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Abstract
The goal of this work is to analyze by numerical bifurcation the dynamical behavior of a class of continuous bioreactor
used to hydrolyze cellulose using Cellulomonas cellulans, taking into account the effect of modeling the growth rate of
this microorganism by six different kinetics models (monotonic and non-monotonic). Furthermore, it is considered that the
biomass yield can be modeled as a constant or a variable case, for the variable case, a substrate dependent Gaussian-type
function was proposed. The proposed non-conventional yield function is a realistic approach that describes the behavior
of the cellular yield, unlike other models, this one is bounded to the maximum cellular yield and can be extrapolated to
several operation conditions. Numerical results show changes in the equilibrium branches due to the kinetic growth model
used. The non-conventional model of biomass yield produces a shift in the steady state multiplicity intervals, and new limit
cycles were found with certain specific values of dilution rate and substrate feed.
Keywords: bifurcation analysis, continuous flow, limit cycle, local stability analysis, steady-state multiplicity, unstructured
kinetic models.

Resumen
El objetivo de este trabajo es analizar mediante bifurcación numérica el comportamiento dinámico de una clase de
biorreactor continuo, utilizado para la hidrólisis de carboximetilcelulosa por Cellulomonas cellulans, tomando en cuenta
el efecto de modelar la velocidad de crecimiento de este microorganismo por seis diferentes modelos cinéticos no
estructurados (monotónicos y no-monotónicos). En el análisis se considera que el rendimiento celular puede ser modelado
como un valor constante o variable, para este último caso, fue propuesta una función tipo Gaussiana dependiente de la
concentración de sustrato. El modelo para el rendimiento celular variable utilizado representa un enfoque más realista para
describir el rendimiento celular, a diferencia de otros modelos reportados, la función es acotada al máximo rendimiento
celular y puede ser extrapolado a diferentes condiciones de operación. Los resultados numéricos revelan cambios en las
ramas de equilibrio debido al modelo de crecimiento utilizado. El modelo no convencional del coeficiente de rendimiento
ocasiona un desplazamiento en los intervalos de multiplicidad de estados estacionarios, cambios en la estabilidad de los
puntos de equilibrio y el surgimiento de ciclos lı́mite a ciertos valores especı́ficos de la tasa de dilución y de la concentración
del sustrato de alimentación.
Palabras clave: análisis de bifurcación, flujo continuo, ciclo lı́mite, análisis de estabilidad local, multiplicidad de estados
estacionarios, modelos cinéticos no estructurados.

1 Introduction

The bioreactor mathematical models are employed to
describe and predict the dynamics of its key state
variables, such as metabolites, substrates and biomass

concentrations. These models are also used in the
design, optimization, on-line monitoring, and control
of bioprocesses. To calculate the global rate for
some biochemical reactions, that together transform
at least one substrate to biomass and metabolites,
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mass and energy balances have been formulated where
the global rate is modeled frequently with logistic-
type mathematical functions, known as unstructured
growth models (Nielsen et al. 2003). In this
way, the chemostat is the simplest bioreactor model
that describes a microorganism culture (Fu & Ma,
2006), where a substrate is fed continuously into
the bioreactor, which is consumed by the biomass
and it is drawn off with the same input velocity.
A minimum of two key states are regarded in a
chemostat mass balance; the biomass and substrate
concentrations (Dong & Ma, 2013). In spite of this
relative simplicity, the chemostat is very useful in
many biological and applied mathematical studies.
Most of the previous theoretical studies have been-
focused on understanding its dynamic behavior as
stability, oscillations, steady state multiplicity and
hysteresis to improve the bioprocess in which is
involved (Garhyan et al. 2003; Abashar & Elnashaie,
2010), and to avoid falling into risky operation regions.

One of the earliest works focused in theoretical
studies of chemostat model, was the stability analysis.
It was conducted by Crooke et al. (1980), considering
the Monod unstructured model and two biomass yield
structures, constant and variable, the last one being
as a linear increasing function that depends on the
substrate concentration. The chemostat dynamic
behavior with a constant biomass yield considering
monotonic and non-monotonic growth rate has been
analyzed in (Lara-Cisneros et al. 2012). The analysis
showed that for the assumption of constant biomass
yield, oscillatory behavior in the chemostat model is
not possible, while the self-oscillations phenomenon
occurred experimentally. On the other hand, if a
linear biomass yield is considered, the oscillations are
numerically possible. Similar results were obtained by
Agrawal et al. (1982), they employed two different
models, Monod and an unstructured inhibition, both
with linear biomass yield. The linear biomass yield
considers that the specific growth rate must increase
and the specific substrate consumption rate must
decrease fast enough with the substrate concentration.
It is important to highlight that the biomass yield term
has been considered constant for many in silico works,
however, in practice this value is not constant along
a fermentation process, because the microorganisms
can be very sensitive to small changes on the culture
media, for instance in temperature, oxygen dissolved,
pressure, agitation, pH, inhibitory metabolites, etc.

Some other theoretical and numerical analysis
for bioreactor models consider nonlinear models for
the biomass yield, for instance in (Alvarez-Ramirez

et al., 2009), where employing a variable biomass
yield of the form (A+BS)n and the Monod model,
implemented a linear substrate feedback control as a
first stretch to eliminate oscillations with good results.
In (Huang et al. 2007) is shown oscillatory behavior
for a chemostat model with two microorganisms
competing for one limiting substrate, where one
microorganism was considered to have a constant
biomass yield and the other with a nonlinear biomass
yield of the form (A+BSn). On the other hand,
in (Ibrahim et al. 2008), were taken into account
the interactions between dissolved oxygen and the
substrate in the continuous balance, a Monod-Haldane
hybrid growth model, cell recycle, and the external
mass transference resistance were set as modeling
constrains, with this proposed study they found that
periodic and chaotic behavior emerging at certain
feed conditions and oxygen levels. In (Garhyan et
al. 2003), a four-dimensional model of a Zimomonas
mobilis fermentation was studied, considering the
cell maintenance energy, an internal biomass key
parameter, a second order polynomial for ethanol
yield coefficient and the Monod growth model, the
conditions for the oscillatory and chaotic behavior
were found, employing the dilution rate and the
substrate feed concentration as bifurcation parameters.

Many of the above works considered no inhibitions
and used the Monod model, however, there are
also analysis employing others unstructured models.
For instance, Nelson & Sidhu (2008), taking the
Tessier model and the linear biomass yield, they
mentioned that natural oscillations can only occur if
the feed substrate concentration is sufficiently high;
Lenbury & Chiaranai (1987), studying a three variable
system with a Levenspiel product inhibition model
and linear biomass yield as a function of the product
synthesis, they showed the existence of a periodic
solution by theoretical analysis and simulation. In
(Ajbar, 2001), considered the cell decay term, using
the Haldane substrate inhibition model, and biomass
attachment to the chemostat walls for the modelling. A
complete analysis of the static and dynamic behavior
of the above chemostat model for constant and linear
biomass yield was made; Fu & Ma (2006), considering
a simple chemostat model with a linear biomass yield
term and Tissiet substrate inhibition model proved the
existence of periodic solutions theoretically and by
simulation.

Nevertheless, as far as we know, in literature
there are few variable yield coefficient approaches,
and the most models proposed are polynomial or
exponential functions. The aim of this paper is to
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analyze the dynamic behavior in a chemostat model
considering the effect of a new biomass yield model
(Gaussian function), as well as, different growth
rate models (Aiba, Andrew, Haldane, Luong, Han-
Levenspiel and Moser). The proposed variable yield
coefficient model is a realistic approach to describe
the behavior of the cellular yield, unlike other models,
an important feature is that this model is bounded to
the maximum cellular yield and can be extrapolated to
several operation conditions. The analysis show rich
dynamical behavior from multiplicity of equilibrium
to different bifurcation types for the chemostat model
with the proposed variable yield coefficient approach.

The manuscript has been structured as follows,
the Section 2 shows the chemostat model for
the hydroximethyl-cellulose hydrolysis; Section 3
addresses previous theory on local stability for the
classic chemostat model; Section 4 has the results and
discussion for the bifurcation analysis of the modified
chemostat model. Finally, some concluding remarks
are pointed out in Section 5.

2 Bioreactor model
Bioethanol production from cellulose hydrolysis is
a promising alternative energy source, only a small
percentage of all the microorganisms around the earth

can degrade cellulose, mainly bacteria and fungi
(Gupta et al., 2012). Only a handful of works relating
to the mathematical modelling of cellulose hydrolysis
by microorganisms are reported in literature, for
example, Agarwal et al. (2009) calculated the value
of the kinetic parameters for a set of growth kinetic
models; all of these describe the carboxymethyl-
cellulose hydrolysis by Cellulomonas cellulans in a
batch culture. These growth models and its parameter
values were taken for the development of this work
(Table 1).

The chemostat model studied here, considers
the biomass yield as a constant value or as a
function of the substrate concentration. Some
restrictions for the modelling are that it is bounded
in the positive quadrant (mass concentrations cannot
take negative values experimentally); is isothermal
and homogeneous in the reactant concentrations
in the entire vessel; no terms of death rate was
considered and it is governed by the principle of mass
conservation, PMC (Sterner, 2012).

From a mass balance for the substrate and biomass
in the bioreactor, it is obtained the following system:

dS
dt

= f (s, x) = DS i −DS −
µ(S )X

Y
(1)

dX
dt

= g(s, x) = −DX + µ(S )X (2)

Table 1. Unstructured growth models and their parameters obtained for a CMC hydrolysis by Cellulomonas
cellulans in a bioreactor (Agarwal et al. 2009).

Table 1.  

Model   Equation 
   Parameters  

Aiba  

 

   

Andrew  
 

   

Haldane  

 

 
  

Han-­‐‑
Levenspiel  

 

 
  

Luong  

 

   

Moser  

 

   

 

Table 2.  

Model References 

 

(Crooke, 1980), (Lenbury & Punpocha, 1989), 
(Lenbury & Chiaranai, 1987), (Ajbar, 
2001);(Nelson & Sidhu, 2005),(Nelson, 
2009);(Wu, 2007). 

 (Alvarez-Ramirez et al., 2009); (Wu, 2007) 

 (Pilyugin, 2003); (Huang & Zhu, 2005) 

 
(Pilyugin, 2003) 
 

 
(Huang, Zhu, & Chang, 2007) 
 

 
(Huang & Zhu, 2005) (Huang, Zhu, & Chang, 
2007) 
 

 
(Sun et al., 2010) 

 

Table 3.  
Tr (J) Det (J) Tr(J)2 -4Det(J) λ1,2 Stability characteristics 
- + + Real, both (-) Stable Node 
- + - Complex, real part (-)  Stable Focus 
0 + - Imaginary, real part =0  Hopf Bifurcation 
+ + - Complex, real part (+) Unstable Focus 
+ + + Real, both (+) Unstable Node 
± 0 + One zero, one (-) o (+) Saddle-Node Bifurcation 
± - + Real, one (-) one (+) Saddle Point 
0 0 0 Both zero Double zero Bifurcation Point 
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Table 2. Some expressions for the variable biomass yield.
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Table 3.  
Tr (J) Det (J) Tr(J)2 -4Det(J) λ1,2 Stability characteristics 
- + + Real, both (-) Stable Node 
- + - Complex, real part (-)  Stable Focus 
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+ + - Complex, real part (+) Unstable Focus 
+ + + Real, both (+) Unstable Node 
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± - + Real, one (-) one (+) Saddle Point 
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Where S i is the feed substrate concentration, in
this case Carboxymethyl-cellulose (CMC), (Kg m−3);
S is the substrate concentration in the reaction mixture
(Kg m−3); X is the biomass concentration (Kg m−3).
In this contribution the specific growth rate µ, (h−1)
is a function µ: [0,S max] → R with the following
properties: i) µ is a differentiable function in the
domain [0,Smax]. ii) µ(0) = 0, and iii) µ(S ) ≤ µ̄max,
where µ̄max is a scalar providing the upper bound of µ;
D is the dilution rate (h−1); Y is the biomass yield,
(Kgbiomass KgCMC−1 ). S,X,D,Y ∈ R+. Biologically
the initial conditions for the biomass and substrate
concentrations at each time are: X0(t),S 0(t) ≥ 0; t ∈
[0,∞).

It is proposed that the biomass yield takes the
form:

Y(S ) =

(
1

α
√

2π

)
e

(
−(S−β)2

2α2

)
(3)

Which is a Gaussian type function. This proposed
yield is supported by the behavior of the biomass
and the substrate in the batch fermentations where
the substrate inhibition takes place, from this, it
can be noticed that at low substrate concentrations,
less than the substrate inhibition concentration, the
cellular yield increases, whereas at higher substrate
concentrations the cellular yield decreases (Fig. 1).
The Gaussian-type function is a realistic approach to
describe the behavior of the cellular yield, where an
important feature is that this model is bounded to the
maximum cellular yield and can be extrapolated to

several operation conditions, which is not the case
for other biomass yield models as the linear and
exponential functions.

There exists only a handful of biomass yield
functions reported in literature (Table 2); all of
them are function of the substrate or product
concentrations. These proposals must satisfy that:
I. Y(0) ≥ 0,and Y′(S ) ≥ 0,∀[S +

0 ,S
+]. And the

yield functions represent minimally the maintenance
energy requirements, cell quota, mass energy balance,
changes in the metabolic route or the enzymatic
activity, cellular division, changes in cell morphology
and age of culture (Pilyugin & Waltman, 2003).

3 On the local stability for the
chemostat model

To assess the local stability of the equilibrium for the
chemostat model, eqs. (1)-(2), it is used the Jacobian
(J) linearization method. The stability characteristics
are listen in Table 3.

3.1 Constant biomass yield
The local stability for the chemostat model with
constant biomass yield has been reported in (Crooke
et al. 1980). Following their key results:

J =

[
−D− xµ′(S )

Y −
µ(S )

Y
xµ′ (S ) −D + µ (S )

]
(4)
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Table 3. Local Stability Classification (Gray & Scoot, 1990).
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Fig. 1. 

 
Fig. 1. Nonlinear biomass yield as a Gaussian type
function.

Eq. (4) points out the linearization of the
chemostat model considering the biomass yield
constant. Considering that the chemostat achieves the
so-called operational steady state in which f (S ∗,X∗) =

0;g(S ∗,X∗) = 0|S ∗,X∗ > 0 ⇒ D = µ(S ∗), the matrix
can be reduced as:

J =

[
−D− xµ′(S )

Y −
µ(S )

Y
xµ′ (S ) 0

]
(5)

The trace Tr[J], determinant Det[J], and discriminant
Dcr[J] values of Jacobian matrix provide information
about the steady state stability for the chemostat
model, eqs. (6)-(8):

Tr[J] = −

(
D +

xµ′(S )
Y

)
(6)

Det[J] =
xµ′(S )D)

Y
(7)

Dcr[J] =

(
D−

xµ′(S )
Y

)2

(8)

The Tr[J], Det[J], and Dcr[J] analysis enclosed in
Table 4 indicates that the chemostat model has a
dichotomy, it can only show stable node and saddle
point character stabilities⇔ [S ,X,D,Y] ∈ R+.

The same results are obtained with the
eigenvalues:

λ1 = −D (9)

λ2 = −
xµ′

Y
(10)

From eqs. (9)-(10), the chemostat model is stable
∀D > 0∧µ′(S ) > 0 (as stable node) and unstable ∀D >
0∧ µ′(S ) < 0 (as saddle point)⇔ [S ,X,D,Y] ∈ R+.

3.2 Variable biomass yield

Now, if the biomass yield is a function of the substrate
concentration, the Jacobian takes the form:

J =

[
−D− Xγ′ −γ
Xµ′ (S ) −D + µ (S )

]
(11)

Where: γ =
µ(S )

Y and γ′ =
µ′(S )Y−µ(S )Y′

Y2 . At the
operational steady state D = µ(S ), so eq. (11) is
reduced to be:

J =

[
−D− Xγ′ −γ
Xµ′ (S ) 0

]
(12)

Where:
Tr(J) = −(D + Xγ′) (13)

Det(J) = Xµ′(S )γ (14)

Dcr(J) = (−(D + Xγ′))2 − 4Xµ′(S )γ (15)

Also, in the equilibrium: X = (S i − S )/Y; with S is a
positive solution of µ(S )−D = 0. Then, eqs. (13)-(15)
can be rearranged as follows:

Tr(J) = −

(
D +

(S i − S )γ′

Y

)
(16)

Det(J) =
[(S i?S )µ′(S )µ(S )]

Y2 (17)

Dcr(J) =

[
−(D +

(S i − S )γ′

Y

]2

−
4[(S i − S )µ′(S )µ(S )]

Y2

(18)
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Table 4. Intervals where Tr[J], Det[J] and Dcr[J] can take positive, negative or cero values.

Table 4. 
 

 

Table 5.  

Unstructured 
 kinetic 
model 

R2 

Initial condition 
D 
(h-1) 

Equilibrium point Eigenvalues Stability 
characteristics. S0 

[Kg m-3] 
X0 
[Kg m-3] S  

[Kg m-3] 
X 
 [Kg m-3] λ1 λ2 

Andrew´s 0.7450 

8 1.44 0.09 

1.102 0.6897 -0.2134 -0.09 Stable node 
Luong´s 0.8215 1.554 0.6445 -0.1748 -0.09 Stable node 
Han-
Levenspiel 

0.9393 1.961 0.6038 -0.7028 -0.09 Stable node 

Haldane 0.8753 1.603 0.6396 -0.2107 -0.09 Stable node 

Moser 0.7478 - - - - Not 
convergence 

Aiba 0.8412 1.569 0.6430 -0.1706 -0.09 Stable node 
 

 

 

 

 

 

 

 

Value    

Positive 
 ⇔ 

 
⇔   ∀ 

(S) 

Negative  ⇒  ⇔   

Inexistence case 

Zero  ⇔  
 ⇒  ∧ ∨ 

 
⇔ 

 

Restrictions:  

The eqs. 16-18 associated with the criteria given
in Table 3 indicates that the system could exhibit
oscillations depending of the sign taken by γ′ and
µ′(S ). In global terms, the bioreactor’s stability
depends of the microorganism´s metabolism (kinetic
growth rate and biomass yield) and some operative
parameters (the dilution rate (D) and the substrate
concentration fed (S i)).

4 Results and discussion
The numerical bifurcation analysis for the chemostat
model was done in Matcont v.5.0, a free MATLAB?
package for numerical bifurcation analysis of ODE
mathematical models. The dilution rate and the
substrate feeding were taken as the bifurcation
parameters. This fact obeys the structure of the
vector field (Lara-Cisneros et al. 2012). Some
particular equilibrium points were chosen from
the above bifurcation analysis to illustrate their
trajectories, attraction domains and stabilities, through
the construction of phase portraits, using pplane8, a
MATLAB package for numerical analysis of ODEs.

4.1 Constant biomass yield

The results of the Bifurcation Analysis took place with
the assembly of bifurcation diagrams, for this analysis,

plotting the biomass concentration at different dilution
rates (bifurcation parameter). These bifurcation
diagrams were built-up for all the unstructured kinetic
models in Table 1, with the exception of Moser model,
because this model does not predicts steady state
concentrations. Also, the bifurcation diagrams were
constructed for four substrate feed concentrations, (S i
= 2, 4, 8 and 12 Kg m−3). In the work of Agarwal
et al. (2009) is reported that the biomass yield
has different constant values for each substrate feed
concentration.(Y = 0.61(S i = 2), 0.36 (S i = 4), 0.10
(S i = 8) and 0.07 (S i = 12) Kgbiomass KgCMC−1 ),
these experimental results were taken into account in
the bifurcation analysis. The initial conditions for
CMC and biomass (S 0, X0) are 0.1 and 1.44 Kg m−3,
respectively.

In Fig. 2 (left hand) is shown, the bifurcation
diagrams for each unstructured model. Some critical
points were marked in the diagrams; these were
Branch Point 1 (BP1), Branch Point 2 (BP2) and Limit
Point (LP), which represent biomass concentration in
batch culture, washout condition (trivial solution) and
maximum operating dilution rate, respectively. The
equilibrium points from BP1 to LP are stable nodes,
while those from LP to BP2 are saddle points, this
last interval corresponds to a multiplicity steady state
region.
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Fig. 2 

 

 

 
Fig. 2. Bifurcation diagrams (left) at Si, 2, 4, 8 & 12 Kg m−3; and Y , 0.61, 0.36, 0.10, 0.07 Kgbiomass KgCMC−1

respectively, where BP1 (batch culture condition) and BP2 (washout condition) and LP (maximum operating dilution
rate) are indicated. Productivity diagrams (right) at the same S i and Y; for Aiba, Luong, Han-Levenspiel, Haldane
and Aiba models.
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For values equal to or greater than S i = 4 Kg
m−3 some similarities arisen between the bifurcation
diagrams, as the steady state multiplicity appearance,
where stable monotone solutions coexist with unstable
monotone solutions, which represents a high risk in the
operation of the bioreactor; the multiplicity interval
increases with the increment of S i; the hysteresis
phenomenon is not predicted; neither oscillatory nor
chaotic behavior.

On the other hand, there are some differences
comparing the bifurcation diagram for Han-
Levenspiel model with the other models, for example,
the maximum operating dilution rate predicted by
the Han-Levenspiel model (LP = 0.130 h−1) is
approximately 15% larger than the others and the
steady state multiplicity interval for the Levenspiel
model was larger than the rest of the models.

The Fig. 2 (right hand) shows the productivity
diagrams. For all the models, with the exception
of Han-Levenspiel model, the maximum biomass
productivity (Prm ≈ 0.9 Kg m−3 h−1) is reached at
S i = 4 Kg m−3 and a dilution rate around to 0.085
h−1 and for the Han-Levenspiel, the same productivity
takes place at S i = 12 Kg m−3 and a dilution rate
approximately of 0.127 h−1 which is very close to the
washout (D = 0.130 h−1), also with the disadvantage
of being in the multiplicity interval in contrast to other
models, so, it is convenient to operate the reactor in
other condition, a second option is S i = 4 Kg m−3

and D = 0.115 h−1, with a slightly lower productivity
but neglected the multiplicity interval. Note that both
operation conditions for Han-Levenspiel are outside
of the operation range predicted with the other kinetic
models.

In order to illustrate the trajectories, attraction
domains and the stability, it was chosen the initial
conditions: S o = 8 Kg m−3; Xo = 1.44 Kg m−3

and D = 0.09 h−1 to generate the corresponding
phase portraits for each one of the unstructured kinetic
models (Fig. 3). The steady state concentrations for
biomass and substrate and their eigenvalues for the
above initial conditions are shown in Table 5. In
the phase portraits it is pointed out three equilibrium
points (except Moser model), two of these are stable
nodes and correspond to the trivial solution (TS) and
nontrivial solution (NTS); the third point is a saddle
point (SP), an unstable equilibrium, this in accordance
with eqs. (6)-(8). It can be seen that all the trajectories
below the saddle point converge to cell washout and
those above the saddle point converge to an asymptotic
stable node.

The Moser model is the only one that cannot
present a NTS for any initial condition used, this is
explained in Table 6, that shows for each model, their
symbolic first derivative, analyzing the Moser model´s
derivative, it is the only incapable to take positive
values for any substrate concentration, therefore
neglects the restrictions of eq. (10), which mentioned
that the first derivate of µ regarding the substrate
must be positive at least in a range of positive
concentrations to reach a stable node. Similar results
were reported by Fu et al. (2005), whom employing
the Tissiet inhibition model and constant yield term
for the chemostat model system found analytically
and in simulations that the stability for the possible
equilibrium points can only be stable node or saddle
point.

Table 5. Eigenvalues and equilibrium points obtained for each kinetic growth model studied to the same initial
conditions. Restriction: Constant biomass yield.

Table 4. 
 

 

Table 5.  

Unstructured 
 kinetic 
model 

R2 

Initial condition 
D 
(h-1) 

Equilibrium point Eigenvalues Stability 
characteristics. S0 

[Kg m-3] 
X0 
[Kg m-3] S  

[Kg m-3] 
X 
 [Kg m-3] λ1 λ2 

Andrew´s 0.7450 

8 1.44 0.09 

1.102 0.6897 -0.2134 -0.09 Stable node 
Luong´s 0.8215 1.554 0.6445 -0.1748 -0.09 Stable node 
Han-
Levenspiel 

0.9393 1.961 0.6038 -0.7028 -0.09 Stable node 

Haldane 0.8753 1.603 0.6396 -0.2107 -0.09 Stable node 

Moser 0.7478 - - - - Not 
convergence 

Aiba 0.8412 1.569 0.6430 -0.1706 -0.09 Stable node 
 

 

 

 

 

 

 

 

Value    

Positive 
 ⇔ 

 
⇔   ∀ 

(S) 

Negative  ⇒  ⇔   

Inexistence case 

Zero  ⇔  
 ⇒  ∧ ∨ 

 
⇔ 

 

Restrictions:  
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Table 6. Unstructured models in study as well its first derivate with respect S.Table 6.  
Model Equation First derivate with respect S 

Andrew´s 
  

 

Luong´s 
  

 

Han-
Levenspiel 

 
 

 

Haldane 
  

 

Moser 
  

 

Aiba 
  

 
 

Table 7.  

Unstructured 
 kinetic 
model 

R2 

Initial condition 
D 
(h-1) 

Equilibrium point Eigenvalues Stability 
characteristics So 

[Kg m-3] 
Xo 
[Kg m-3] S  

[Kg m-3] 
X 
 [Kg m-3] λ1 λ2 

Andrew 0.7450 

8 1.44 0.09 

1.102 1.6561 -0.2134 -0.09 Nodal source 

Luong 0.8215 1.554 2.2446 0.06241+
0.10882i 

0.06241-
0.10882i 

Spiral source 

Han-
Levenspiel 

0.9393 1.961 2.6153 -0.42735 -0.14802 Nodal sink 

Haldane 0.8753 1.603 2.3006 0.03357+
0.13356i 

0.03357-
0.13356i 

Spiral source 

Moser 0.7478 - - - - Not convergence 

Aiba 0.8412 1.569 2.2617 0.06121+
0.10774i 

0.06121-
0.10774i 

Spiral source 

 

4.2 Variable biomass yield

The bifurcation analysis with the variable biomass
yield proposed was carried out with the same initial
conditions reported in Section 4.1. Fig. 4 (left
hand), shows the equilibrium branches for each kinetic
model, where steady state multiplicity is predicted,
as well as in the results for constant biomass yield,
although the interval of multiplicity was reduced
significantly. Critical points were marked, these were:
Branch Point 1 (BP1), Branch Point 2 (BP2) and
Limit Point (LP). Moreover, another critical point
was found, the Hopf Bifurcation (H), indicating the
appearance or disappearance of a limit cycle, meaning
that sustained oscillations happen in the bioreactor.
There exist a maximum of two Hopf bifurcation points

for the same equilibrium branch (H1 and H2).
The phase portraits were constructed with the same

initial conditions that yields the H1 (except Moser
and Han-Levenspiel model) (Table 7), with the aim
to show the trajectories and the attraction domain
of the limit cycle (Fig. 5). To reveal the interval
of D where the oscillations exist, the eigenvalues
for the equilibrium branches were obtained and their
imaginary part were plotted in Fig. 6. It is pointed out
in Table 3 the eigenvalues with complex numbers that
indicate oscillatory behavior (stable and unstable focus
and Hopf bifurcation), also in the stability analysis
showed in Section 3.2, it is proved that oscillatory
behavior can exist, and it also depends explicitly of
value S i, eqs. (16)-(18). For this study model, the
oscillations arose for the interval between 4 ≤ S i ≤ 12.
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Fig. 3 

 

 

Fig. 3. Phase portrait´s for Andrew, Haldane, Han-Levenspiel, Luong, Moser & Aiba at D=0.09 h−1; S0= 8 Kg
m−3; X0=1.44 Kg m−3 and Y=0.10 Kgbiomass KgCMC−1 .

The simulations results with the kinetic rate laws
listed in Table 1 (except Moser model) showed strong
differences in the predictions of oscillatory behavior
between them. The bifurcation diagram using the
Han-Levenspiel´s model had the greatest differences
compared to the other unstructured models. Some
of these differences were that the location of the
predicted equilibrium points change drastically in all
the intervals of dilution rates studied; the intervals
of oscillatory behavior is intensely reduced with the
increment of S i; the maximum operable dilution rate

(LP) predicted was higher with Han-Levenspiel model
than the other models.

The Hopf bifurcation points, H1 and H2, predicted
only for the Aiba, Andrew, Haldane and Luong
models, were characterized from the Lyapunov
coefficients; the H1 is supercritical, meaning that
is stable with small magnitude oscillations and it
does not relies in the multiplicity region. This is in
disagreement with the results of Pilyugin & Waltman
(2003), that states that only supercritical bifurcations
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Fig. 4 

 

Fig. 4. Bifurcation diagrams (left) at Si, 2, 4, 8 & 12 Kg m−3; and Y , as a Gaussian function Kgbiomass KgCMC−1

respectively, where BP1 (batch culture condition) and BP2 (washout condition) and LP (maximum operating dilution
rate) are indicated. Productivity diagrams (right) at the same S i and Y; for Aiba, Luong, Han-Levenspiel, Haldane
and Aiba models.
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Fig. 5 

 

Fig. 5. Phase portrait´s for Andrew, Haldane, Han-Levenspiel, Luong, Moser & Aiba at D=0.09 h−1; Si= 8 Kg m−3;
Xi=1.44 Kg m−3 and Y as a Gaussian function.

occur when the yield varies linearly with S . The H2
falls in the interval of multiplicity, it coexists with an
unstable node, H2 is subcritical with high amplitude
and period. Moreover, a new bifurcation analysis was
carried out taking two bifurcation parameters, D and
S i (a 2-co-dimension bifurcation), starting from H1
to H2, where it was marked the conditions for the
vanishing of the limit cycles (LPC). The Fig 7 gives
information about the amplitude and the period of the
oscillations, also, illustrates the family of limit cycles
(loop of limit cycles) that lies in the state-parameter
space studied. This loop showed a closed region,
where only unstable periodic solutions are predicted
and coexist with unstable nodes.

Concluding remarks
In this paper the dynamical behavior of a chemostat
model has been analyzed by numerical bifurcation
where the kinetic growth was described by a set or
unstructured growth models and under the assumption
that the biomass yield is constant, or a function of
the substrate concentration. The variable yield model
proposed here is of the form of a Gaussian-type
function, and represent a more realistic approach to
describe the behavior of the cellular yield. Significant
changes in the chemostat behavior were obtained
when the Gaussian yield function was used, instead
the constant biomass yield value, as Hopf points
prediction, differences in the steady state multiplicity
intervals, productivity and equilibrium stability; and
for the Han-Levenspiel growth model, that predicts
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Fig. 6 

    

  Fig. 6. Bifurcation diagrams at Si, 2, 4, 8 & 12 Kg m−3; and Y , as a Gaussian function Kgbiomass KgCMC−1 where
it is shown the imaginary part of the complex eigenvalues that reveal the intervals where the system oscillates. It is
only pointed the Hopf bifurcation (H).

Table 7. Eigenvalues and equilibrium points obtained for each kinetic growth model studied to the same initial
conditions. Restriction: Variable biomass yield.

Table 6.  
Model Equation First derivate with respect S 

Andrew´s 
  

 

Luong´s 
  

 

Han-
Levenspiel 

 
 

 

Haldane 
  

 

Moser 
  

 

Aiba 
  

 
 

Table 7.  

Unstructured 
 kinetic 
model 

R2 

Initial condition 
D 
(h-1) 

Equilibrium point Eigenvalues Stability 
characteristics So 

[Kg m-3] 
Xo 
[Kg m-3] S  

[Kg m-3] 
X 
 [Kg m-3] λ1 λ2 

Andrew 0.7450 

8 1.44 0.09 

1.102 1.6561 -0.2134 -0.09 Nodal source 

Luong 0.8215 1.554 2.2446 0.06241+
0.10882i 

0.06241-
0.10882i 

Spiral source 

Han-
Levenspiel 

0.9393 1.961 2.6153 -0.42735 -0.14802 Nodal sink 

Haldane 0.8753 1.603 2.3006 0.03357+
0.13356i 

0.03357-
0.13356i 

Spiral source 

Moser 0.7478 - - - - Not convergence 

Aiba 0.8412 1.569 2.2617 0.06121+
0.10774i 

0.06121-
0.10774i 

Spiral source 
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Fig. 7. Hopf bifurcation continuation with the Gaussian yield, Si=8 Kg m−3. Left-hand the oscillations amplitude
for CMC and biomass; right-hand, oscillations period between two Hopf bifurcations.

a maximum dilution rate over the other unstructured
models and different equilibrium branches. The above
results disclose that chemostat model predictions can
vary greatly according to the unstructured growth
model and the biomass yield. It also shows the
necessity of the validation of simulation results with
laboratory experiments to choose the most appropriate
bioreactor model, thus leading to an improvement of
the bioreactor design and control.
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Nomenclature
Si Initial substrate concentration, Kg m−3

S Substrate concentration, Kg m−3

D Dilution rate, h−1

X Biomass concentration, Kg m−3

Y Biomass yield, Kgbiomass KgCMC−1

Xo initial biomass concentration, Kg m−3

CMC Carboximethylcellulose
Prm maximum biomass productivity
LP Limit Point
LPC Limit Point Cycle
BPn Branch Point n
Hn Hopf n
N Neutral Saddle
TS Trivial solution
Im [n] Imaginary number [n]

Greek symbols
µ Specific growth rate, h−1

µ′ First derivate with respect to the substrate
for specific growth rate

λn Eigenvalues
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Karaaslanl, C.Ç. (2012) Bifurcation analysis and its
applications. En: Numerical simulation - from
theory to industry, (M. Andriychuk,ed.), Pp. 3.
Intech.

Lara-Cisneros, G., Femat, R. y Perez, E. (2012).
On dynamical behaviour of two-dimensional
biological reactors. International Journal of
Systems Science 43, 526.

www.rmiq.org 163
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Appendix A

Bifurcation theory

The objective of bifurcation theory is to characterize
changes in the qualitative dynamic behavior of a
nonlinear system as the key parameter values (for
example, coefficients of a reaction rate) are changed
(Zhang & Henson, 2001). This means that the system
achieves a critical parameter value, where an orbit
change occurs and, as a consequence, the possibility
of different stability properties of equilibrium; if this
qualitative change does not occur and a quantitatively
different behavior is only present, the system is
structurally stable (Karaaslanl, 2012). Formally,
Bifurcation can be introduced as follows:

The appearance of a topologically nonlinear phase
portrait under variation of a parameter is called a
bifurcation (Zhang & Henson, 2001).

A more efficient and complete characterization
of the model behavior that are difficult to ascertain
simply integrating the model equations over time are
disclosed through the bifurcation analysis (Zhang &
Henson, 2001; Garhyan et al. 2003), therefore, it is a
way to validate if the models supports the steady state
and dynamic behavior observed experimentally; it is
a powerful method to search the parameters’ values,
where oscillations exist and to discretize between
models that present high correlation with experimental
data. This analysis can be used to fix intervals of
bioreactor operation and to keep the bioreactor away
from undesirable steady states and direct it towards
more beneficial ones. (Zhang & Henson, 2001;
Namjoshi et al. 2003).

There are two types of bifurcations, local
and global, the first correspond to the analysis
through local stability properties of the equilibria
by computing Taylor’s series expansion of the state
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space model. Local bifurcation occurs when some
of the eigenvalues approach the imaginary axis in
the complex plane. The simplest bifurcations are
associated with a single real eigenvalue becoming zero
(λ1 = 0) (Fold bifurcation) as the case of Branch
Point (BP) and Limit Point (LP) or a pair of complex
conjugate eigenvalues crossing the imaginary axis
(λ1,2 = ±iγ, γ > 0) namely Hopf point (H), the saddle
point appears when the eigenvalues are strictly real
numbers with opposite signs (λ1 = −R, λ2 = R). Fold
bifurcations usually are the cause of multiple steady
states and hysteresis behavior. Hopf bifurcations are
responsible for the appearance and disappearance of
periodic solutions (Limit cycles) (Zhang & Henson,
2001). The local bifurcations are listed in Table 3. The
second refers to some large invariant sets of the system
that collide with each other, or with equilibria of the
system. The simplest global bifurcations correspond
to the creation or destruction of a homoclinic or
heteroclinic orbit, for which no local information is
sufficient. A homoclinic orbit connects equilibrium to
itself, whereas a heteroclinic orbit refers to connecting
two different equilibria.

Limit cycles could be detected through the Hopf
bifurcation as is indicated in following theorem:

Theorem 1. Hopf bifurcation theorem. Consider
the autonomous invariant system:

ds
dt

= f (s, x,D);
dx
dt

= g(s, x,D) (A.1)

Where the functions f and g, depend on the bifurcation

parameter D. Suppose there exist an equilibrium
(s̄(D), x̄(D)) of system (A.1) and the Jacobian matrix
evaluated at this equilibrium has eigenvalues α(D) ±
iβ(D). In addition, suppose a change in stability occurs
at the value of D = D∗, where α(D∗) = 0. If α(D) < 0
for values of r close to D∗ but for D < D∗ and if
α(D) > 0 for values of D close to D∗ but for D >
D∗ (also β(D∗) , 0)), then the equilibrium changes
from the stable spiral to an unstable spiral as r passes
through D∗. The Hopf bifurcation theorem indicates
that there exists a periodic orbit near D = D∗ for any
neighborhood of the equilibrium in R2. The parameter
D is the bifurcation parameter and D∗ is the bifurcation
value. The theorem is valid only when the bifurcation
parameter has values close to the bifurcation value
(Allen, 2007).

At the Hopf bifurcation, as D passes through
the bifurcation value D∗, there are three possible
dynamics that may occur:

(i) At the bifurcation parameter D∗ infinitely many
neutrally stable concentric closed orbits encircle
the equilibrium.

(ii) A stable spiral changes to a stable limit
cycle for values of the parameter close to D∗
(supercritical bifurcation).

(iii) A stable spiral an unstable limit cycle change to
an unstable spiral for values of the parameters
close to D∗ (subcritical bifurcation) (Ajbar,
2001; Allen, 2007).
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