it will
eventually lead to wrong predictions or inadequate
process control. A non-conventional way to deal with
the above is to use models with switchable structures,
which are a part of the hybrid dynamical systems
(Brandt et al., 2004; Dang et al., 2011).

Hybrid dynamical systems are those that involve
both continuous and discrete dynamics (Branicky et
al., 1998). The switching systems, are a class
of hybrid dynamical systems, where the underlying
model is a continuous model, with an event triggering
a switch (switching signal) (Liberzon and Morse,
1999). Traditionally, most of the research done with
the switching systems, have been with dynamical
systems that are described purely as either time-

driven continuous variable dynamics or event-driven
discreet logic dynamics (Branicky, 1998; Tartakovsky
et al., 2002; Aguilar-Garnica et al., 2009; Gouzé
and Sari, 2010). The switching systems have been
identified in a wide variety of natural and man-
made systems, for example gene regulatory networks,
biological processes, embedded systems, process
control, communication networks, aircraft and traffic
control, and among many other fields (Branicky et al.,
1998).

State observers have been designed for a class
of switched systems and have been applied to linear
switched systems, as mentioned in several papers
published in the open literature, in which, observers
were designed for uncertain systems, time-delay
and noisy measurements (Alessandri and Coletta,
2001). For nonlinear switched systems, several
approaches considering, proportional, sliding-modes,
fragile observers, high gain and so on, were
considered in Liu (1997), with application to electrical
and mechanical systems being the most frequent,
however nonlinear observer’s designs, in particular the
application related with biological reactors are not as
large as the others.

From the above, in this work is proposed a
nonlinear observer to estimate the state variables
of the observable subspace in a sulfate-reducing
bioreactor, considering that the sulfide concentration
is the measured variable. Desulfovibrio alaskensis
6SR is used as model from sulfate-reducing process
(Neria-González et al., 2006), which was modeled as
a nonlinear switched system with two different kinetic
regimes due to a hypothetical change in the metabolic
pathways.

2 Bioreactor modeling

2.1 Mathematical support

In this work the simplest model of a nonlinear system
with a discontinuity on the right hand side will be
considered as follows (Dieci and Lopez, 2009):

ẋ (t) = f (x (t)) =

{
f1 (x (t)) ,x ∈ S 1
f2 (x (t)) ,x ∈ S 2

x (0) = x0 ∈ R
n

(1)

The state space Rn is split into two subspaces S 1 and
S 2, leading to a discontinuity in each dynamic system
(Bernardo et al., 2008).

The Filippov convex method is applied to turn
the discontinuous system (1) into a convex differential
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inclusion. Letting the derivate of the solution of the
switched system to be contained in a compact subset
of the continuous function set, and therefore allowing
the existence of continuous differentiable solutions.
The existence of solutions is guaranteed as a notion of
upper semi-continuity of set-valued functions (Dieci
and Lopez, 2009; Machina and Ponosov, 2011).

Considering the above the system (1) becomes a
switched system:

ẋ (t) = F (x (t)) =


f1 (x (t)) , x ∈ S 1
co {f1 (x (t)) , f2 (x (t))} ,x ∈ Σ
f2 (x (t)) , x ∈ S 2

(2)
Where co {f1 (x (t)) , f2 (x (t))}, denotes the smallest
closed convex set, as:

co {f1 (x (t)) , f2 (x (t))} (3)
=

{
fv ∈ R

n : fv = (1−α) f1 (x (t)) +αf2 (x (t)) ,α ∈ [0,1]
}

To achieve the solution the system’s state space is
divided into two subspaces or stages (S 1 and S 2) by
Σ, an hypersurface, such that Rn = S 1 ∪ Σ ∪ S 2. The
hypersurface is defined by a scalar indicator (or event)
functiong: Rn → R, so that the subspaces S 1 and S 2,
and the hypersurface Σ, are characterized as:

Σ =
{
x ∈ Rn|g (x) = 0

}
, S 1 =

{
x ∈ Rn|g (x) < 0

}
,

S 2 =
{
x ∈ Rn|g (x) > 0

}
(4)

2.2 Kinetic modeling

The considered hybrid model is applied to an
anaerobic bioreactor operating in batch, where a
sulfate-reducing process takes place, considering as
the state variables sulfate, biomass and sulfide mass
concentrations. It is assumed a kinetic regimen
change due to an unknown external perturbation,
where the bioreactor dynamics are described by the
unstructured kinetic model Haldane-Boulton, since
the sulfate-reducing bacteria is inhibited by substrate
and product in a first stage, then a transition stage
in the kinetic regimen is assumed, caused by an
unknown perturbation in the system and represented
by the interaction between the Haldane-Boulton model
and the Moser-Boulton kinetic models, both models
consider inhibition by substrate and product, but the
perturbation in the system benefits the bacteria in the
way that more sulfate is consumed, thus more biomass

and sulfur is produced and the final stage where
the unstructured kinetic model Moser-Boulton the
only present, this model, as stated before, considers
substrate and product inhibition, but this inhibition
minor compared to one with Haldane-Boulton kinetic
model.

The Haldane-Boulton and the Moser-Boulton
kinetic models where individually corroborated with
experimental data (Neria-González et al., 2011),
showing a satisfactory performance in accordance
with linear correlation coefficient criteria. The
Haldane-Boulton model is given by the following
equation:

µHB =

 µmS
KS + S + S 2K−1

i

 [ KP

KP + P

]
(5)

And the Moser-Boulton model is described by the
following equation:

µMB =

[
µmS n

KS + S n

] [
KP

KP + P

]
(6)

The corresponding sets of parameters are given in
Tables 1 and 2.

Finally the switching model is represented as
follows: Ṡ

Ẋ
Ṗ

 =


µ1X; x ∈ S 1

(1−α)X +α
(
µ2

)
X; x ∈ Σ

µ2X; x ∈ S 2

(7)

Where:

µ1 =


µHB
YS/X(

µHB − µd
)

µHB
YP/X

 ; µ2 =


µMB
YS/X(

µMB − µd
)

µMB
YP/X


S, X and P represent the sulfate, biomass and sulfide
concentrations respectively, YS/X and YP/X are the
yield coefficients, µd is the death kinetic constant,
µm is the maximum specific cell growth rate, related
with the maximum biomass concentration reached in
a batch bioreactor, Ks is named the affinity constant,
this parameter is related with the affinity of the
microorganism to the substrate, Ki is the substrate
inhibition constant, Kp is the product inhibitions
constant, n is the order of the biochemical reaction and
α is a weighting vector parameter.
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Table 1. Parameters values

Kinetic model µm(h−1) Ks (mg/L) Ki (mg/L) Kp (mg/L) n

Moser-Boulton 10.55 1.26E+09 - 2.70 2.53
Haldane-Boulton 39.84 86070.00 9850.19 7.24 -

Table 2. Experimental Initial conditions and Parameters values

Parameter Value

Initial Biomass concentration (mg/L) 134.73
Initial Sulfate concentration (mg/L) 5057.47
Initial Sulfur concentration (mg/L) 39.56

Y(S/X) (mg S mg−1 X) 14.13
Y(P/X) (mg P mg−1 X) 2.14

µd (h−1) 0.0058

3 Local observability analysis and
observer design

3.1 Local observability

The preceding problem to observer design is to
analyze the observability conditions of the nonlinear
systems under study. For linear systems, classical
observability index as observability matrix for
observability analysis and the estimator design have
been extensively studied, and have proven extremely
useful, especially for on-line monitoring and control
applications such as observer based control design.

The design of observability conditions for
nonlinear systems is a challenging problem (even
for accurately known systems) that has received a
considerable amount of attention. A first category of
techniques consists in applying linear algorithms to
the system linearized around the estimated trajectory.

Now, in order to prove the local observability of
a switched model, a linearization of the system under
study must be done to make the corresponding analysis
(Ezzine and Haddad, 1998; Vidal et al., 2002). The
system (2) can be linearized trough Taylor series, so
the local observability analysis can be applied to the
linearized system given by equation (8).

ẋ (t) ∈ JFF (x (t)) =


JF (f1 (x (t))) ; x ∈ S 1

JF ((1−α) f1 (x (t)) +αf2 (x (t))) ;
x ∈ Σ

JF (f2 (x (t))) ; x ∈ S 2
(8)

Or the equivalent form:

ẋ (t) ∈ JFF (x (t)) =


JF1x;x ∈ S 1
JF2x;x ∈ Σ
JF3x;x ∈ S 2

With a linear measured vector:

y ∈Cx (t) =


C1x
...

Cpx

Where JF is the corresponding Jacobian matrix of the
system (3) and p is the number of subsystems.

The observability analysis for switched linear or
linearized dynamic systems is a natural extension of
the well-known observability analysis for standard
linear systems, which generally is represented by the
observability matrix (Sun and Ge, 1968; Vidal et al.,
2002; Babaali and Pappas, 2005). This observability
matrix for switched linear and/or linearized systems
can be defined by the following definition:
Definition 1. (See Sun and Ge, 1968). A class
continuous-time switched linear dynamic system is
path-wise observable if and only if their corresponding
dynamic subsystems are completely observable.
Therefore, the corresponding observability matrix for
a class of switched continuous-time linear system is
expressed as shown in Eq. (9).

Similar to standard linear systems, it is required
that the observability matrix Q be full rank, i.e. rank
[Q] = n, in order to provide full state observability.
This results is applied in section 4 to analyze the local
observability properties of the switched bioreactor’s
model.
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Q =

[
C1, · · · ,Cp,C1A1, · · · ,CpA1, · · · ,C1Ap, · · · ,CpAp, · · · ,C1A2

1, · · · ,C1A1Ap, · · · ,

CpA1Ap, · · · ,C1An−1
1 , · · · ,C1ApAn−2

1 , · · · ,CpApAn−2
1 , · · · ,CpAn−1

p

]T

(9)

3.2 Observer design

Let us consider the switched bioreactor’s model in a
generalized state space form:

ẋ (t) ∈ F (x,u) =


f1 (x,u) ; x ∈ S 1
(1−α) f1 (x,u) +αf2 (x,u) ; x ∈ Σ
f2 (x,u) ; x ∈ S 2

(10)

y = Cx
Here x ∈ Rn is the state vector, which takes values in
X as a connected manifold of dimension n, u ∈ Rq is
the vector of external control inputs, taking values in
some open subset U, finally y ∈ Rm describe the vector
of measured outputs taking values in some open subset
Y. The function fi will be considered as a smooth
function (C∞) of their arguments, and input functions
u(o) to be locally bounded and measurable functions
in a set U.

Then, for the state space model given by (10), it
is proposed a state variables observer, in accordance
with Proposition 1, as:
Proposition 1. The following dynamic system is a
state variable observer of system (10):

˙̂x =


f1 (x̂,u) + kpsign ∗ εn

1+εn + kqε; x̂ ∈ S 1
(1−α) f1 (x̂,u) +αf2 (x,u) + kpsign ∗ εn

1+εn + kqε; x̂ ∈ Σ
f2 (x̂,u) + kpsign ∗ εn

1+εn + kqε; x̂ ∈ S 2
(11)

Where the estimation error is defined as:
ε = x − x̂ and x̂ is the vector of estimated state

variables.
Sketch of proof of Proposition 1.
By considering equations (10) and (11), the

dynamic differential equation of the estimation error
(ε̇ = ẋ− ˙̂x) is given by

ε̇ =


f1 (x,u)− f1 (x̂,u)−kpsign ∗ εn

1+εn −kqε; x̂ ∈ S 1
(1−α) (f1 (x,u)− f1 (x̂,u))−α (f2 (x,u)− f2 (x̂,u))−kpsign ∗ εn

1+εn −kqε; x̂ ∈ Σ
f2 (x,u)− f2 (x̂,u)−kpsign ∗ εn

1+εn −kqε; x̂ ∈ S 2

(12)

In order to prove stability of the estimation error
for the system (12), a Multiple Lyapunov Functions
analysis was applied (Branicky, 1998; Zhang et
al., 2013). Thus, for the considered system (12),
Lyapunov (Li) functions exist, which have to be
continuous positive-definite with continuous partial
derivatives, when valued in zero the function is, at the
origin, (Li(0) = 0) for each considered subsystem of
the proposed system throughout each period of time
in which the subsystem takes place, and the derivate
of said functions has to be negative semi-definite
(L̇(x(t)) ≤ 0) for that same periods of time.

Therefore, if there is a set of Lyapunov-type
functions that matches the number of switches
that the proposed switched system has, and the
proposed Lypunov-type functions cover all the criteria
previously mentioned, the proposed system is stable in
the Lyapunov sense (Li et al., 2013).

Now, consider the following Lyapunov candidate

function:

L̇ ∈


L̇1
L̇1,2
L̇2

⇒ εT Pε ∈ ‖ε‖2P ∈


‖ε1‖

2
P∥∥∥ε1,2
∥∥∥2

P
‖ε2‖

2
P

,P = PT > 0

(13)

For the study case:

L̇ ∈


L̇1
L̇1,2
L̇2

⇒ ε̇T Pε+ εT Pε̇ ∈


ε̇T

1 Pε1 + εT
1 Pε̇1

ε̇T
1,2Pε1,2 + εT

1,2Pε̇1,2

ε̇T
2 Pε2 + εT

2 Pε̇2

(14)
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For L̇i for i = 1 and 2

L̇i =

(
(fi (x,u)− fi (x̂,u))−kpsign ∗

εn

1 + εn −kqε

)T

Pε

+ εT P
(
(fi (x,u)− fi (x̂,u))−kpsign ∗

εn

1 + εn −kqε

)
(15)

L̇i =2εT P (fi (x,u)− fi (x̂,u))

− 2εT P
(
kpsign ∗

εn

1 + εn + kqε

)
(16)

Here Li represents the Lyapunov function for the
subsystem i.

Hypothesis 1. The system (10) is Lipchitz bounded:

∥∥∥εT P (fi (x,u)− fi (x̂,u))
∥∥∥ ≤ Li ‖ε‖

2
P (17)

Now, ∥∥∥∥∥∥εT P
(
kpsign ∗

εn

1 + εn dx + kqε

)∥∥∥∥∥∥
≤ ‖ε‖P

∥∥∥∥∥kpsign ∗
εn

1 + εn dx + kqε

∥∥∥∥∥ (18)

Considering that the nonlinear feedback term is a
sigmoid-type function, where sign is the well-known
sign function, the term

∥∥∥sign ∗ εn

1+εn

∥∥∥ ≤ 1 is bounded.
Replacing equations (17) and (18) in equation

(16):

L̇i ≤ 2
[(

Li − kq
)
‖ε‖2p − kp ‖ε‖p

]
f or i = 1 and 2 (19)

If (Li − kq) < 0, choosing kq > Li and kp > 0, then(
Li − kq

)
‖ε‖2p − kp‖ε‖p ≤ 0 Consequently

L̇i ≤ 0 (20)

Now, for the transition region, L̇1,2:

L̇1,2 =
(
(1−α) (f1 (x,u)− f1 (x̂,u))−α (f2 (x,u)− f2 (x̂,u))−kpsign ∗ εn

1+εn −kqε
)T

Pε
+εT P

(
(1−α) (f1 (x,u)− f1 (x̂,u))−α (f2 (x,u)− f2 (x̂,u))−kpsign ∗ εn

1+εn −kqε
) (21)

Then,

L̇1,2 = 2εT P (α(f1(x,u)− f1(x̂,u))− (1−α)(f2(x,u)− f2(x̂,u)))− 2εTP
(
kpsign ∗

εn

1 + εn + kqε

)
(22)

Under assumption of Hypothesis 1,

L̇1,2 ≤ 2
[(
αL1 − (1−α)L2 −kq

)
||ε||2p −kp||ε||p

]
(23)

If kq > αL1 − (1−α)L2 and kq > 0

Then

L̇1,2 ≤ 0 (24)

Finally,

L̇ ∈


2
[(

L1 −kq
)
‖ε‖2P −kp‖ε‖p

]
6 0, x̂ ∈ S 1

2
[(
αL1 − (1−α)L2 −kq

)
‖ε‖2P −kp‖ε‖p

]
6 0, x̂ ∈ Σ

2
[(

L2 −kq
)
‖ε‖2P −kp‖ε‖p

]
6 0, x̂ ∈ S 2

(25)
With this, it can be concluded that the estimation error
is stable.

4 Numerical results

In order to show the performance of the proposed
methodology, numerical simulations were done
employing the 23s ode solver library of Matlab?(The
MathWorks INC, 2013) in a personal computer. The
considered unstructured kinetic models (Haldane-
Boulton and Moser-Boulton) were experimentally
corroborated (data not shown), where satisfactory
correlation coefficients (r2) were obtained (see Table
3). From the models mentioned above, the switching
nonlinear system was developed in accordance with
equation (7). The simulations of the system considered
the initial conditions indicated in Table 2. The state
observer described by equation (11) was implemented
with the initial conditions indicated also in Table 2.
In order to show the performance of the proposed
observed it will be compared to a classical Luenberger
observer.

The simulations for the model and observers

142 www.rmiq.org



Cuevas-Ortiz et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 14, No. 1 (2015) 137-147

are shown in Figures 1 to 3, where the sulfide
concentration is considered as the measured output,
such that this variable is assumed on-line measured
via colorimetric analysis. A local observability
analysis, as presented in section 3.1 was done
to the switched system’s model, being the sulfide
concentration the measured output (C=[0,0,1]). The
application of the equation (9) provides the global rank
of the observability matrix of the considered switched
bioreactor model, with rank[Qb] = 7, concluding in
accordance with the Proposition 1, that the switched
system is locally partially observable. Although

a local observability analysis for each sub-model
indicates that the system is observable; the ranks
of the observability matrix for the Haldane-Boulton
(HB), the (Haldane-Boulton)-(Moser-Boulton) (HB-
MB) and Moser-Boulton (MB) kinetic models, are
respectively (rank[Q(H − B)] = 3; rank[Q(HB−MB)] =

3; rank[QML] = 3).
The estimation performance of the proposed

observer for the sulfate and biomass concentration
reached the neighborhood of zero for the estimation
error (see Figure 4) within few hours, without large
overshoots, but with a rather large settling time.
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 502 

 503 
Figure 1. 504 

Figure 1. Simulation of the sulfide concentration production (continuous line) and the state observers (Luenberger
observer, dashed line and the proposed observer, dotted line).
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Figure 2. 506 

Figure 2. Simulation of the biomass concentration production (continuous line) and the state observers (Luenberger
observer, dashed line and the proposed observer, dotted line).
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Figure 3. 508 

Figure 3. Simulation of the sulfate concentration consumption (continuous line) and the state observers (Luenberger
observer, dashed line and the proposed observer, dotted line).

144 www.rmiq.org



Cuevas-Ortiz et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 14, No. 1 (2015) 137-147
 

Manuscrito sometido a la Revista Mexicana de Ingeniería Química22 
 

 509 
Figure 4. 510 

 511 

 512 
Figure 5. 513 

Figure 4. Estimation error for Sulfate (right axis), Biomass and Sulfur (left axis) concentrations for the Luenberger
observer (black symbols) and the proposed observer (white symbols).
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Figure 5. 513 

Figure 5. Phase portrait of state variables of the bioreactor (continuous line), the Luenberger (dashed line) and the
proposed observers (dotted line).

Table 3. Model Parametric Identification

Kinetic Model Correlation Coefficient (r2) Global (r2)
Biomass Sulfate Sulfide

Moser-Boulton 0.9888 0.9550 0.9805 0.9783
Haldane-Boulton 0.9821 0.9765 0.9857 0.9813
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Table 4. Initial Conditions

Sulfate Biomass Sulfur
(mg/L) (mg/L) (mg/L)

Switched model 5057.47 134.73 39.56
Observers 4500 150 70

A phase portrait representation (Figure 5) of the
bioreactor’s state variables, when the observers have a
different initial condition, is presented. The trajectory
of the proposed observer converges faster than the
Luenberger’s to the real trajectory. Also the proposed
observer’s trajectory stays close to the real one when
the transitions occur.

The state observer described in equation (11) was
implemented with the initial conditions shown on
Table 4. Where the following linear observer gains
(kp) (also the ones used for the Luenbergers observer)
were selected heuristically, as:

kp ∈


kp1
kp1,2
kp2

Where kp1 = [−15,1,1]; kp1,2 = [50,1,1] and kp2 =

[−100,1,1]. And the observer nonlinear gains (kq)
also selected heuristically were:

kq ∈


kq1
kq1,2
kq2

Where:kq1 = [5000,200,200]; kq1,2 = [5000,−1,1]
and kq2 = [1000,−1,1].

Conclusions

In this work a new class of nonlinear observer is
proposed and applied to switching bioreactor model
to simulate a kinetic regime change, which is a
typical feature in biological systems. The proposed
estimation methodology contains a sigmoid-type form
of the measured output injection term in order to
infer the biomass and sulfate mass concentrations
from sulfide concentration measurements in the
bioreactor, this sigmoid-type observer is able to reach
a satisfactory estimation performance which is better
than a standard extended Luenberger-type observer as
is shown via numerical simulations. A theoretical
framework is provided employing Lyapunov analysis
to demonstrate the stability of the estimation error.
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González, V., and González-Álvarez, V.
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