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Abstract
Topological relations between heat or mass transfer equations analytical solutions for media contacting a well stirred solution
with finite volume were deduced for infinite flat slabs, infinite cylinders and spheres. Referred topological relations conduce to
prediction heat or mass transfer properties in the averaged equations as function of thermal or mass diffusivity and medium size
and geometry. As results corollary, the application of the analytical solutions for empirical evaluation of heat or mass diffusivity
was detailed.
Keywords: analytical solution, heat conduction, diffusion, finite volume solution, topological relations, averaged equations.

Resumen
Las relaciones topológicas entre las soluciones analı́ticas de las ecuaciones de transferencia de calor o masa en medios
contactando una solución bien mezclada de volumen finito fueron deducidas para placas planas infinitas, cilindros infinitos
y esferas. Las relaciones topológicas referidas conducen a la predicción de propiedades de transferencia de calor o masa en
ecuaciones promediadas como función de la difusividad térmica o másica y del tamaño y geometrı́a del medio. Como corolario
de los resultados se detalla la aplicación de las soluciones analı́ticas para la evaluación empı́rica de difusividades térmicas o
másicas.
Palabras clave: solución analı́tica, conducción de calor, difusión, solución de volumen finito, ecuaciones promediadas, relaciones
topológicas.

1 Introduction

Solid-fluid contact processes have several applications
in Chemical Engineering. As examples, continuous
solid-liquid extractors (Veloso et al., 2005), solid-
supercritical CO2 column extractors (Perrut et
al., 1997; Reverchon and Iacuzio 1997), osmotic
dehydration (Medina-Vivanco et al. 2002, Khin et al.
2006), heterogeneous chemical reactors (Marroquin
de la Rosa et al., 2002, Valdés-Parada et al. 2007,
Hernández-Martı́nez et al. 2011) and air heating
columns (Shou-Shing et al., 2002). It is important to

remark that in any real solid-fluid process the medium
particles have different geometries and sizes and
therefore numerical solutions of constitutive equation,
even with the modern methods and computational
resources, are only approximations, because it is
impossible to build a model for every single solid
particle. Then, in solid-fluid process modeling, the
medium geometry and size must be estimated from
mathematical expectation of the whole particles which
could have, with high probability, irregular geometry
(Pacheco-Aguirre et al. 2015). The heat or mass
transfer modeling in an irregular geometry may be
performed by finite element or generalized finite
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differences (Pacheco-Aguirre et al. 2015). However,
for process modeling, it is a common practice in
chemical engineering the use of averaged equations
in terms of external (in fluid phase) and internal (in
the particles) heat or mass transfer coefficients (Perrut
et al., 1997; Reverchon and Iacuzio 1997; Veloso et
al., 2005). Internal mass transfer coefficients depend
on internal solute diffusivity, a characteristic length
for diffusion and the averaged geometry of particles
(Espinoza-Pérez et al., 2007). The geometry effect
on internal heat or mass transfer coefficient may be
expressed in terms of topology. Therefore, in order
to determinate the topological relations of heat and
mass transfer behavior in different geometries, their
analytical solution in traditional geometries must be
deduced and analyzed in topological point of view.

On this perspective the classical problem of
heat conduction or solute diffusion in media
contacting with a well stirred solution of finite
volume with interfacial resistance represents the
constitutive equations for any fluid-solid process.
The problem, with negligible interfacial resistance
(or conduction/diffusion controlled), was originally
reported and analytically solved for an infinite sheet
by Carslaw and Jaeger (1959). Analytical solutions of
the mass transfer problem, with negligible interfacial
resistance, were reported for infinite sheet, infinite
cylinders and spheres, by Crank (1975). The problem
solution for solid-liquid extraction has been reported
by Mikhailov (1977) and Castillo-Santos et al., (2017).
Crank (1975) solutions are classics and applied in
osmotic dehydration (Medina-Vivanco et al. 2002,
Khin et al. 2006) and solid-liquid extraction (Cacace
and Mazza 2003; Espinoza-Pérez et al., 2007).
However, Mikhailov (1977) solutions are expressed
only for pointwise solute concentration and Castillo-
Santos et al., (2017) solution is only for 1D rectangular
geometry mass transfer equation.

On this perspective the classical problem of
heat conduction or solute diffusion in media
contacting with a well stirred solution of finite
volume with interfacial resistance represents the
constitutive equations for any fluid-solid process.
The problem, with negligible interfacial resistance
(or conduction/diffusion controlled), was originally
reported and analytically solved for an infinite sheet
by Carslaw and Jaeger (1959). Analytical solutions of
the mass transfer problem, with negligible interfacial
resistance, were reported for infinite sheet, infinite
cylinders and spheres, by Crank (1975). The problem
solution for solid-liquid extraction has been reported
by Mikhailov (1977) and Castillo-Santos et al., (2017).

Crank (1975) solutions are classics and applied in
osmotic dehydration (Medina-Vivanco et al. 2002,
Khin et al. 2006) and solid-liquid extraction (Cacace
and Mazza 2003; Espinoza-Pérez et al., 2007).
However, Mikhailov (1977) solutions are expressed
only for pointwise solute concentration and Castillo-
Santos et al., (2017) solution is only for 1D rectangular
geometry mass transfer equation.

2 Problem formulation

2.1 Constitutive equations

Heat conduction or solute diffusion in media
contacting with a finite volume of well-stirred solution
in a solid-fluid operation may be described in a general
coordinate system for heat transfer by,

∂Θβ

∂t
= α∇ ·∇Θβ, in Vβ (1a)

−n ·αρβCpβ∇Θβi = h
(
Θγi −Θγ

)
, at Aβγ (2a)

Θγi = Θβi, at Aβγ (3a)

VγργCpγ
∂Θγ

∂t
= hAβγ

(
Θγi −Θγ

)
, in Vγ (4a)

And for mass transfer by,

∂Θβ

∂t
= α∇ ·∇Θβ, in Vβ (1b)

−n ·α∇Θβi = hργ
(
Θγi −Θγ

)
, at Aβγ (2b)

Θγi = KeqΘβi, at Aβγ (3b)

Vγργ
∂Θγ

∂t
= hργAβγ

(
Θγi −Θγ

)
, in Vγ (4b)

Where α is thermal (k/ρβCpβ)) or mass diffusivity; h
is heat or mass transfer interfacial coefficient; Keq the
distribution constant in mass transfer and Cp is heat
capacity. The transfer surface (Aβγ) can be expressed
in terms of medium volume (Vβ),

Aβγ =
θVβ
`

(5)

Particular forms of Eq. (5) are: infinite flat slab with
transfer by both sides with ` as half thickness, θ = 1;
infinite cylinder with radius `, θ = 2; sphere with
radius `, θ = 3. Moreover, the finite solution volume
(Vγ) and medium volume (Vβ) can be expressed as
fraction of total system volume (V = Vγ +Vβ),

Vγ = εV ; Vβ = (1− ε)V (6)
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Then, Eqs. (1) to (4) may be written in dimensionless
form as,

∂Ψβ

∂Fo
=
•

∇·
•

∇Ψβ, in Vβ (7)

−n ·
•

∇Ψβi = BiΨβi +
Bi
φ
Ψγ, at Aβγ (8)

−
1
θ

∂Ψγ

∂Fo
= BiΨβi +

Bi
φ
Ψγ, in Vγ (9)

by introducing the following dimensionless variables
and numbers,

•

∇ = ∇` Fo =
αt
`2

for heat transfer

Bi =
h`
k

φ =
mγCpγ
mβCpβ

Ψβ =
Θβ −Θβe

Θβ0 −Θβe
Ψγ =

Θγ −Θγe

Θγ0 −Θγe

for mass transfer

Bi =
hl
α

ργKeq

ρβ
φ =

mγeKeq

mβe

Ψβ =
mβeΘβ −mβeΘβe

mβ0Θβ0 −mβeΘβe
Ψγ =

mγeΘγ −mγeΘγe

mγ0Θγ0 −mγeΘγe

The equilibrium temperature or equilibrium mass
fraction are defined by the total heat balance or mass
balance,

Θβe =
φΘγ0 +Θβ0

1 + φ
and Θγe = Θβe for heat transfer

(10a)

Θβe =

mγ0
mβe
Θγ0 +

mβ0
mβe
Θβ0

1 + φ
and

Θγe = KeqΘβe for mass transfer (10b)

Another result from heat or mass balance used in
dimensionless Eqs. (7) to (9) is,

Θγ0 −Θγe = −
1
φ

(
Θβ0 −Θβe

)
for heat transfer (11a)

mγ0Θγ0 −mγeΘγe

mβ0Θβ0 −mβeΘβe
= −1 for mass transfer (11b)

The above dimensionless analysis is not reported
in Carslaw and Jaeger (1959) or Crank (1975),
and it is extremely important because unifies the
heat (Eqs. 1a-3a) and mass (Eqs. 1b-3b) transfer
problem in Eqs. (7)-(9). It is important to note that

mass transfer dimensionless variables considers that
initial media mass (mβ0) and initial solution mass
(mγ0) may be differ of equilibrium ones (mβe and
mγe). This is because in any solid-fluid (medium-
solution) mass transfer process the solid phase retains
fluid phase known as retained solution. Therefore,
the final medium is a mixture of solid phase and
retained solution called underflow (Castillo-Santos
et al., 2016). The application of Eq. (10b) for
equilibrium concentrations prediction requires the
prediction of underflow mass at equilibrium which
depend of specific retained fluid phase by inert solids
in underflow (Castillo-Santos et al., 2016). In this
work, only the result for dimensionless variables will
be used.

2.2 Constitutive equations for the three
conventional geometries

Eqs. (7) and (8) can be written in terms of 1D
rectangular coordinate, 1D cylindrical coordinate and
1D spherical coordinate as is shown in the following
paragraphs.

2.2.1 Infinite flat slab with heat/mass transfer in both
sides and ` as half thickness

∂Ψβ

∂Fo
=
∂2Ψβ

∂ξ2 for 0 6 ξ 6 1 and Fo > 0 (7a)

where ξ = z/`. Eqs. (7) and (8) are symmetric with
respect to ξ and therefore ∂Ψβ/∂ξ = 0 at ξ = 0.

2.2.2 Infinite cylinder with radius `

∂Ψβ

∂Fo
=

1
ξ

∂

∂ξ

(
ξ
∂Ψβ

∂ξ

)
for 0 6 ξ 6 1 and Fo > 0 (7b)

where ξ = r/`.

2.2.3 Sphere with radius `

∂Ψβ

∂Fo
=

1
ξ2

∂

∂ξ

(
ξ2 ∂Ψβ

∂ξ

)
for 0 6 ξ 6 1 and Fo > 0

(7c)

where ξ = r/`.
In the three cases the boundary condition at

interface (Eq. 8) is expressed as,

−
∂Ψβ

∂ξ
= BiΨβi +

Bi
φ
Ψγ for ξ = 1 and Fo > 0 (8a)
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2.3 Space averaged equations

The same phenomena may be represented in terms
of macroscopic heat or mass transfer and averaged
temperature or solute concentration in underflow
〈θ〉β =

∫
Vβ
ΘβdV /

∫
Vβ

dV (Castillo-Santos et al.,
2017).

Macroscopic heat balance in media and solution,

CpβρβVβ
d〈Θ〉β

dt
= hβAβγ

(
Θβi − 〈Θ〉β

)
, in Vβ (12a)

CpγργVγ
dΘγ
dt

= hγAβγ
(
Θγi −Θγ

)
, in Vγ (13a)

Macroscopic mass balances of extractable solids in
media and solution,

ρβVβ
d〈Θ〉β

dt
= hβρβAβγ

(
Θβi − 〈Θ〉β

)
in Vβ (12b)

ργVγ
dΘγ
dt

= hγργAβγ
(
Θγi −Θγ

)
in Vγ (13b)

In which the heat or mass transfer continuity at
interface implies,
Heat transfer

hγAβγ
(
Θγi −Θγ

)
= −hβAβγ

(
Θβi − 〈Θ〉β

)
, at Aβγ

(14a)
Mass transfer

hγAβγργ
(
Θγi −Θγ

)
= −hβAβγρβ

(
Θβi − 〈Θ〉β

)
, at Aβγ

(14b)
hγ is the same heat or mass transfer interface
coefficient expressed in Eqs. (1) to (4) but particularly
defined for fluid phase side; hβ is a heat or mass
transfer interface coefficient in solid phase side, its
implication and relation to constitutive equations will
be discussed in deep in results section. Introducing the
following dimensionless variables,
for heat transfer

〈Ψ〉β =
〈Θ〉β −Θβe

Θβ0 −Θβe
; Bi =

hγl
k

; Ω =
hβlθ

k

for mass transfer

〈Ψ〉β =
mβe〈Θ〉β −mβeΘβe

mβ0Θβ0 −mβeΘβe
; Bi =

hγl
α

ργKeq

ρβ
;Ω =

hβlθ
α

Eqs. (9), (10) and (11) may be written as,

d〈Ψ〉β
dFo

=Ω
(
Ψβi − 〈Ψ〉β

)
(15)

dΨγ
dFo

=
θBi
φ

(
Ψγi −Ψγ

)
(16)

θBi
φ

(
Ψγi −Ψγ

)
=Ω

(
Ψβi − 〈Ψ〉β

)
(17)

Ψγi = −φΨβi (18)

3 Results

3.1 Analytical solutions of constitutive
equations

Mikhailov (1977) presented an elegant analytical
solution for mass transfer during solid-liquid
extraction. The elegance lies in the fact that the
solution (obtained by Laplace transform approach)
was obtained for any geometry. However this solution
is not referred for averaged media concentration 〈θ〉β =∫
Vβ
ΘβdV /

∫
Vβ

dV or for medium concentration
Θγ. Therefore in this work the analytical solutions
for the 3 conventional geometrics were deduced by
Laplace transform in order to deduce the topological
relation between them. Recently, Green´s function
approaches have been reported for analytical solution
of heat transfer problems with explicit function of
time as boundary conditions (Chen et al., 2017) or
discontinuities at boundary conditions (Woodbury et
al., 2017). However for the present problem, in which
the boundary condition (Eqs. 2) is coupled with an
initial value problem (Eqs. 4), the classical Laplace
approach (with natural application for initial value
problems) is enough and the developed solution stages
leads to topology relations between geometries.

Assuming homogeneous initial temperature or
mass fraction, the initial conditions for Eqs. (7) to
(9) are Ψβ = 1 and Ψγ = 1 at Fo = 0. Applying the
Laplace transform with respect to Fo to Eqs. (7a), (7b)
and (7c),

d2Ψβ (s, ξ)

dξ2 − sΨβ (s, ξ) + 1 = 0 (19a)

ξ2 d2Ψβ (s, ξ)

dξ2 +ξ
dΨβ (s, ξ)

dξ
−
(
sξ2 + 0

)
Ψβ (s, ξ)+ξ2 = 0

(19b)

ξ2 d2Ψβ (s, ξ)

dξ2 +2ξ
dΨβ (s, ξ)

dξ
−
(
sξ2 + 0

)
Ψβ (s, ξ)+ξ2 = 0

(19c)
where Ψβ(s, ξ) is the Laplace transform of Ψβ(Fo, ξ).
The solutions of Eqs. (19) are,

Ψβ (s, ξ) = C1 cosh
(√

sξ
)
+ C4 sinh

(√
sξ

)
+

1
s

(20a)
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Ψβ (s, ξ) = C2I0
(√

sξ
)
+ C5K0

(√
sξ

)
+

1
s

(20b)

Ψβ (s, ξ) = C3i0
(√

sξ
)
+ C6k0

(√
sξ

)
+

1
s

(20c)

where I0 and K0 are the modified Bessel functions of
first and second kind of order 0, and i0 and k0 are the
modified spherical Bessel functions of first and second
kind of order 0. By symmetry of Eq. (7a) C4 = 0 and
by the fact that Eqs. (19b) and (19c) must have a finite
value in ξ = 0; C5 = 0 and C6 = 0. From Eqs. (8) and
(9) it is evident that,

−
1
θ

∂Ψγ

∂Fo
= −

∂Ψβ

∂ξ
(21)

And therefore applying Eq. (21) in the Laplace
transform of Eq. (9)

Ψγ (s) =
1
s

+
C1 sinh

(√
s
)

√
s

(22a)

Ψγ (s) =
1
s

+
2C2I1

(√
sξ

)
√

s
(22b)

Ψγ (s) =
1
s

+
3C3i1

(√
sξ

)
√

s
(22c)

Applying Eqs. (20) and (21) in Eqs. (8),

−
C1
√

ssinh
(√

s
)

Bi
= C1 cosh

(√
s
)
+

1
s
+

1
φ

1
s

+
C1 sinh

(√
s
)

√
s


(23a)

−
C2
√

sI1
(√

s
)

Bi
= C2I0

(√
s
)
+

1
s
+

1
φ

1
s

+
2C2I1

(√
sξ

)
√

s


(23b)

−
C3
√

si1
(√

s
)

Bi
= C3i0

(√
s
)
+

1
s
+

1
φ

1
s

+
3C3i1

(√
sξ

)
√

s


(23c)

From Eqs. (23),

Cθ =
φ+ 1
φ

1
suθ (s)

, for θ = 1,2,3 (24)

Where,

u1 (s) = −

√
ssinh

(√
s
)

Bi
− cosh

(√
s
)
−

sinh
(√

s
)

φ
√

s
(25a)

u2 (s) = −

√
sI1

(√
s
)

Bi
− Io

(√
s
)
−

2I1
(√

s
)

φ
√

s
(25b)

u3 (s) = −

√
si1

(√
s
)

Bi
− io

(√
s
)
−

3i1
(√

s
)

φ
√

s
(25c)

Then, applying the constant in Eqs. (20) and the
residual theorem of Cauchy,

Ψβ (Fo, ξ) = 1 + lim
s→0

s (1 + φ)cosh
(√

sξ
)
esFo

φsu1 (s)

+

∞∑
n=1

lim
s→sn

(s− sn)
u1 (s)

(1 + φ)cosh
(√

sξ
)
esFo

φs
(26a)

Ψβ (Fo, ξ) = 1 + lim
s→0

s (1 + φ) I0
(√

sξ
)
esFo

φsu2 (s)

+

∞∑
n=1

lim
s→sn

(s− sn)
u2 (s)

(1 + φ) I0
(√

sξ
)
esFo

φs
(26b)

Ψβ (Fo, ξ) = 1 + lim
s→0

s (1 + φ) i0
(√

sξ
)
esFo

φsu3 (s)

+

∞∑
n=1

lim
s→sn

(s− sn)
u3 (s)

(1 + φ) i0
(√

sξ
)
esFo

φs
(26c)

Where sn are the roots of,

−

√
sn sinh

(√
sn

)
Bi

− cosh
(√

sn
)
−

sinh
(√

sn
)

φ
√

sn
= 0

(27a)

−

√
snI1

(√
sn

)
Bi

− Io
(√

sn
)
−

2I1
(√

sn
)

φ
√

sn
= 0

(27b)

−

√
sni1

(√
sn

)
Bi

− io
(√

sn
)
−

3i1
(√

sn
)

φ
√

sn
= 0

(27c)

for n = 1,2, . . . ,∞.
Considering that lim

x→0
cosh(x)→ 1, lim

x→0
I0 (x)→ 1,

lim
x→0

i0 (x) → 1, lim
x→0

sinh(x)
x → 1, lim

x→0

I1(x)
x → 1

2 and

lim
x→0

i1(x)
x →

1
3 and applying L´Hôpital´s rule, Eqs. (27)

can be written as,

Ψβ (Fo, ξ) =

∞∑
n=1

(1 + φ)cosh
(√

snξ
)
esnFo

u′1 (sn)φsn
(28a)

Ψβ (Fo, ξ) =

∞∑
n=1

(1 + φ) I0
(√

snξ
)
esnFo

u′2 (sn)φsn
(28b)

Ψβ (Fo, ξ) =

∞∑
n=1

(1 + φ) i0
(√

snξ
)
esnFo

u′3 (sn)φsn
(28c)
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with

u1
′ (s) = −

cosh
(√

s
)

2Bi
−

sinh
(√

s
)

2Bi
√

s
−

sinh
(√

s
)

2
√

s

−
cosh

(√
s
)

2φs
+

sinh
(√

s
)

2φs
√

s
(29a)

u2
′ (s) = −

I0
(√

s
)

2Bi
−

I1
(√

s
)

2
√

s
−

I2
(√

s
)

φs
(29b)

u3
′ (s) = −

1
Bi

 sinh
(√

s
)

2
√

s
−

cosh
(√

s
)

2s
+

sinh
(√

s
)

2s
√

s


−

cosh
(√

s
)
−

sinh(√s)
√

s

2s

−
3
φ

 sinh
(√

s
)

2s
√

s
−

3
2

cosh
(√

s
)

s2 −
3
2

sinh
(√

s
)

s2 √s


(29c)

In Eq. (29c) was introduced the fact that: i0 (x) =
sinh(x)

x
and i1 (x) =

xcosh(x)−sinh(x)
x2 .

Defining
√

s = iλ and considering that sinh(iz) =

isin(z), cosh(iz) = cos(z) and In(ix) = inJn(x), Eqs.
(26) are expressed in real dominion as,

Ψβ (Fo, ξ) = 2
∞∑

n=1

(1 + φ)cos(λnξ)e−λ
2
nFo

u′1 (λn)φλ2
n

(30a)

Ψβ (Fo, ξ) = 2
∞∑

n=1

(1 + φ) J0 (λnξ)e−λ
2
nFo

u′2 (λn)φλ2
n

(30b)

Ψβ (Fo, ξ) = 2
∞∑

n=1

sin(λnξ)
λnξ

(1 + φ)e−λ
2
nFo

u′3 (λn)φλ2
n

(30c)

Where λn are the eigenvalues generated by the roots
of,

λn sin(λn)
Bi

− cos(λn)−
sin(λn)
φλn

= 0 (31a)

λnJ1 (λn)
Bi

− Jo (λn)−
2J1 (λn)
φλn

= 0 (31b)

1
Bi

(
cos(λn)−

sin(λn)
λn

)
+

sin(λn)
λn

+
3
φ

(
−

cos(λn)
λ2

n
+

sin(λn)
λ3

n

)
= 0

(31c)
And,

u1
′ (λn) =

cos(λn)
Bi

+
sin(λn)

Biλn
+

sin(λn)
λn

−
cos(λn)
φλ2

n
+

sin(λn)
φλ3

n
(32a)

u2
′ (λn) =

J0 (λn)
Bi

+
J1 (λn)
λn

+
2J2 (λn)
φλ2

n
(32b)

u3
′ (λn) =

1
Bi

(
sin(λn)
λn

+
cos(λn)
λ2

n
−

sin(λn)
λ3

n

)
−

1
λ2

n

(
cos(λn)−

sin(λn)
λn

)
+

1
φ

(
−

3sin(λn)
λ3

n
−

9cos(λn)
λ4

n
+

9sin(λn)

λ5
n

)
(32c)

Eq. (30a) is the analytical solution of Eqs. (7a),
(8a) and (9); Eq. (30b) is the analytical solution
of Eqs. (7b), (8a) and (9); and, Eq. (30c) is the
analytical solution of Eqs. (7c), (8a) and (9). The mean
temperature or concentration is obtained from,

〈Ψ〉β (Fo) =

∫ 1
0 ξ

θ−1Ψβ (ξ,Fo)dξ∫ 1
0 ξ

θ−1dξ
(33)

Therefore,

〈Ψ〉β (Fo) = 2
∞∑

n=1

(1 + φ) sin(λn)e−λ
2
nFo

φu1′ (λn)λ3
n

(34a)

〈Ψ〉β (Fo) = 4
∞∑

n=1

(1 + φ) J1 (λn)e−λ
2
nFo

φu2′ (λn)λ3
n

(34b)

〈Ψ〉β (Fo) = 6
∞∑

n=1

(
sin(λn)
λ2

n
−

cos(λn)
λn

)
(1 + φ)e−λ

2
nFo

φu3′ (λn)λ3
n

(34c)
Finally, by applying Eq. (33) to Laplace transform of
analytical solutions (Eqs. 20),

〈Ψ〉β (s) =

∫ 1
0

(
C1 cosh

(√
sξ

)
+ 1

s

)
dξ∫ 1

0 dξ
=

1
s
+

C1 sinh
(√

s
)

√
s

(35a)

〈Ψ〉β (s) =

∫ 1
0

(
C2I0

(√
sξ

)
+ 1

s

)
ξdξ∫ 1

0 ξdξ
=

1
s

+
2C2I1

(√
s
)

√
s
(35b)

〈Ψ〉β (s) =

∫ 1
0

(
C3i0

(√
sξ

)
+ 1

s

)
ξ2dξ∫ 1

0 ξ
2dξ

=
1
s

+
3C3i1

(√
s
)

√
s
(35c)

Which demonstrates (through Eqs. 22) that Ψγ(s) =

〈Ψ〉β(s). Therefore Ψγ(Fo) = 〈Ψ〉β(Fo) and the
constitutive equations analytical solutions are
complete. This result is not obvious from their
differential form (Eqs. 7, 8 and 9).

916 www.rmiq.org
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3.2 Analytical solution of averaged
equations

Eqs. (15) to (18) may be written,

Ψβi = −
1

φ+Ωφ/(θBi)
Ψγ +

Ω

θBi +Ω
〈Ψ〉β (36)

dΨγ
dτ

=
d〈Ψ〉β

dτ
or Ψγ (Fo) = 〈Ψ〉β (Fo) (37)

Taking Laplace transform of Eqs. (15), solving for
〈Ψ〉β(s) (with Eq. 36 and 37) and taking the Laplace
inverse the following result is obtained,

〈Ψ〉β (Fo) = Ψγ (Fo) = e−Ω
(
1+ 1

φ+Ωφ/(θBi)−
Ω

θBi+Ω

)
Fo (38)

It will be demonstrated that Eq. (38) is valid for any
geometry with the specific geometrical factor θ and
topological factor Ω.

3.3 Mathematical properties

The main objective of this work is to deduce the
topological relations of analytical solution between
different geometries. However, as corollary of
analytical solutions, some important mathematical
properties must be discussed. Averaged analytical
solutions of constitutive equations (Eqs. 34) behavior
at different Bi numbers and different media/solute ratio
(φ) are plotted with discontinuous lines in Fig. 1 to 3.
It can be observed that the whole solutions in semi-
log plot have a linear asymptotic behavior. This is as
result of that eigenvalues generated by Eqs. (31) are
categorized λ1 > λ2 > λ3 > . . . , and therefore Eqs. (34)
have the following asymptotic limits,

〈Ψ〉β (Fo) = Ψγ (Fo) = Be−λ
2
1Fo = Bexp

−λ2
1α

l2
t


(39)

This mathematical property has an important practical
application: the estimation of mass diffusivity of
thermal diffusivity from mass transfer or heat transfer
experimental kinetics. In the case of mass transfer,
Eqs. (34) for Bi→∞ (Crank 1975 solutions) has been
applied for mass diffusivity estimation during osmotic
drying (Medina-Vivanco et al. 2002), or during solid-
liquid extraction kinetics (Cacace and Mazza, 2003;
Espinoza-Pérez et al. 2007). Eq. (39) emphasizes
the relevance of the first eigenvalue (λ1), because
represents the asymptotic slope of ln〈Ψ〉β or ln(Ψγ)
vs Fo. As consequence, thermal or mass diffusivity
(α) can be calculated from the slope (b) obtained by

Fig. 1. Behavior of Eq. (34a) (discontinuous lines) and
Eq. (38) (continuous lines) at different values of Bi and
φ.

Fig. 2. Behavior of Eq. (34b) (discontinuous lines) and
Eq. (38) (continuous lines) at different values of Bi and
φ.

Fig. 3. Behavior of Eq. (34c) (discontinuous lines) and
Eq. (38) (continuous lines) at different values of Bi and
φ.
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Table 1. First eigenvalue (λ1) generated by Eqs. (31a) at different values of Bi and φ.

φ Bi

0.1 0.5 1 4 6 10 50 ∞

0.5 0.5386 1.1262 1.4672 2.0215 2.1089 2.1808 2.2675 2.2889
1 0.4398 0.9218 1.2078 1.7207 1.8145 1.8964 2.0016 2.0288
2 0.3809 0.7992 1.0499 1.5199 1.6122 1.6955 1.8069 1.8366
4 0.3478 0.73 0.9602 1.4007 1.4903 1.5725 1.685 1.7155

10 0.3262 0.685 0.9017 1.3214 1.4085 1.4892 1.6012 1.632
20 0.3187 0.6693 0.8813 1.2934 1.3795 1.4596 1.5712 1.602
∞ 0.3111 0.6533 0.8603 1.2646 1.3496 1.4289 1.54 1.5708

Table 2. First eigenvalue (λ1) generated by Eqs. (31b) at different values of Bi and φ.

φ Bi

0.1 0.5 1 4 6 10 50 ∞

0.5 0.7649 1.6212 2.1345 2.9246 3.0266 3.1035 3.1879 3.2075
1 0.6246 1.3273 1.7608 2.5477 2.6808 2.7899 2.9186 2.9496
2 0.5409 1.1509 1.5317 2.2734 2.416 2.5399 2.6955 2.7346
4 0.4938 1.0512 1.4012 2.1048 2.2485 2.3773 2.5453 2.5888

10 0.4632 0.9865 1.316 1.9906 2.1332 2.2635 2.4379 2.4839
20 0.4526 0.9639 1.2863 1.95 2.0919 2.2224 2.3985 2.4454
∞ 0.4417 0.9408 1.2558 1.9081 2.049 2.1795 2.3572 2.4048

Table 3. First eigenvalue (λ1) generated by Eqs. (31c) at different values of Bi and φ.

φ Bi

0.1 0.5 1 4 6 10 50 ∞

0.5 0.9391 2.0097 2.672 3.679 3.7915 3.8712 3.9536 3.972
1 0.7668 1.6449 2.2036 3.2487 3.4172 3.5485 3.6932 3.7264
2 0.6641 1.4261 1.9165 2.9146 3.1064 3.268 3.46 3.5059
4 0.6063 1.3025 1.7529 2.7042 2.9021 3.0765 3.2946 3.3485

10 0.5687 1.2222 1.6463 2.5603 2.7591 2.9392 3.1724 3.2316
20 0.5557 1.1942 1.609 2.5089 2.7075 2.889 3.127 3.1879
∞ 0.5423 1.1656 1.5708 2.4556 2.6537 2.8363 3.0788 3.1416

the least square from experimental data of ln〈Ψ〉β or
log(Ψγ) vs Fo in the linear zone in agreement with,

α = −
bl2

λ2
1

(40)

Then, the first eigenvalues at different values of Bi and
φ are listed in Tables 1 (Eq. 31a), 2 (Eq. 31b) and 3
(Eq. 31c). Castillo-Santos et al., (2017) applied this
mathematical property for the empirical estimation of
solutes mass diffusivity during solid-liquid extraction
of vanilla.

Another mathematical property is that deduced
solutions converge to the solutions reported by Crank
(1975) when Bi → ∞, which is easily verified with
eigenvalues generators (Eqs 31),

cos(λn) +
sin(λn)
φλn

= 0 or tan(λn) = −φλn (41a)

Jo (λn) +
2J1 (λn)
φλn

= 0 or φλnJo (λn) + 2J1 (λn) = 0

(41b)

sin(λn)
λn

+
3
φ

(
−

cos(λn)
λ2

n
+

sin(λn)
λ3

n

)
= 0

or tan(λn) =
3λn

3 + φλ2
n

(41c)

Finally deduced solutions converge to solutions of heat
conduction or mass diffusion in a media with Cauchy
boundary conditions when φ→∞; and with Dirichlet
boundary condition when Bi→ ∞ and φ→ ∞. Bi→
∞ implies that process is diffusion controlled (the heat
or mass transfer rate is limited by diffusion within
medium) and the interface temperature/concentration
is equal to temperature/concentration at equilibrium
Θβi = Θβe orΨβi = 0; and φ→∞ implies that the mass
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relation solution/media tends to infinite, and therefore
by Eqs. (11) Θγe = Θγ0.

3.4 Topological properties

Analytical solution of constitutive equations (Eqs. 34)
may be represented for any dimensionless variable (Ψ)
and for any of the studied geometries (θ) as,

Ψθ = Bθ
∞∑

n=1

Bnθe−λ
2
θnFo (42)

Defining, T a topological space that contends the
empty set and the whole possible values of Fo > 0, that
is T = {∅, [0,∞)}; P1 a topological space that contends
the empty set and the whole possible values of Ψ1
(rectangular) for Fo > 0, that is P1 = {∅, (0,1]}; P2 a
topological space that contends the empty set and the
whole possible values of Ψ2 (cylindrical) for Fo > 0,
that is P2 = {∅, (0,1]} and P3 a topological space that
contends the empty set and the whole possible values
of Ψ3 (spherical) for Fo > 0, that is P3 = {∅, (0,1]}.
Under above definition, Eq. (42) is a map,

fθ : T → Pθ, ∀θ = 1,2,3 (43)

It is evident from Eq. (42) that fθ are continuous
( fθ (Fo) = lim

x→Fo
fθ (x) ∀Fo ∈ T ∧∀θ = 1,2,3) and

bijective (( fθ (Fo1) = fθ (Fo2)) ↔ (Fo1 = Fo2) ∧Pθ =

Im(T ) ∀θ = 1,2,3). As consequence the following
maps exist and are bijective,

f −1
θ : Pθ→ T ∀θ = 1,2,3 (44)

Then, the following maps exist and are continuous and
bijective,

fi j = fi
(

f −1
j

(
Ψ j

))
: P j→ Pi ∀i, j = 1,2,3 (45)

fi j is therefore an homeomorphism between Pi and
P j. That is, any average solution of constitutive
equation in any (rectangular, cylindrical or spherical)
1D coordinate has one and only one equivalent
averaged solution in any other (rectangular, cylindrical
or spherical) 1D coordinate. It is possible to obtain fi j
in the asymptotic zone of Eq. (42),

Ψθ = BθB1θe−λ
2
θ1Fo (46)

Ψi = BiB1i

(
Ψ j

B jB1 j

) λ2
i1
λ2

j1 = fi j (47)

The existence of fi j for any combination of 1D
rectangular, cylindrical or spherical solution allows the

conjecture on the homeomorphism existence between
others geometries. Eq. (47) emphasize the relevance
of the first eigenvalue in the topology of asymptotic
solutions. Like it was discussed at the end of section
3.3., Eqs. (31) under Dirichlet boundary condition
(Bi→∞ and φ→∞) converge to,

J−1/2 (λn) = 0 1D rectangular (48a)

Jo (λn) = 0 1D cylindrical (48b)

J1/2 (λn) = 0 1D spherical (48c)

In Eqs. (48) it was taken into account that cos(λ) =
√
πλ/2J−1/2 (λ) and sin(λ) =

√
πλ/2J1/2 (λ). Therefore,

Jν (λn) = 0 with ν = [−1/2,1/2] where ν is a continuous
metric that indicates how the constitutive analytical
solution of heat and mass transfer equations under
Dirichlet boundary is topologically transformed from
a plane sheet (ν = −1/2) to a sphere (ν = 1/2),
passing by a large cylinder (ν = 0). In other words
ν is a continuous metric that indicate the analytical
solution asymptotic slope (in semilog representation)
of a figure that deform from a plane sheet to a sphere.
As example of the ν behavior, their values for a long
square parallelepiped, a cube and a cubic cylinder
(a cylinder with same diameter and height) will be
calculated as follows.

Under Dirichlet boundary condition (Bi→∞ and
φ → ∞) there is not effect of solution (liquid phase),
and therefore the superposition principle applies.
Therefore the asymptotic analytical solutions of a long
square parallelepiped, a cube and a cubic cylinder are
respectively,

Ψlong square parallelepiped = (B1B11)2e−
(
λ2

11+λ2
11

)
Fo (46a)

Ψcube = (B1B11)3e−
(
λ2

11+λ2
11+λ2

11

)
Fo (46b)

Ψcubic cylinder = B1B11B2B21e−
(
λ2

11+λ2
21

)
Fo (46c)

Where λ11 and λ21 are the first eigenvalues for 1D
rectangular coordinate (Eq. 48a) and 1D cylindrical
coordinate (Eq. 48b) respectively under Dirichlet
boundary condition (Bi→∞ and φ→∞). From Eqs.
(48),

Square long parallelepiped:

Jν


√
π2

4
+
π2

4

 = 0→ ν = −0.1172→−
1
2
< ν < 0

(48d)
Cube:

Jν


√
π2

4
+
π2

4
+
π2

4

 = 0→ ν = 0.2092→ 0 < ν <
1
2

(48e)
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Cubic cylinder:

Jν


√
π2

4
+ 2.40482

 = 0→ ν = 0.3125→ 0.2092 < ν <
1
2

(48f)
Therefore the square long parallelepiped analytical
solution is topologically located between plane
sheet and long cylinder; cube analytical solution
is topologically located between long cylinder and
sphere; and, cubic cylinder analytical solution is
topologically located between cube and sphere. More
complex geometries topology equivalence may be
calculated form asymptotic slopes of numerical
solution of deformed geometries evaluated by the
method proposed by Pacheco-Aguirre et al., (2015).

The relation of topology transformation
represented in Eqs. (48) with averaged equations will
be deduced in the following paragraphs.

Taking the derivative of Eq. (46),

dΨθ
dFo

= −BθB1θλ
2
θ1e−λ

2
θ1Fo = −λ2

θ1〈Ψ〉β (49)

Or by analogy to Eq. (15),

d〈Ψ〉β
dFo

= −Ω〈Ψ〉β (50)

Eq. (49) if fully analog to (15) when Bi→∞ because
like it was detailed at the end of section 3.3, Bi→ ∞
implies that process is diffusion controlled (the heat
or mass transfer rate is limited by diffusion within
medium) and the interface temperature/concentration
is equal to temperature/concentration at equilibrium
Θβi = Θβe or Ψβi = 0. Comparing Eq. (49) with (15)
or (50): Ω = λ2

θ1 and the internal heat or mass transfer
coefficient in averaged equations is,

hβ =
Ωk
lθ

(Heat transfer) hβ =
Ωα

lθ
(Mass transfer)

(51)
Eq. (51) demonstrates that internal heat or mass
transfer coefficient used in averaged equations may
be represented in terms of heat conductivity or mass
diffusivity and geometric characteristics through the
topological factor Ω = λ2

θ1 and the geometric relation
θ (Eq. 5) in the adequate geometry. In agreement
with Eq. (50), the topological factor can be calculated
when process is diffusion controlled (Bi → ∞) and
the solution/media relation tends to infinite (φ→ ∞).
That is, the averaged internal mass transfer coefficients
may be predicted with Eq. (51) in which the geometric
factors are independent of Bi and φ numbers (under
Dirichlet boundary condition). The effect of Bi and

φ numbers are included in analytical (Eq. 38) or
numerical (Eqs. 15 to 18) solutions of averaged
equations. From Eqs. (48) or Tables 1, 2 and 3, the
topological and geometric factors for some geometries
are: 1D rectangular (Ω = π2/4, θ = 1); 1D cylindrical
(Ω = 2.40842, θ = 2), 1D spherical (Ω = π2, θ = 3),
square long parallelepiped (Ω = π2/2, θ = 2), cube
(Ω = 3π2/4, θ = 3) and cubic cylinder (Ω = π2/4 +

2.40482, θ = 3).
The analytical solution of averaged equations (Eq.

38) with the above values and different Bi and φ values
are plotted as continuous lines in Figs. 1, 2 and 3.
Some deviations with respect to constitutive solutions
(discontinuous lines) are observed mainly in spherical
results (Fig. 3). However, in general, averaged
solutions with topological factors taken at Bi → ∞
and φ→∞, follows the same tendency of constitutive
solution, and the divergence is increasing at Ψ < 0.01
which implies that temperature or concentration have
been reached 99% of their equilibrium value. This
demonstrate that differential equations (12) and (13)
with interface continuity (14) in which medium heat
or mass transfer coefficient is calculated with Eq. (51)
represent an acceptable approximation of constitutive
equations solution. It is important to remark that
any solution (numerical or analytical) will be only
an approximation of process behavior because the
model only can use the mathematical expectation for
particles sizes and geometries. Present study provides
theoretical support of the use of Eqs. (12), (13) and
(14), which have been used for continuous contact
solid-liquid extractors modeling (Veloso et al., 2005)
and supercritical fluid extraction columns modeling
(Perrut et al., 1997; Reverchon and Iacuzio 1997).

Conclusion

The Laplace transform procedure, applied for to
deduce the analytical solution of heat conduction
or solute diffusion in media contacting a well
stirred solution with finite volume equations in
1D rectangular, 1D cylindrical and 1D spherical
coordinates, demonstrated that topological relation
under Dirichlet boundary condition between different
geometries are expressed in terms of Bessel function
of the first kind order (Eqs. 48). By analogy with
analytical solution of the averaged heat or mass
transfer equations, it was demonstrated that internal
transfer coefficient in medium may be predicted from
heat conduction or mass diffusivity, characteristic
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conduction/diffusion length and the topological
factor calculated under Dirichlet boundary condition,
through Eq. (51). Additionally, the mathematical
properties of analytical solutions show how they can
be used for thermal or mass diffusivity estimation from
experimental kinetics through Eqs. (39) and (40).
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Nomenclature

A transfer surface, m2

b kinetic slope, s−1

B any constant
Cp heat capacity, J/kgK
h interfacial heat transfer coefficient, W/m2K

or interfacial mass transfer coefficient, m/s
i integer index
j integer index
k heat conductivity, W/mK
K distribution constant, kg/kg
` characteristic length, m
m mass, kg
n unit vector normal to transfer surface,

Dimensionless
P topological space
r cylindrical or spherical radial coordinate, m
t time, s
T topological space
V volume, m3

z rectangular coordinate, m
Greek symbols
α heat or mass diffusivity, m2/s
ε system porosity, m2/s
λ eigenvalues of analytical solution
θ geometric factor
Θ temperature, K or mass fraction, kg/kg
ν order of Bessel function of the first kind and

topologic metric
ρ density, kg/m3

Sub-symbols
β in the media
γ in the solution
Dimensionless groups
Bi Biot number
Fo Fourier number
φ heat or mass balance relations
Ψ temperature or mass fraction,

dimensionless
ξ dimensionless coordinate
∇̇ a linear map of gradient operator
Ω media heat or mass transfer dimensionless

coefficient
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Zavaleta, O., Ruiz-López, I.I. (2015). Drying
modeling in products undergoing simultaneous
size reduction and shape change: Appraisal of
deformation effect on water diffusivity. Journal
of Food Engineering 164, 30-39.

Perrut, M., Clavier, J.Y., Ppletto, M. and Reverchon,
E. (1997). Mathematical modeling of sunflower
seed extraction by supercritical CO2. Industrial
Engineering Chemistry Research 36, 430-435.

Reverchon, E. and Iacuzio, G. (1997). Supercritical
desorption of bergamot peel oil from silica
gel-Experiments and mathematical modeling.
Chemical Engineering Science 52, 3553-3559.

Shou-Shing, H., Ming-Ho, L., Huang-Hsiu, T.
(2003). Turbulent heat transfer and flow
characteristics in a horizontal circular tube
with strip-type inserts. Part II. Heat transfer.
International Journal of Heat and Mass
Transfer 46, 837-849.

Valdés-Parada, F.J., Alvarez-Ramı́rez, J. and Ochoa-
Tapia, J.A. (2007). Analysis of mass transport
and reaction problems using Green’s functions.
Revista Mexicana de Ingenierı́a Quı́mica 6, 283-
294.

Veloso, G.O., Krioukov, V.G., Vielmo, H.A.
(2005). Mathematical modeling of vegetable
oil extraction in a counter-current crossed
flow horizontal extractor. Journal of Food
Engineering 66, 477-86.

Woodbury, K.A., Najafi, H., Beck, J.V. (2017).
Exact analytical solution for 2-D transient heat
conduction in a rectangle with partial heating
on one edge. International Journal of Thermal
Sciences 112, 252-262.

922 www.rmiq.org


	 Introduction
	Problem formulation 
	Constitutive equations
	Constitutive equations for the three conventional geometries
	Space averaged equations

	Results
	Analytical solutions of constitutive equations
	Analytical solution of averaged equations
	Mathematical properties 
	Topological properties


