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Abstract

Topological relations between heat or mass transfer equations analytical solutions for media contacting a well stirred solution
with finite volume were deduced for infinite flat slabs, infinite cylinders and spheres. Referred topological relations conduce to
prediction heat or mass transfer properties in the averaged equations as function of thermal or mass diffusivity and medium size
and geometry. As results corollary, the application of the analytical solutions for empirical evaluation of heat or mass diffusivity
was detailed.
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Resumen

Las relaciones topoldgicas entre las soluciones analiticas de las ecuaciones de transferencia de calor o masa en medios
contactando una solucién bien mezclada de volumen finito fueron deducidas para placas planas infinitas, cilindros infinitos
y esferas. Las relaciones topoldgicas referidas conducen a la prediccién de propiedades de transferencia de calor o masa en
ecuaciones promediadas como funcién de la difusividad térmica o mdsica y del tamafio y geometria del medio. Como corolario
de los resultados se detalla la aplicacion de las soluciones analiticas para la evaluacién empirica de difusividades térmicas o
madsicas.

Palabras clave: solucion analitica, conduccién de calor, difusion, solucién de volumen finito, ecuaciones promediadas, relaciones
topoldgicas.

remark that in any real solid-fluid process the medium
particles have different geometries and sizes and
therefore numerical solutions of constitutive equation,
even with the modern methods and computational
resources, are only approximations, because it is
impossible to build a model for every single solid

1 Introduction

Solid-fluid contact processes have several applications
in Chemical Engineering. As examples, continuous

solid-liquid extractors (Veloso et al., 2005), solid-
supercritical CO2 column extractors (Perrut et
al., 1997; Reverchon and Iacuzio 1997), osmotic
dehydration (Medina-Vivanco et al. 2002, Khin et al.
2006), heterogeneous chemical reactors (Marroquin
de la Rosa et al., 2002, Valdés-Parada et al. 2007,
Hernandez-Martinez et al. 2011) and air heating
columns (Shou-Shing et al., 2002). It is important to
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particle. Then, in solid-fluid process modeling, the
medium geometry and size must be estimated from
mathematical expectation of the whole particles which
could have, with high probability, irregular geometry
(Pacheco-Aguirre et al. 2015). The heat or mass
transfer modeling in an irregular geometry may be
performed by finite element or generalized finite
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differences (Pacheco-Aguirre er al. 2015). However,
for process modeling, it is a common practice in
chemical engineering the use of averaged equations
in terms of external (in fluid phase) and internal (in
the particles) heat or mass transfer coefficients (Perrut
et al., 1997; Reverchon and lacuzio 1997; Veloso et
al., 2005). Internal mass transfer coefficients depend
on internal solute diffusivity, a characteristic length
for diffusion and the averaged geometry of particles
(Espinoza-Pérez et al., 2007). The geometry effect
on internal heat or mass transfer coefficient may be
expressed in terms of topology. Therefore, in order
to determinate the topological relations of heat and
mass transfer behavior in different geometries, their
analytical solution in traditional geometries must be
deduced and analyzed in topological point of view.

On this perspective the classical problem of
heat conduction or solute diffusion in media
contacting with a well stirred solution of finite
volume with interfacial resistance represents the
constitutive equations for any fluid-solid process.
The problem, with negligible interfacial resistance
(or conduction/diffusion controlled), was originally
reported and analytically solved for an infinite sheet
by Carslaw and Jaeger (1959). Analytical solutions of
the mass transfer problem, with negligible interfacial
resistance, were reported for infinite sheet, infinite
cylinders and spheres, by Crank (1975). The problem
solution for solid-liquid extraction has been reported
by Mikhailov (1977) and Castillo-Santos et al., (2017).
Crank (1975) solutions are classics and applied in
osmotic dehydration (Medina-Vivanco et al. 2002,
Khin et al. 2006) and solid-liquid extraction (Cacace
and Mazza 2003; Espinoza-Pérez et al., 2007).
However, Mikhailov (1977) solutions are expressed
only for pointwise solute concentration and Castillo-
Santos et al., (2017) solution is only for 1D rectangular
geometry mass transfer equation.

On this perspective the classical problem of
heat conduction or solute diffusion in media
contacting with a well stirred solution of finite
volume with interfacial resistance represents the
constitutive equations for any fluid-solid process.
The problem, with negligible interfacial resistance
(or conduction/diffusion controlled), was originally
reported and analytically solved for an infinite sheet
by Carslaw and Jaeger (1959). Analytical solutions of
the mass transfer problem, with negligible interfacial
resistance, were reported for infinite sheet, infinite
cylinders and spheres, by Crank (1975). The problem
solution for solid-liquid extraction has been reported
by Mikhailov (1977) and Castillo-Santos et al., (2017).

Crank (1975) solutions are classics and applied in
osmotic dehydration (Medina-Vivanco et al. 2002,
Khin et al. 2006) and solid-liquid extraction (Cacace
and Mazza 2003; Espinoza-Pérez et al., 2007).
However, Mikhailov (1977) solutions are expressed
only for pointwise solute concentration and Castillo-
Santos et al., (2017) solution is only for 1D rectangular
geometry mass transfer equation.

2 Problem formulation

2.1 Constitutive equations

Heat conduction or solute diffusion in media
contacting with a finite volume of well-stirred solution
in a solid-fluid operation may be described in a general
coordinate system for heat transfer by,

e}
a—f =aV-VOp, in % (1a)

—-n-apgCppgV0Bg =h (Gyi - @y) , at %y (2a)
@7,' = @/3,‘, at Rfﬁy (3a)

00 .
%pprya—ty = hslsy (®7i _®7)s in 7, (4a)

And for mass transfer by,
00
a—f =aV-V0p, in % (1b)

—n-aVOp =hpy (0, 0,), atsf,  (2b)
0,; = KeyOp;, at 527[;7 (3b)

00 .
%Pva_ty = hpy Sy (®7i - ®7)’ in 7, (4b)

Where « is thermal (k/pgCpg)) or mass diffusivity; h
is heat or mass transfer interfacial coeflicient; K., the
distribution constant in mass transfer and Cp is heat
capacity. The transfer surface (%/3,) can be expressed
in terms of medium volume (73),

Sty = e ®)
Particular forms of Eq. (5) are: infinite flat slab with
transfer by both sides with ¢ as half thickness, 6 = 1;
infinite cylinder with radius ¢, 6 = 2; sphere with
radius ¢, 8 = 3. Moreover, the finite solution volume
(7y) and medium volume (7j3) can be expressed as
fraction of total system volume (7" = 7, + 7j),

Y=sV; Vp=(1-87 (6)
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Then, Egs. (1) to (4) may be written in dimensionless
form as,

= =V-V¥, inZp )
. ) Bi
—n-V‘I’ﬁ,- = Blll’lgi+ E‘Py, at %y (8)

. Bi .
- ——0 = Bllyﬁj + E\Py, m % O]

by introducing the following dimensionless variables
and numbers,

* at
v=V{ Fo= el
for heat transfer
ht m,C
Bi= — _ Myt Py
k mpCpg
B BOp — O, B 0, -0y,
P~ Op - Ope 0,0-0,,
for mass transfer
Bi = }ilpyKeq _ myeKeq
@  pPp mge

_ mﬁff@ﬁ - m,Be@,Be _ mﬂ)@y - myeG)ye

m/;()@ﬁo - mﬁe ®,Be my()(ay() - mye ®ye

The equilibrium temperature or equilibrium mass
fraction are defined by the total heat balance or mass
balance,

®,0+ 0
Ope = %ﬁ) and ©,, = Op, for heat transfer
(10a)
Z;(: 050 + G)BO
0, = ————— and
1+ ¢

0, = K40, for mass transfer (10b)

Another result from heat or mass balance used in
dimensionless Egs. (7) to (9) is,

1
0,0 -0y, = —a (@;;0 - @59) for heat transfer (11a)

M = —1 for mass transfer (11b)
m,g()@ﬁo - m,ge @/3@

The above dimensionless analysis is not reported

in Carslaw and Jaeger (1959) or Crank (1975),

and it is extremely important because unifies the

heat (Egs. la-3a) and mass (Egs. 1b-3b) transfer

problem in Egs. (7)-(9). It is important to note that
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mass transfer dimensionless variables considers that
initial media mass (mgy) and initial solution mass
(my0) may be differ of equilibrium ones (mg, and
my,). This is because in any solid-fluid (medium-
solution) mass transfer process the solid phase retains
fluid phase known as retained solution. Therefore,
the final medium is a mixture of solid phase and
retained solution called underflow (Castillo-Santos
et al., 2016). The application of Eq. (10b) for
equilibrium concentrations prediction requires the
prediction of underflow mass at equilibrium which
depend of specific retained fluid phase by inert solids
in underflow (Castillo-Santos et al., 2016). In this
work, only the result for dimensionless variables will
be used.

2.2 Constitutive equations for the three
conventional geometries

gs. (7) and (8) can be written in terms of 1D
rectangular coordinate, 1D cylindrical coordinate and
1D spherical coordinate as is shown in the following
paragraphs.

2.2.1 Infinite flat slab with heat/mass transfer in both
sides and € as half thickness

M P
= forO<é<1land Fo>0 (7a)
OFo  8¢2

where ¢ = z/¢. Eqgs. (7) and (8) are symmetric with
respect to & and therefore d¥p/0¢6 =0 at £ = 0.

2.2.2 Infinite cylinder with radius €

%_lﬁ §— forO0<é<1land Fo>0 (7b)
0Fo &£0£\” 0¢

where & =r/€.
2.2.3 Sphere with radius €

%_165 forO0<é<1land Fo>0
OFo0 £ 0¢ ag orf<&<landFo
(7c)

where € =r/¢.
In the three cases the boundary condition at
interface (Eq. 8) is expressed as,

0¥

= BiWs +
e TP

5
2y foré=1and Fo>0 (8a)
¢
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2.3 Space averaged equations

The same phenomena may be represented in terms
of macroscopic heat or mass transfer and averaged
temperature or solute concentration in underflow
O = Jy,0pd7'/ f, a7 (Castillo-Santos et al.,
2017).

Macroscopic heat balance in media and solution,

d(®)

— =Sl (©pi—(©)s). in 75 (12a)

Crspp 4

de, .
prpy%f = hy Sy (®7i - ®7)’ in7, (13a)

Macroscopic mass balances of extractable solids in
media and solution,

d{®)g :
Ps7p—— = hapshsy (Opi = (®)) in 75 (12b)

de, ,
97%7 = hypy Sy (®7i - ®7) in7y  (13b)

In which the heat or mass transfer continuity at
interface implies,
Heat transfer

hyShay (i = ©y) = ~hp Sl (Opi — (©)). at Ly
(14a)
Mass transfer

hySypy (®7i - ®7) = —hgSpypp (®[>’i - <®>B)’ at Sy
(14b)

hy is the same heat or mass transfer interface

coefficient expressed in Egs. (1) to (4) but particularly

defined for fluid phase side; hg is a heat or mass

transfer interface coefficient in solid phase side, its

implication and relation to constitutive equations will

be discussed in deep in results section. Introducing the

following dimensionless variables,

for heat transfer

(@)~ Ope hyl hl6

Wy, = b g o B
Fs Op-0p k

for mass transfer

_ mﬁe<®>ﬁ - mﬁe®ﬁe B

(Pyg = o leyKeq o Bl

mlg()(“)ﬁ() - mﬁe(@ﬁe ’ a P a
Egs. (9), (10) and (11) may be written as,
d{¥)s
—F = Q(Ws — (P)g) (15)
d¥, 6Bi

e = 7(%1- - (16)

0B (‘Py,- - ‘I’y) = Q(‘Pﬁi - <‘P>/3) a7

¢
Wy = —¢W¥g (18)

3 Results

3.1 Analytical solutions of constitutive
equations

Mikhailov (1977) presented an elegant analytical
solution for mass transfer during solid-liquid
extraction. The elegance lies in the fact that the
solution (obtained by Laplace transform approach)
was obtained for any geometry. However this solution
is not referred for averaged media concentration (f)g =
f% ®pd7’/ f% d7’ or for medium concentration

©,. Therefore in this work the analytical solutions
for the 3 conventional geometrics were deduced by
Laplace transform in order to deduce the topological
relation between them. Recently, Green’s function
approaches have been reported for analytical solution
of heat transfer problems with explicit function of
time as boundary conditions (Chen et al., 2017) or
discontinuities at boundary conditions (Woodbury et
al., 2017). However for the present problem, in which
the boundary condition (Egs. 2) is coupled with an
initial value problem (Eqgs. 4), the classical Laplace
approach (with natural application for initial value
problems) is enough and the developed solution stages
leads to topology relations between geometries.

Assuming homogeneous initial temperature or
mass fraction, the initial conditions for Egs. (7) to
(9) are ¥g =1 and ¥y = 1 at Fo = 0. Applying the
Laplace transform with respect to Fo to Egs. (7a), (7b)
and (7c¢),

d>Wp(s,&)

42 —s¥p(5,6)+1=0 (19a)

d*Wp(s,&)  d¥p(s,€)
2 BL3>¢ B\S6)
CaE Y

(s£2+0)Pp(s.6)+£> =0
(19b)

d*Ws(s,&) _ d¥s(s,&)
2 B B _
g TR

(s£2+0)Pp(s,6)+£7 =0

(19¢)
where Wg(s,£) is the Laplace transform of Wg(Fo,&).
The solutions of Egs. (19) are,

W (s,£) = Cy cosh( Vs&) + Cysinh (Vsg) + % (20a)
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s (5.6) = Calo (Vs€) + CsKo( V) + é (20b)

s (5.6) = Csio ( V5€) + Coko ( V5£) + é (20¢)

where Iy and Ky are the modified Bessel functions of
first and second kind of order 0, and iy and kg are the
modified spherical Bessel functions of first and second
kind of order 0. By symmetry of Eq. (7a) C4 = 0 and
by the fact that Egs. (19b) and (19c) must have a finite
value in € = 0; Cs = 0 and Cg = 0. From Egs. (8) and
(9) it is evident that,

o 8‘1’
- 1_7 7B 1)
0 0Fo o

And therefore applying Eq. (21) in the Laplace
transform of Eq. (9)

1 Clsinh(\/§>

¥, (s) = 7 (22a)
\{l ( )— 26‘211_(\/55) 22b
s NG (22b)

v ( )—l 3CS”—<\/_S§) 22
y(8)=—+ NG (22¢)

Applying Eqgs. (20) and (21) in Egs. (8),

—Mzclcosh(\/})+—+— -+
s ¢|s

Bi NG
(23a)
C 1 20,1
—N;%,(‘/E)=Czlo(\/§)+é+¢[§ 2 l(s )]
(23b)
C3 siy ( \/3) . 1 3Csi; ( )
g =C3lo(\/§)+;+¢(§ ‘/_
(23¢)
From Egs. (23),
o+l 1 3
G—Tsue(s),fore—l,Z,?a 24)
Where,
Vs sinh( \/E) sinh( \/E)
uy (s) = — —cosh( \/E) - —\/E
(25a)
1 21
() = —w —Io(Vs)- ;(\/\O (25b)

WWW.rmiq.org

I 11 Cisinh(Vs)

V() ()
N i) - —

Bi ’ ¢ Vs
Then, applying the constant in Egs. (20) and the
residual theorem of Cauchy,

s(1+ ¢)cosh( \/Ef)eSF"
¢suy (s)

(s— 5,) (1 + ) cosh(Vs&) e
+Zm” ) o (26a)
s(1+¢) o Vsé) "

Psua (s)
(s—s,) (1 +¢)[0(\/E§)€SF0
Z

55 us () os

uz(s)=— (25¢)

Ys(Fo,6) =1+ liII(l)
s

W5 (Fo.8)=1+lim
Nad

(26b)

s(1+9)io( V&) e
¢su3 (s)
© (5= sp) L+ io( V) e

+ lim
As=sn u3 () és

W5 (Fo.6) = 1+lim
Nd

(26¢)

n=
Where s,, are the roots of,

VSn sinh( \/E)
- Bi

sinh( /s,
- osh( \/s_n) - % =0
(27a)

Vsaly (vsn 211 (\sa
_—B<l )—[O(\[Sn)— —¢( 5 ) =
(27b)

v (v 0 (Vi)

B io(VE)- én
(27¢)

forn=1,2,...,0
Considering that 1iII(1) cosh(x) — 1, lim 10 (x) > 1,

11 (X) 1
X

sinh(x) N 3 and

— 1, lim

x—0

1 1, 1
m%)lo(x) - r%

lim ll(X)

x—0
can be written as,

-3 L and applying L Hoépital s rule, Eqs. (27)

(1 + ¢) cosh ( y/5,£) e

¥ (Fo.6) = Z PATRETS (28a)
©, (1+¢) I (/5a€) e Fo

Ys(Fo,&) = 28b

5(Fo,£) Z TR (28b)
(1+9)io( V5ag) e

W (Fo,£) = Z PATRY (28¢)
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with

o cosh(s) sinh(Vs) sinh(V5)
() = =g - 2BiNs  2+s
_cosh( \/E) . sinh( \/E)

2¢s 2¢s Vs

(29a)

s o(¥5) n(Vs) B(V5)
Y R W A

(29b)

L sinh(\/E) cosh(\/E) sinh(\/E)
u3(S)——E s 2 + 2545

cosh( \/3) - —Sinh‘(/gﬁ)
2s
3 [sinh(\/E) B écosh(\/E) B gsinh(x/})]

ol 25 2 2 2 $24/s
(29¢)

In Eq. (29¢) was introduced the fact that: iy (x) = &x(x)
xcosh(x)—sinh(x)
x2 :
Defining /s = id and considering that sinh(iz) =
isin(z), cosh(iz) = cos(z) and I,(ix) = i*J,(x), Eqgs.
(26) are expressed in real dominion as,

and i (x) =

S —/l%Fo
w2 R R — o
n=1 1 \“n n

©0 1 Jo (A, —/l%Fo
Yy(Fo.o=2) L ‘12, E’; )(Zi (30b)
n=1 2\ n

sin(Lu&) (1 + ) e~ afo
An‘f u’3 (An) ¢/l%

Where 4,, are the eigenvalues generated by the roots
of,

Ws(Fo,&) = 25}

n=1

(30c)

Apsin(A sin(
nTi(n) ~cos(dn) = ¢inn) =0 (31a)
AnJ1 () 2J1 ()
—5Jow- =0 31b
Bi Jo( n) ¢/1n ( )
i. (cos (An) - s (/l”))+ sin (4,) +§ (_ cos (dn) | sin ()| _ 0
Bi Ay Ay ¢ /1% /12
(31¢)
And,
() = < ({ln) _sin .(/ln) _sin (An) cos (/zln) _sin (/i,,)
Bi Bl/ln /ln ¢/ln ¢/ln
(32a)
916

JO(/ln) +J1(/ln)+2-]2(/ln)

’
= 2
uz’ (Ay) B 1, o2 (32b)
, _ 1 (sin(4,) cos(d,) sin(d,)
o = (S S - )
1 sin(/ln))
——|cos(4,) —
/1%( (An) 2,
+1 (_3s1n(/l,,) _ 9cos(d) N 9s1n(/1,,)) (320)
¢ A A PH

Eq. (30a) is the analytical solution of Egs. (7a),
(8a) and (9); Eq. (30b) is the analytical solution
of Egs. (7b), (8a) and (9); and, Eq. (30c) is the
analytical solution of Egs. (7¢), (8a) and (9). The mean
temperature or concentration is obtained from,

&1 (¢, Fo)de
fOl £0-14d¢

(¥)p(Fo) = (33)

Therefore,

- (1+¢)sin(/ln)e‘/l%F0
Yy, (Fo)=2 34
(¥)4(Fo) ;:1 POTTRY (34a)

S (1+¢) ) (1) e~k
Wy, (F =4E 34b
s (F0) o dur’ () A3 (40

S (sin(dy)  cos()\ (1 + @) e Fo
W)z (Fo)=6 -
(P)p(Fo) ;( 2 A )¢u3'(ﬁn)/lf’z

(34c)
Finally, by applying Eq. (33) to Laplace transform of
analytical solutions (Egs. 20),

fol (C1cosh(Vsé)+1)ae _ 1+C1 sinh( Vs)

(P)p(s) =
B j(')l df s \/E

(35a)

w5y < W (C(5E) + D)ede 1 20an (V5)
g N s Vs

(35b)

(o) = b (Csio(Vse)+3)€de 1 3C3i (V)
B j(‘)l §2d§ s ,\/E

(35¢)

Which demonstrates (through Egs. 22) that W, (s) =
(P)g(s). Therefore W,(Fo) = (¥)g(Fo) and the
constitutive equations analytical solutions are
complete. This result is not obvious from their
differential form (Eqgs. 7, 8 and 9).

WWW.rmiq.org



Vargas-Gonzdlez et al./ Revista Mexicana de Ingenieria Quimica Vol. 16, No. 3 (2017) 911-922

3.2 Analytical solution of averaged
equations
Egs. (15) to (18) may be written,
1 Q
Vi == aseny Y TeBira e GO
d¥, APy )
o C 4 or ¥y (Fo) = (¥)g(Fo) 37

Taking Laplace transform of Eqs. (15), solving for
(¥)p(s) (with Eq. 36 and 37) and taking the Laplace
inverse the following result is obtained,

(W)s(Fo) = W, (Fo) = ¢ awmmm-mia)Fo (38)

It will be demonstrated that Eq. (38) is valid for any
geometry with the specific geometrical factor 6 and
topological factor Q).

3.3 Mathematical properties

The main objective of this work is to deduce the
topological relations of analytical solution between
different geometries. However, as corollary of
analytical solutions, some important mathematical
properties must be discussed. Averaged analytical
solutions of constitutive equations (Egs. 34) behavior
at different Bi numbers and different media/solute ratio
(¢) are plotted with discontinuous lines in Fig. 1 to 3.
It can be observed that the whole solutions in semi-
log plot have a linear asymptotic behavior. This is as
result of that eigenvalues generated by Eqs. (31) are
categorized 4| > Ay > A3 > ..., and therefore Eqs. (34)
have the following asymptotic limits,
—A2Fo Ao
(W)g(Fo) =¥y (Fo) = Be™"1"° = Bexp —l—zt

(39)
This mathematical property has an important practical
application: the estimation of mass diffusivity of
thermal diffusivity from mass transfer or heat transfer
experimental kinetics. In the case of mass transfer,
Egs. (34) for Bi — oo (Crank 1975 solutions) has been
applied for mass diffusivity estimation during osmotic
drying (Medina-Vivanco et al. 2002), or during solid-
liquid extraction kinetics (Cacace and Mazza, 2003;
Espinoza-Pérez et al. 2007). Eq. (39) emphasizes
the relevance of the first eigenvalue (1;), because
represents the asymptotic slope of In(¥)g or In(*¥,)
vs Fo. As consequence, thermal or mass diffusivity
(@) can be calculated from the slope (b) obtained by

|Bi— co

o1

0.0001

0 0.5 1 1.5 2 25 3
Fo

Fig. 1. Behavior of Eq. (34a) (discontinuous lines) and
Eq. (38) (continuous lines) at different values of Bi and

®.

Bi=1
06—
\\\\ 0=10
$=2
= =1 |
=2 R \\ 0= o
0 0.5 1 1.5 2 25 3

Fo
Fig. 2. Behavior of Eq. (34b) (discontinuous lines) and
Eq. (38) (continuous lines) at different values of Bi and
o.

1

R N \:\\\\ F
\ \\ \\\ y \\\ T Ny
0.01 . S N
S = h ¢= o0
N Sy
> 0.001
§ N
& NN $=10
340.0001 B <
vV N\ A\ e
0.00001 e =
Bisfo\ \ o o=1
0.000001 O
ok Do ‘T’x%
\ \
0.0000001 2\ .
0 0.5 1 15 2 25 3

Fo

Fig. 3. Behavior of Eq. (34¢) (discontinuous lines) and
Eq. (38) (continuous lines) at different values of Bi and

®.
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Table 1. First eigenvalue (1) generated by Eqs. (31a) at different values of Bi and ¢.

¢ Bi
0.1 0.5 1 4 6 10 50 0
0.5 0.5386 1.1262 1.4672 2.0215 2.1089 2.1808 2.2675 2.2889
1 04398 09218 12078 1.7207 1.8145 1.8964 2.0016 2.0288
2 03809 0.7992 1.0499 1.5199 1.6122 1.6955 1.8069 1.8366
4 03478 0.73 09602 1.4007 1.4903 1.5725 1.685 1.7155
10 03262 0.685 09017 1.3214 1.4085 1.4892 1.6012 1.632
20 03187 0.6693 0.8813 1.2934 1.3795 14596 1.5712 1.602
o 03111 0.6533 0.8603 1.2646 1.3496 1.4289 1.54 1.5708

Table 2. First eigenvalue (1) generated by Egs. (31b) at different values of Bi and ¢.

¢ Bi
0.1 0.5 1 4 6 10 50 o0
0.5 07649 1.6212 2.1345 29246 3.0266 3.1035 3.1879 3.2075
1 06246 13273 1.7608 2.5477 2.6808 27899 29186 2.9496
2 05409 1.1509 1.5317 22734 2416 25399 2.6955 2.7346
4 04938 1.0512 14012 2.1048 22485 23773 2.5453 2.5888
10 04632 09865 1316 1.9906 2.1332 22635 24379 2.4839
20 04526 0.9639 1.2863 1.95 2.0919 22224 23985 2.4454
oo 04417 0.9408 12558 19081  2.049 2.1795 23572 2.4048

Table 3. First eigenvalue (1) generated by Eqs. (31c) at different values of Bi and ¢.
¢ Bi

0.1 0.5 1 4 6 10 50 0
0.5 09391 20097 2672 3.679 3.7915 3.8712 3.9536 3.972
1 0.7668 1.6449 22036 3.2487 3.4172 3.5485 3.6932 3.7264
2 0.6641 14261 19165 29146 3.1064  3.268 3.46 3.5059
4 0.6063 13025 1.7529 27042 29021 3.0765 3.2946 3.3485
10 0.5687 1.2222 1.6463 2.5603 2.7591 29392 3.1724 3.2316
20 05557 1.1942  1.609 2.5089 2.7075  2.889  3.127 3.1879
oo 0.5423 1.1656 1.5708 2.4556 2.6537 2.8363 3.0788 3.1416

the least square from experimental data of In(‘¥)g or 7, (0) + 2J1 (4n)
log(¥y) vs Fo in the linear zone in agreement with, n

=0 or ¢pudy (Ay) +2J1 (1) = 0
(41b)

a=-— (40) sin(4,) | 3 ( cos(y) sin(dy)) _

. ‘. _ AN 5o

Then, the first eigenvalues at different values of Bi and

¢ are listed in Tables 1 (Eq. 31a), 2 (Eq. 31b) and 3

(Eq. 31c). Castillo-Santos et al., (2017) applied this

mathematical property for the empirical estimation of

solutes mass diffusivity during solid-liquid extraction
of vanilla.

Another mathematical property is that deduced

0

3,

or tan(d,) = ——
() 3+ g2

(41c)
Finally deduced solutions converge to solutions of heat
conduction or mass diffusion in a media with Cauchy
boundary conditions when ¢ — oo; and with Dirichlet
boundary condition when Bi — oo and ¢ — oo. Bi —

918

solutions converge to the solutions reported by Crank
(1975) when Bi — oo, which is easily verified with
eigenvalues generators (Eqs 31),

sin(4,)

n

cos(4,) + =0or tan(1,) = —¢1, (41a)

oo implies that process is diffusion controlled (the heat
or mass transfer rate is limited by diffusion within
medium) and the interface temperature/concentration
is equal to temperature/concentration at equilibrium
Op; = Op, or ¥5; = 0; and ¢ — oo implies that the mass
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relation solution/media tends to infinite, and therefore
by Egs. (11) @y, = 0,0.

3.4 Topological properties

Analytical solution of constitutive equations (Eqgs. 34)
may be represented for any dimensionless variable (‘')
and for any of the studied geometries (6) as,

Wy =By ) Buge inl (42)

n=1

Defining, T a topological space that contends the
empty set and the whole possible values of Fo > 0, that
is T ={0,[0,00)}; Py a topological space that contends
the empty set and the whole possible values of ¥
(rectangular) for Fo > 0, that is P; = {0,(0,1]}; P, a
topological space that contends the empty set and the
whole possible values of ¥, (cylindrical) for Fo > 0,
that is P, = {0,(0,1]} and P3 a topological space that
contends the empty set and the whole possible values
of W3 (spherical) for Fo > 0, that is P3 = {0,(0, 1]}.
Under above definition, Eq. (42) is a map,

fo:T — Py, VO=12,3 (43)

It is evident from Eq. (42) that fy are continuous
(fo(Fo) = lirlr; Jo(x) YFo € T AYO = 1,2,3) and
X—ro

bijective ((fy (Fo1) = fy(Fo2)) < (Foy = Foy) APy =
Im(T) V6 = 1,2,3). As consequence the following
maps exist and are bijective,

Ll iPe—>T V6=1,23 (44)

Then, the following maps exist and are continuous and
bijective,

Fi=H(() P = P Vij=1.23  (45)

fij is therefore an homeomorphism between P; and
P;. That is, any average solution of constitutive
equation in any (rectangular, cylindrical or spherical)
1D coordinate has one and only one equivalent
averaged solution in any other (rectangular, cylindrical
or spherical) 1D coordinate. It is possible to obtain f;;
in the asymptotic zone of Eq. (42),

Wy = ByBige 17 (46)
i
Yi V&
Vi = BB\ BB, =i (47)
iB1j

The existence of f;; for any combination of 1D
rectangular, cylindrical or spherical solution allows the

WWW.rmiq.org

conjecture on the homeomorphism existence between
others geometries. Eq. (47) emphasize the relevance
of the first eigenvalue in the topology of asymptotic
solutions. Like it was discussed at the end of section
3.3., Egs. (31) under Dirichlet boundary condition
(Bi — o0 and ¢ — o) converge to,

J_12(1,) =0 1D rectangular (48a)
Jo(Ay) =0 1D cylindrical (48b)
J12(4,) =0 1D spherical (48¢)

In Eqgs. (48) it was taken into account that cos(1) =
Vrd/2J_12 (4) and sin(4) = VrA/2Jy2 (A). Therefore,
Jy (1) = 0with v =[-1/2,1/2] where v is a continuous
metric that indicates how the constitutive analytical
solution of heat and mass transfer equations under
Dirichlet boundary is topologically transformed from
a plane sheet (v = —1/2) to a sphere (v = 1/2),
passing by a large cylinder (v = 0). In other words
v is a continuous metric that indicate the analytical
solution asymptotic slope (in semilog representation)
of a figure that deform from a plane sheet to a sphere.
As example of the v behavior, their values for a long
square parallelepiped, a cube and a cubic cylinder
(a cylinder with same diameter and height) will be
calculated as follows.

Under Dirichlet boundary condition (Bi — oo and
¢ — o) there is not effect of solution (liquid phase),
and therefore the superposition principle applies.
Therefore the asymptotic analytical solutions of a long
square parallelepiped, a cube and a cubic cylinder are
respectively,

2 —(2%,+22 )Fo
\Plong square parallelepiped = (B1B11)"e ( 1 ”) (46a)

Weune = (B Byp)Pe W eth)Fo 46h)
(22 2
Weubic cylinder = B1B11B2B21 e (143, )Fo (46¢)
Where 111 and A1 are the first eigenvalues for 1D
rectangular coordinate (Eq. 48a) and 1D cylindrical
coordinate (Eq. 48b) respectively under Dirichlet
boundary condition (Bi — co and ¢ — o). From Egs.
(48),
Square long parallelepiped:

2 2 1
Jv( ﬂ—+%]=0—>v=—0.1172—>—§<v<0

4
(48d)
Cube:
2 22 22 1
]V( %+%+%]:O—>v=0.2092—>0<v<§
(48¢)
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Cubic cylinder:

2 1
Jv[w/%+2.40482J=0—>v=0.3125 - 02092 <v< 3

(48f)

Therefore the square long parallelepiped analytical
solution is topologically located between plane
sheet and long cylinder; cube analytical solution
is topologically located between long cylinder and
sphere; and, cubic cylinder analytical solution is
topologically located between cube and sphere. More
complex geometries topology equivalence may be
calculated form asymptotic slopes of numerical
solution of deformed geometries evaluated by the
method proposed by Pacheco-Aguirre et al., (2015).

The relation of topology transformation
represented in Eqgs. (48) with averaged equations will
be deduced in the following paragraphs.

Taking the derivative of Eq. (46),

d¥y

2 -2 F 2
E = —BQB]()/lgle 0o = —/191 <\I”>’3 (49)

Or by analogy to Eq. (15),

AWy
—Fy =Xy (50)

Eq. (49) if fully analog to (15) when Bi — oo because
like it was detailed at the end of section 3.3, Bi — oo
implies that process is diffusion controlled (the heat
or mass transfer rate is limited by diffusion within
medium) and the interface temperature/concentration
is equal to temperature/concentration at equilibrium
Op; = Ope or ¥g; = 0. Comparing Eq. (49) with (15)
or (50): Q = /lz , and the internal heat or mass transfer
coefficient in averaged equations is,

hg = % (Heat transfer) hg = ?—;(Mass transfer)

(51
Eq. (51) demonstrates that internal heat or mass
transfer coefficient used in averaged equations may
be represented in terms of heat conductivity or mass
diffusivity and geometric characteristics through the
topological factor Q = /lgl and the geometric relation
6 (Eq. 5) in the adequate geometry. In agreement
with Eq. (50), the topological factor can be calculated
when process is diffusion controlled (Bi — oo) and
the solution/media relation tends to infinite (¢ — o).
That is, the averaged internal mass transfer coefficients
may be predicted with Eq. (51) in which the geometric
factors are independent of Bi and ¢ numbers (under
Dirichlet boundary condition). The effect of Bi and

¢ numbers are included in analytical (Eq. 38) or
numerical (Egs. 15 to 18) solutions of averaged
equations. From Eqs. (48) or Tables 1, 2 and 3, the
topological and geometric factors for some geometries
are: 1D rectangular (QQ = n2/4,0=1); 1D cylindrical
(Q = 2.4084%, 9 = 2), 1D spherical (Q = 7%, 6 = 3),
square long parallelepiped (Q = 72/2, § = 2), cube
(Q = 37%/4, 6 = 3) and cubic cylinder (Q = 7%/4 +
2.40482, 6 = 3).

The analytical solution of averaged equations (Eq.
38) with the above values and different Bi and ¢ values
are plotted as continuous lines in Figs. 1, 2 and 3.
Some deviations with respect to constitutive solutions
(discontinuous lines) are observed mainly in spherical
results (Fig. 3). However, in general, averaged
solutions with topological factors taken at Bi — oo
and ¢ — oo, follows the same tendency of constitutive
solution, and the divergence is increasing at ¥ < 0.01
which implies that temperature or concentration have
been reached 99% of their equilibrium value. This
demonstrate that differential equations (12) and (13)
with interface continuity (14) in which medium heat
or mass transfer coefficient is calculated with Eq. (51)
represent an acceptable approximation of constitutive
equations solution. It is important to remark that
any solution (numerical or analytical) will be only
an approximation of process behavior because the
model only can use the mathematical expectation for
particles sizes and geometries. Present study provides
theoretical support of the use of Eqgs. (12), (13) and
(14), which have been used for continuous contact
solid-liquid extractors modeling (Veloso et al., 2005)
and supercritical fluid extraction columns modeling
(Perrut et al., 1997; Reverchon and Iacuzio 1997).

Conclusion

The Laplace transform procedure, applied for to
deduce the analytical solution of heat conduction
or solute diffusion in media contacting a well
stirred solution with finite volume equations in
1D rectangular, 1D cylindrical and 1D spherical
coordinates, demonstrated that topological relation
under Dirichlet boundary condition between different
geometries are expressed in terms of Bessel function
of the first kind order (Eqs. 48). By analogy with
analytical solution of the averaged heat or mass
transfer equations, it was demonstrated that internal
transfer coefficient in medium may be predicted from
heat conduction or mass diffusivity, characteristic
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conduction/diffusion length and the topological
factor calculated under Dirichlet boundary condition,
through Eq. (51). Additionally, the mathematical
properties of analytical solutions show how they can
be used for thermal or mass diffusivity estimation from
experimental kinetics through Eqs. (39) and (40).
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Nomenclature

& transfer surface, m?

b kinetic slope, g1
B any constant
Cp heat capacity, J/kgK
h interfacial heat transfer coefficient, W/m?K
or interfacial mass transfer coefficient, m/s
integer index
integer index
heat conductivity, W/mK
distribution constant, kg/kg
characteristic length, m
mass, kg
unit vector normal to transfer surface,
Dimensionless
topological space
cylindrical or spherical radial coordinate, m
time, S
topological space
volume, m3
rectangular coordinate, m
reek symbols
heat or mass diffusivity, mz/s
system porosity, m%/s
eigenvalues of analytical solution
geometric factor
temperature, K or mass fraction, kg/kg
order of Bessel function of the first kind and
topologic metric
density, kg/m?

53 SxAs T

SO0 R AN NYNT YT

i

Sub-symbols

B in the media

0% in the solution
Dimensionless groups
Bi  Biot number
Fo Fourier number

1) heat or mass balance relations

b Y temperature or mass fraction,
dimensionless

¢ dimensionless coordinate

\Y a linear map of gradient operator

Q media heat or mass transfer dimensionless
coefficient
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