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Abstract
In many transport and reaction processes of interest in chemical engineering, rapid velocity variations are known to take place
near porous media boundaries. However, modeling the extension of the resulting boundary layers has been the subject of a long
debate in the literature. In specific, modeling of momentum transport between a porous medium and a fluid has suggested the
inclusion of additional terms to Darcy’s law. The origin of such corrections may be regarded as a result of an upscaling method
used to derive the governing equation at the Darcy scale. To address this issue, in this work we perform pore-scale simulations
in an idealized porous medium model consisting in arrays of straight channels that allow obtaining analytical expressions for the
Darcy-scale velocity profiles by performing an averaging (instead of an upscaling) operation. Our results show the dependence of
the size and shape of transition layers with the size of the averaging domain when studying momentum transport between a porous
medium and a fluid but also near the porous medium-wall boundary. With this low-computationally demanding methodology, we
can conclude that the existence of an average velocity boundary layer, and thus the pertinence of correction terms to Darcy’s law,
is certainly justified.
Keywords: average momentum transport model, pore-scale simulations, boundary layer.

Resumen
En muchos procesos de transporte y reacción de interés en ingenierı́a quı́mica se sabe que ocurren variaciones rápidas de la
velocidad cerca de las fronteras de medios porosos. Sin embargo, modelar la extensión de las capas lı́mite resultantes ha sido el
tema de un largo debate en la literatura. En especı́fico, el modelado del transporte de cantidad de movimiento entre un medio
poroso y un fluido ha sugerido la inclusión de términos adicionales a la ley de Darcy. El origen de tales correcciones puede
verse como el resultado de un método de escalamiento para desarrollar la ecuación gobernante a la escala de Darcy. Para atender
esto, en este trabajo llevamos a cabo simulaciones a escala de poro en un modelo de medio poroso idealizado que consiste en
arreglos de canales rectos que permiten obtener expresiones analı́ticas de los perfiles de velocidad a la escala de Darcy al llevar
a cabo la operación de promediado (en lugar de la operación de escalamiento). Nuestros resultados muestran la dependencia
del tamaño y forma de las zonas de transición con el tamaño del dominio de promediado cuando se estudia el transporte de
cantidad de movimiento entre un medio poroso y un fluido pero también en la frontera entre un medio poroso y la pared. Con
esta metodologı́a de baja demanda computacional, podemos concluir que la existencia de una capa lı́mite de velocidad, y por
tanto la pertinencia de términos de corrección a la ley de Darcy, está justificada.
Palabras clave: modelo de transporte de cantidad de movimiento promedio, simulaciones a escala de poro, capa lı́mite.

1 Introduction

Momentum transport in the neighborhood of the fluid-
porous-medium inter-region may determine the rate of
heat and mass transfer in many processes of interest to
chemical engineering (Whitaker, 2009). For example,

this type of transport occurs in fixed bed catalytic
reactors (Froment et al., 2010) and many other
separation systems (Wankat, 2016). Indeed, The fluid-
porous medium configuration is relevant in a wide
range of applications, that can go from the transport of
nutrients from a fluid stream to a cellular scaffold (Yu,
2012) to forest fire modeling (Séro-Guillaume and
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Margerit, 2002), wind action over forest resulting from
flow over the canopy (Wilson and Flesch, 1999; Ruck
and Adams, 1991), as well as groundwater pollution
modeling (Bear and Cheng, 2010), and many others.
The complexity due to the porous medium structure
motivates expressing the transport process in terms
of average quantities, which leads to the question of
representing fluid flow in the inter-region between
the free fluid and the porous medium. This task may
be performed by both experimental and theoretical
means. In the latter case, the numerical solution of the
Navier-Stokes equations in an entire porous matrix is
a tremendous computational challenge.

Due to this difficulty, macroscopic momentum
transport is usually modeled by the well-known
Darcy’s law (Bear and Cheng, 2010), which, in a
vector form, may be written as,

〈vβ〉 = −
Kβ

µβ
·
(
∇〈pβ〉β − ρβg

)
(1)

where Kβ is the porous medium intrinsic permeability
tensor, whereas 〈pβ〉β is the intrinsic average pressure
and 〈vβ〉 is the superficial average velocity, also known
as the seepage velocity (or Darcy velocity). These
quantities are usually defined in terms of an averaging
domain V (of norm V) that contains portions of
the fluid and the solid phases, i.e., V = Vβ +

Vσ. Following Whitaker (1999), these quantities are
defined as averages of their pore-scale counterparts by
the following expressions

〈pβ〉β =
1

Vβ

∫
Vβ

pβdV (2a)

〈vβ〉 =
1
V

∫
Vβ

vβdV (2b)

Here pβ and vβ denote the pore-scale pressure
and velocity vector, respectively. The superficial and
intrinsic average velocities are related by means of the
Dupuit-Forchheimer relationship

〈vβ〉 = εβ〈vβ〉β (3)

with εβ = Vβ/V being the porosity. Darcy’s law may
be regarded as a macroscopic force balance equation
between the pressure gradient and the resistance
offered by the porous medium. In his study of the
viscous force applied by a fluid over a dense swarm
of particles, Brinkman (1949) criticized Darcy’s law,
arguing that no viscous stress tensor has been defined

in relation to it. Brinkman considered a spherical solid
particle embedded in a porous medium and he required
a flow expression that was valid for both high and
low particle densities. Brinkman suggested to include
a viscous term to Darcy’s law in order to write it in the
following form

0 = −∇〈pβ〉β + ρβg + µe f f∇
2〈vβ〉 − µβK−1

β · 〈vβ〉 (4)

where µe f f is an effective viscosity coefficient, that
was originally set to be equal to the fluid viscosity,
µβ, for validation purposes. An attractive feature that
Brinkman found in Eq. (4) was that it reduces to
Stokes’ equation for conditions in which ‖Kβ‖ →

∞ and to Darcy’s law for sufficiently low values
of the permeability. In this way, he was able to
modify Stokes’ formula to predict the permeability for
systems having porosities larger than 0.6 (see Eq. (13)
in Brinkman, 1949).

Motivated to provide a theoretical justification to
Brinkman’s model, Tam (1969) treated the swarm
of particles in Brinkman’s formulation as point
forces in Stokes flow and performed an ensemble
average, which resulted in Eq. (4). Other theoretical
derivations of the Brinkman model can be attributed
to Slattery (1969) and Saffman (1971), the former
being carried out with the aid of the volume averaging
method. Lundgren (1972), also provided a theoretical
justification to Brinkman’s model using ensemble
averaging and found it satisfactory to take µe f f =

µβ/(1 − 5(1 − εβ)/2) for a suspension of spheres
obtaining reasonable agreement with experimental
data (see Fig. 3 in Lundgren, 1972) for porosities
larger than 0.6. Using the volume averaging method,
Whitaker (1986) derived the Darcy-Brinkman model,
which was shown to reduce to Darcy’s law in the
porous medium bulk. This analysis was revisited
by Valdés-Parada et al. (2007), who concluded that,
unless a slip boundary condition is considered, the
effective viscosity corresponds to the fluid viscosity.

Recently, Minale (2016) derived a generalized
Brinkman equation for the case of flow of a
viscoelastic fluid in a porous medium using the
method of volume averaging.

Certainly one of the motivations for Brinkman’s
modification to Darcy’s law is the complication
to provide boundary conditions between a porous
medium and a fluid. This difficulty was circumvented
by Beavers and Joseph (1967) by proposing an ad-
hoc velocity slip boundary condition that matches
Darcy’s law with the Stokes’ equation to model
momentum transport in a channel that is partially
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filled with a porous medium. This boundary condition
was written in terms of an adjustable coefficient α,
which ranged between 0.1 and 4 in order to match the
experimental data from Beavers and Joseph (1967).
However, this model cannot provide any information
about the transport phenomena taking place near the
fluid-porous medium surface. Certainly, the viscous
term in the Brinkman model is compatible with the
existence of a boundary layer, the thickness of which is
estimated to be

√
µe f f ‖Kβ‖/µβ (Tam, 1969; Saffman,

1971). This motivated Neale and Nader (1974) to use
the Brinkman model to study momentum transport in
the porous medium and to match it with the Stokes’
equations by imposing continuity conditions for both
the velocity and the viscous stress. By comparing the
expression of the resulting velocity profiles with the
one derived by Beavers and Joseph (1967), Neale and
Nader (1974) deduced that the empirical coefficient
α should be equal to

√
µe f f /µβ. These authors

recommended to use µe f f = µβ until better models for
the effective viscosity become available.

Ochoa-Tapia and Whitaker (1995) studied the
system configuration proposed by Beavers and Joseph
(1967) and deduced a momentum transport model (see
Eq. (35) therein) by averaging the Stokes equations
without imposing any length-scale constraints so that
the average model was valid everywhere (i.e., in the
porous medium and in the fluid). This expression
(later known as the One-domain Approach (ODA) by
Goyeau et al., 2003) is similar to Brinkman’s model
with three main features: 1) The effective viscosity
is equal to µβ/εβ, 2) The permeability coefficient in
the Darcy term is position-dependent and 3) a second
Brinkman correction term that arises by considering
the porosity to be also position-dependent. Certainly,
this model can be used to predict momentum transport
in the whole system, including the boundary layer;
however it is not a practical model to use due to
the difficulties to predict the spatial variations of
the effective-medium coefficients. The ODA has the
attractive property that it reduces to Stokes’ equation
in the homogeneous fluid phase and to the Brinkman
model in the porous medium (i.e., the Two-Domain
Approach (TDA), Goyeau et al., 2003) by imposing
appropriate constraints and assumptions as recently
shown by Paéz-Garcı́a et al. (2017). In this way, in the
TDA, the upscaled models are coupled by boundary
conditions, whereas in the ODA an average model is
used everywhere. Ochoa-Tapia and Whitaker (1995)
derived a jump in the stress and imposed continuity
of the velocity as the matching boundary conditions
between the Stokes and Brinkman equations, the latter

being Eq. (4) with µe f f = µβ/εβ. The key idea for the
derivation of the jump conditions was the requirement
that the TDA must satisfy, on average, the fields
of the ODA in the zone of changes. In this way,
the TDA is an approximation of the ODA and the
jump condition should capture the essential transport
phenomena taking place in the inter-region.

From the above, it appears that modeling
momentum transport near the porous medium
boundaries still holds many questions to be answered.
In this context, we follow Wood (2009) who
clearly made a distinction between the mathematical
operation of averaging and the upscaling process.
The latter implies adopting a set of length-scale
constraints and assumptions with the aim of filtering
out the redundant information from the microscale
model and thus reducing the number of degrees
of freedom involved. In the present work, rather
than using this last approach, we simply average
the microscale velocity profiles without making any
assumption on the length-scales constraints. Since one
of the main applications of upscaled models is the
description of momentum transport near porous media
boundaries, a fundamental question to be answered is
if the transition layer is indeed a consequence of the
upscaling procedure or not. This is the main purpose
of this paper and in order to achieve it, we represent
the porous medium as an array of straight channels
that yield easy-to-handle analytical solutions. Despite
the simplicity of this configuration, the analysis shows
the relevant phenomena taking place near the porous
medium boundaries and consequently, the conclusions
reached in this work can be extended to more realistic
situations in which the macroscopic flow remains
one-dimensional in the direction that is parallel to
the fluid-porous medium (or wall-porous medium)
boundary. With this in mind, the paper is organized
as follows: In Section 2 we present the microscale
formulation for the system under consideration and
we introduce a simplified geometry that leads to
analytical solutions of the velocity profiles. These
results are averaged in the different homogeneous and
heterogeneous portions of the system in Section 3
in order to produce also analytical expressions for
the average velocity profiles everywhere. In Section
4 we evaluate these profiles near the wall-porous
medium and fluid-porous medium inter-regions in
order to appreciate the resulting boundary layers and
the influence of the averaging volume for different
porosities. Finally, the corresponding conclusions are
drawn in Section .
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2 Microscale formulation

As it was mentioned before, we are interested in
analyzing the fluid average velocity profile in order to
demonstrate that a transition zone exists near porous
media boundaries before Darcy’s velocity is reached.
One option to model this velocity profile could be to
solve the average momentum equations that govern the
fluid flow at the Darcy-scale. However, since there is
no unique way to carry this out using effective-medium
models, the predictions would be model-dependent.
This drawback can be avoided if the average velocity
profile is obtained by averaging the local velocity,
which is the result of solving the pore-scale model.
In a fluid-solid phase system, the local velocity of an
incompressible and Newtonian fluid (the β-phase), of
density ρβ and viscosity µβ, under steady and non-
inertial flow conditions is governed by the Stokes
equation

0 = −∇pβ + ρβg + µβ∇
2vβ, in the β-phase (5a)

coupled to the total mass conservation equation

∇ · vβ = 0, in the β-phase (5b)

Both equations must be solved subject to the no
slip and no penetration condition at the fluid-solid
interface, Aβσ:

vβ = 0, at Aβσ (6)

along with the corresponding boundary conditions at
the entrances and exits of the macroscopic system.

Since our aim is to explore the existence of the
transition layers near porous media boundaries, it is
convenient to consider a benchmark system as the one
sketched in Fig. 1, which resembles the experimental
setup used by Beavers and Joseph (1967). The system
consists of a channel that is partially filled with a
porous medium. The same fluid phase that saturates
the porous medium flows above through the unpacked
part of the horizontal channel. The seepage velocity
profile can be obtained by averaging the local velocity
profiles in samples like those shown in Fig. 1 that
include the homogeneous (porous medium and fluid)
regions and three transition zones: the wall-porous
medium boundary, the porous medium-fluid boundary
and the fluid-wall boundary. On the basis of the
Beavers and Joseph (1967) work, it could be imposed
that the flow in the upper slit and the pores is the result
of the same pressure drop, i.e., (pinlet−poutlet)/L. From
this point on, we will use the subscript η to refer to
quantities associated to the homogeneous fluid phase
and the subscript ω to refer to quantities related to the
homogeneous porous region. In this way, Lη and Lω
denote the characteristic lengths associated to the fluid
and the porous medium regions, respectively as shown
in Fig. 1.

Lη

Lω2r0

`

ξ = 0

a)

b)

c)

d)

Figure 1: Sketch of a cross-section of the system perpendicular to the flow consisting of a channel that
is partially filled with a porous medium. We show the characteristic lengths of the system as well as the
origin of the global coordinate system. In addition, we show samples of the averaging region at a) the
wall-porous medium boundary; b) the porous medium bulk; c) the fluid-porous medium boundary and
d) the fluid-wall boundary.

1

Fig. 1. Sketch of a cross-section of the system perpendicular to the flow consisting of a channel that is partially
filled with a porous medium. We show the characteristic lengths of the system as well as the origin of the global
coordinate system. In addition, we show samples of the averaging region at a) the wall-porous medium boundary;
b) the porous medium bulk; c) the fluid-porous medium boundary and d) the fluid-wall boundary.
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2rp

`

Figure 2: View of the porous medium section perpendicular to the fluid flow direction highlighting the
unit cell and its characteristic lengths.

2

Fig. 2. View of the porous medium section perpendicular to the fluid flow direction highlighting the unit cell and its
characteristic lengths.

In most cases, the solution of the pore-scale
problem, due to the complexity of the fluid domain
in the porous medium and fluid-solid interface, as
well as the disparity of characteristic length scales
(i.e., ` � Lω), is a tremendous computational
challenge. However, it is possible to use a simplified
representation of the system geometry that keeps
the main characteristics of the fluid/porous medium
system and for which the local velocity can be
determined analytically. For example, the sample
showing the porous medium bulk in Fig. 1b contains a
consolidated porous medium that is formed by parallel
cylindrical channels of the same diameter. At this
point, it is worth stressing that the goal of this paper
is not to encompass all the flow situations around the
fluid-porous medium boundary, which is analytically
impossible. Rather, our purpose is to provide a
clear and easy to follow analysis for the classical
Beavers and Joseph configuration. In this case, the
analysis of a one-dimensional flow at the microscale is
sufficient for our purposes. Furthermore, the analysis
of experimental measurements of pointwise velocity
profiles suggests that, for the Beavers and Joseph
configuration, the influence of the flow in the free
part of the channel is not larger than one or two unit
cells inside of the porous medium (see figs. 2 and 4
in Goharzadeh et al., 2005). This indicates that the
value of the flow rate in the system is driven mainly
due to the free channel contributions. Consequently,
the size of the Brinkman layer predicted in this
work should not differ, at least qualitatively, from
numerical predictions or experimental measurements
in more complicated geometries. Indeed, other more

complicated configurations, that still yield analytical
solutions, can be considered and we will discuss about
them later on.

The main advantage of this porous medium
configuration is that the flow in each pore and in the
upper slit are only connected at the entrance and exit
of the channel system. In this way, under creeping flow
conditions and neglecting the effects of the vertical
walls, the velocity profile of the overlaying fluid in the
fully developed zone corresponds to a plane Poiseuille
flow and it is given by the well-known parabolic profile
expression:

v f
z = v f

z,max

[
1−

(y f

B

)2
]
, for − B ≤ y f ≤ +B (7)

where v f
z,max = (pinlet− poutlet)B2/2µL is the maximum

velocity in the channel, B is one half of the distance
between the upper wall and the porous medium
interface (i.e., B = Lη/2), L is the channel length
and y f is the vertical coordinate with origin at the
central plane of the region (i.e., y f = ξ − B, where
ξ is the global coordinate with origin located at the
fluid-porous medium surface as shown in Fig. 1). Also,
the simplicity of the system allows determining the
velocity profile in each pore, which corresponds to the
Hagen-Poiseuille flow equation:

vp
z = vp

z,max

1− (
r
rp

)2 , for 0 ≤ r ≤ rp (8)

where vp
z,max = (pinlet − poutlet)r2

p/4µL is the maximum
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`

Fig. 2 View of the porous medium section perpendicular to the fluid flow direction highlighting the unit cell and its
characteristic lengths.

a) b)

Fig. 3 Sketch of two unit cells that can be used to build the porous medium: a) a five-pore unit cell with uniform sizes
and b) a random distribution of circular channels with different radii.

The porous medium of Fig. 1 could be constructed by horizontally and vertically repeating the square
unit cell of side length ` shown in Fig. 2. It is worth emphasizing that the same velocity profile reported
in Eq. (8) can be used for a porous medium with a more complex configuration like the one shown in
Figure 3a in which all the pores have the same diameter or even with a distribution of pore diameters as
sketched Figure 3b. The important issue at this point is that, after adopting a particular configuration of
the consolidated porous medium, every pore can be located with reference to a global coordinate system.
As a consequence, the local velocity profiles are available for the whole system, including the local velocity
distribution in the upper slit. This is not easy to accomplish numerically if hundreds or thousands of
pores are involved as it is required by the separation of length-scales ` � Lω, which characterizes the
system.

3 Prediction of the average velocity

The superficial average velocity is related to the local velocity by the volume averaging operator given
by Eq. (2b). It is worth mentioning that this averaging operator may also be applied to the pore-scale
equations 5 to obtain the average momentum equations. If no length-scale constraints or additional as-
sumptions are applied, the resulting average equation, valid everywhere in the system, is the One-domain
approach (Ochoa-Tapia and Whitaker, 1995a) mentioned in the Introduction. Unfortunatelly, predictions
of the permeability coefficient involved in the ODA without the imposition of length-scale constraints
or assumptions are not available at the moment. For this reason, we find it more convenient to predict
the average velocity directly from the pore-scale equations. It is worth recalling, that a simplified version
of the ODA that involves the use of length-scale constraints leads to the Darcy-Brinkman equations as
shown by Ochoa-Tapia and Whitaker (1995a). It is thus interesting to find out if the Brinkman layer
results from averaging the velocity profiles without the use of any upscaling procedure.

6

Figure 3: Sketch of two unit cells that can be used to build the porous medium: a) a five-pore unit cell
with uniform sizes and b) a random distribution of circular channels with different radii.

3

Fig. 3. Sketch of two unit cells that can be used to build the porous medium: a) a five-pore unit cell with uniform
sizes and b) a random distribution of circular channels with different radii.

velocity in each pore, while r and rp are the radial local
coordinate and the radius of the pore, respectively.
Furthermore, since the pressure drop, is the same for
the slit and the pores, the maximum velocities are
related by

vp
z,max

v f
z,max

=
1
2

( rp

B

)2
(9)

The porous medium sketched in Fig. 1 could be
constructed by horizontally and vertically repeating
the square unit cell of side length ` shown in Fig. 2.
It is worth emphasizing that the same velocity profile
reported in Eq. (8) can be used for a porous medium
with a more complex configuration like the one shown
in Fig. 3a in which all the pores have the same
diameter or even with a distribution of pore diameters
as sketched Fig. 3b. The important issue at this point
is that, after adopting a particular configuration of
the consolidated porous medium, every pore can be
located with reference to a global coordinate system.
As a consequence, the local velocity profiles are
available for the whole system, including the local
velocity distribution in the upper slit. This is not easy
to accomplish numerically if hundreds or thousands of
pores are involved as it is required by the separation of
length-scales `� Lω, which characterizes the system.
The above makes evident the advantage of using the
modeling approach of this work.

3 Prediction of the average
velocity

The superficial average velocity is related to the
local velocity by the volume averaging operator
given by Eq. (2b). It is worth mentioning that this
averaging operator may also be applied to the pore-
scale equations (5) to obtain the average momentum
equations. If no length-scale constraints or additional
assumptions are applied, the resulting average
equation, valid everywhere in the system, is the
One-Domain Approach (Ochoa-Tapia and Whitaker,
1995) mentioned in the Introduction. Unfortunately,
predictions of the permeability coefficient involved
in the ODA without the imposition of length-scale
constraints or assumptions are not available at the
moment. For this reason, we find it more convenient
to predict the average velocity directly from the
pore-scale equations. It is worth recalling, that a
simplified version of the ODA that involves the use of
length-scale constraints leads to the Darcy-Brinkman
equations as shown by Ochoa-Tapia and Whitaker
(1995). It is thus interesting to find out if the transition
layer results from averaging the velocity profiles
without the use of any upscaling procedure.

Due to the configuration of the system shown in
Fig. 1, flow can be assumed to be fully developed
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not very far away from the macroscopic inlets and
outlets. Hence, it is convenient to choose the averaging
volume as a parallelepiped cross-sectional normal area
to the flow 2r0`, where r0 is half of the length of the
averaging domain. In this way, for the upper channel,
Eq. (2b) can be reduced to

〈vβ〉 =
1

2r0

ξ0+r0∫
ξ0−r0

vβ(ξ) dξ (10)

where vβ is the velocity component in the horizontal
direction and ξ0 indicates the position of the centroid
of the averaging domain with respect to the global
coordinate system, whose origin is shown in Fig. 1.

3.1 Averaging in the fluid domain

Let us first derive the expressions of the average
velocity for the regions that do not depend on the
porous medium configuration. The position of the
centroid of the averaging samples that contain only
homogeneous fluid is restricted by

r0 ≤ ξ0 ≤ 2B− r0 (11)

Application of the averaging operator given in Eq. (10)
to the velocity profile in the homogeneous fluid phase
presented above (Eq. 7) yields

〈vβ〉η

v f
z,max

= 1−
(
ξ0

B
− 1

)2
−

1
3

( r0

B

)2
(12)

It must be noted that the above result reduces to Eq.
(7) if the averaging domain is sufficiently small, i.e.
for r0� B.

The other average velocity that is independent
of the structure of the porous medium is the one
corresponding to the upper wall/fluid transition zone
(i.e., the Wη-inter-region). The positions of the
averaging samples are restricted by

2B− r0 ≤ ξ0 ≤ 2B + r0 (13)

Applying once again the averaging operator, defined
in Eq. (10), to Eq. (7) taking into account the fact that
v f

z = 0 for ξ ≥ 2B, yields

〈vβ〉Wη

v f
z,max

=
B

2r0

2
3
−α f +

α3
f

3

 , α f =
ξ0 − B− r0

B
(14)

Note that the position of the average velocity
corresponding to the solid surface in contact with

the upper fluid is given by ξ0 = 2B and that the
average velocity is null at this position only if r0� B.
Otherwise the average velocity is only zero at ξ0 =

2B + r0.

3.2 Average velocity for centered pore unit
cell microstructure

In this section we present expressions for the average
velocity in the porous medium that are derived
assuming that the pore geometry is obtained by a
repetition of the simple unit cell shown in Fig. 2 in
both directions orthogonal to the tube axes. Therefore,
the fluid volume fraction of the homogeneous porous
region, εβω, is related to the characteristic lengths of
the microstructure by

εβω =
πr2

p

`2 (15)

3.2.1 Average velocity in the homogeneous porous
medium

For this derivation, it is convenient to choose r0 to be
an integer multiplication of the unit cell side length, `,
say

2r0 = n0` (16)

with n0 ≥ 1 but in general at least larger than 10. As a
consequence, for samples located in the homogeneous
porous medium, Eq. (10) can be written as

〈vβ〉ω =
1

2r0`

i=n0∑
i=1

2π

r=rp∫
r=0

vp
z rdr (17)

Substitution of Eq. (8) into the above expression and
performing the corresponding integration step yields

〈vβ〉ω
vp

z,max
=
εβω

2
(18)

which corresponds to the seepage velocity. The
position of the centroid of the averaging domain
containing only homogeneous porous medium
samples is restricted by

− Lω + r0 ≤ ξ0 ≤ −r0 (19)

At this point, it is convenient to relate the size of
the upper channel Lη = 2B in terms of the size of the
square unit cell side, `, by

B = N` (20)

www.rmiq.org 929



Ochoa-Tapia et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 16, No. 3 (2017) 923-938

where N is an integer number. In this way, the ratio of
maximum velocities within the channel, η and in the
porous region, ω given by Eq. (9), takes the form

vp
z,max

v f
z,max

=
εβω

2πN2 (21)

Therefore, the average superficial velocity can be
written in terms of the absolute maximum velocity of
the system, which is v f

z,max, as follows:

〈vβ〉ω

v f
z,max

=
ε2
βω

4πN2 (22)

3.2.2 Average velocity at the fluid/porous inter-
region, ηω

In this transition zone, the position of the averaging
volume is restricted by

− r0 ≤ ξ0 ≤ r0 (23)

and the samples will contain part of the homogeneous
fluid, Vβ f , and part of the homogeneous porous
medium, Vβp. Therefore, Eq. (2b) can be written as

〈vβ〉ηω =
1
V


∫
Vβ f

vβ dV +

∫
Vβp

vβ dV

 (24)

Due to the particular configuration of the channel
geometry, the above expression takes the form

〈vβ〉ηω =
1

2r0`

[
`(ξ0 + r0)v̄ f ,ηω

z + npπr2
p〈vβ〉

β
ω + r2

pφsv̄
p,ηω
z

]
(25)

In this equation, the terms inside the brackets are
the volumetric flow rate in the sample due to: 1) the
fraction of sample that is occupied by homogeneous
fluid, 2) the number of complete unit cells in the
porous medium, np and 3) the contained fraction of the
last pore (see Fig. 4b). The first of these contributions
is derived by using Eq. (7) in the following definition:

v̄ f ,ηω
z =

1
ξ0 + r0

ξ=ξ0+r0∫
ξ=0

v f
z (ξ)dξ (26)

to obtain

v̄ f ,ηω
z =

v f
z,max

B
(ξ0 + r0)

[
1−

1
3

(
ξ0 + r0

B

)]
(27)

For the second contribution in Eq. (25), 〈vβ〉
β
ω =

〈vβ〉ω/εβω, with 〈vβ〉ω given by Eq. (22) and the
number of complete pores, np, is obtained using the
floor function

np =

⌊
−
ξ0 − r0

`

⌋
(28)

where bxc returns the largest integer smaller than x.
Finally, to obtain the third flow contribution, it

is necessary to determine the fraction of unit cell
contained in the averaging domain, from

f =
r0 − ξ0

`
− np (29)

with the following alternatives:

1. if f < 0.5− rp/`, there is no contribution to Eq.
(25).

2. if f > 0.5 + rp/`, the contribution is total. This
case is considered in Eq. (25) by increasing np
by one unit and setting the third contribution to
zero.

3. if 0.5− rp/` ≤ f < 0.5 + rp/`, the contribution is
given by

φsv̄
p,ηω
z

v f
z,max

=
1
24

( εβω
πN2

) [
3α− 4sinα+

1
2

sin(2α)
]

(30)

where

α = 2cos−1
[(

1
2
− f

) √
π

εβω

]
0 < α < 2π (31)

3.2.3 Average velocity at the porous medium/lower
wall inter-region, ωW

Finally, at the porous medium-wall transition zone (see
Fig. 4a), the position of the centroid of the averaging
volume is restricted by

− Lω − r0 < ξ0 ≤ −Lω + r0 (32)

In this case, the averaging volume contains part of
the homogeneous porous region and the impermeable
material of the lower wall occupies the rest. Therefore,
the average superficial velocity is given by〈

vβ
〉
ωW

=
1

2r0`

[
npπr2

p

〈
vβ

〉β
ω

+ r2
pφr v̄p,ωW

z

]
(33)

This result is similar to the one corresponding to the
fluid/porous medium transition zone given in Eq. (25),
with the exception that there is no contribution from
the homogeneous fluid phase anymore.
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a) b)

Figure 4: Averaging volume in the porous inter-region: a) porous medium-lower wall and b) fluid-porous
medium inter-region.

4

Fig. 4. Averaging volume in the porous inter-region: a) porous medium-lower wall and b) fluid-porous medium
inter-region.

In addition, for the porous medium contribution,
the number of complete pores, in the present case, is
obtained by

np =

⌊
ξ0 + Lω + r0

`

⌋
(34)

and the fraction of the last unit cell in the porous
medium is given by

f =
ξ0 + Lω + r0

`
− np (35)

Thus, the second term in the brackets of Eq. (33) can
be considered in the same way as above for the cases
in which 0.5− rp

` 6 f < 0.5 +
rp
` is not satisfied. When

this inequality is satisfied, we have:

φr v̄p,ωW
z = v f

z,max
εβω

2πN2

[
π

2
−

1
4
α−

1
3

sinα−
1
24

sin(2α)
]

(36)
where, in this case,

α = 2cos−1
[(

f −
1
2

) √
π

εβω

]
0 < α < 2π (37)

3.3 Average velocity for five pores unit cell
microstructure

To conclude this section, let us consider the unit cell
shown in Fig. 3a, which incorporates five pores of
the same diameter. In this case, the volume fraction
is given by εβω = 5π

( rp
`

)2
. In order to avoid channels

overlapping, the channel radius size is restricted by

√
2rp,max

(1 +
√
2)rp,max

2rp

Figure 5: Quarter of the unit cell shown in Fig. 3a including the coordinates of the centroids of the
central channel and one in the upper right corner. The channel radius, rp and its maximum value rp,max

are identified.

5

Fig. 5. Quarter of the unit cell shown in Fig. 3a
including the coordinates of the centroids of the
central channel and one in the upper right corner. The
channel radius, rp and its maximum value rp,max are
identified.

the inequality rp 6 0.5
(√

2− 1
)
`. Therefore, the

maximum radius, rp,max, allowed is related to the unit
cell size by (see Fig. 5) ` = 2

(√
2 + 1

)
rp,max; and the

center of each pore around the central pore is located
at
√

2rp,max of the symmetry axis of the unit cell.
As mentioned above, the channel configuration in

the porous medium does not have any effect on the
average velocities in the homogeneous fluid and the
upper wall/fluid inter-region, which are given by eqs.
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(12) and (14), respectively. Moreover, the ratio of the
maximum velocity in the slit to the one in each pore is
still given by Eq. (9). However, in the present case,
the average superficial velocity in the homogeneous
porous medium is given by〈

vβ
〉
ω

v f
z,max

=
ε2
βω

20πN2 (38)

Expressions yielding the average velocities of the
two inter-regions that include a portion of the porous
medium are a little more complicated than eqs.
(25) and (33). However, they are obtained by the
procedures outlined above and, for the sake of
conciseness are not reported here although they are
used for the calculations presented in the following
section. Moreover, the same procedures can be used
while considering unit cells with cylindrical pores
of different sizes and with a much more complex
distribution as the one shown in Fig. 3b. Finally, up to
this point the results have been presented normalized
with respect to the maximum velocity value in the
homogeneous fluid phase, v f

z,max; however, in the
following section, we want to compare the velocity
profiles in the different regions of the system with
respect to the Darcy velocity 〈vβ〉ω. For this reason we
will present the results normalized with respect to this
velocity value.

4 Results and discussion

In the previous section, we derived expressions for
predicting the spatial variations of the average velocity
across the system, i.e., from the lower to the upper
walls. Briefly, the predictions of the velocity between
the lower wall and the porous medium bulk (i.e.,
from −Lω − r0 < ξ0 ≤ −Lω + r0) can be carried out
using Eq. (33). The velocity in the bulk of the porous
medium (i.e., the Darcy velocity, 〈vβ〉D) is given by
Eq. (22). The use of this expression is constrained
by −Lω + r0 < ξ0 < −r0. The fluid-porous medium
inter-region is comprised between −r0 ≤ ξ0 ≤ r0 and
the average velocity can be computed from Eq. (25).
As mentioned above, these expressions change with
the type of porous medium configuration considered
in the unit cell, albeit the methodology followed to
derive them remains the same. Furthermore, in the
homogeneous fluid region (i.e., for r0 ≤ ξ0 ≤ 2B− r0),
the velocity profile is predicted using Eq. (12). Finally,
in the fluid-upper wall inter-region comprised between

2B − r0 ≤ ξ0 ≤ 2B + r0, the velocity should rapidly
decrease to zero as predicted by Eq. (14). Since, in
this work we model the porous medium as an array
of disconnected channels with no momentum transfer
between them, predictions of the average velocity in
the domain r0 ≤ ξ0 ≤ 2B + r0 are independent of the
chosen porous medium geometry.

In order to evaluate the velocity profiles across the
system, the following parameters need to be specified:
i) the homogeneous porous medium porosity, εβω
and ii) the ratios r0/` and Li/` (i = ω,η). In all
computations we fixed Lω = Lη = 105` in order to
have a significant disparity of characteristic lengths
between the pore-scale and the macroscale. Indeed, a
smaller ratio, such as Lω = 103` could have been used
and the results were verified to be practically the same
using a contrast of three or five orders of magnitude
between the pore-scale and the macroscale. For the
ratio r0/`, which determines the size of the averaging
domain, one may choose to use a constant value of
r0 throughout the entire domain or to conveniently
change its size with position and choose, for example,
a large value when sampling in the porous medium
(say r0 = O(102`)) and decrease the size of r0 when
sampling in the fluid domain. However, this approach
would influence the form of the average model as
explained by Cushman (2010). In the present work,
we decided to use the same size of r0 everywhere
because experiments are usually carried out using the
same sampling instrument in the porous medium and
in the inter-region (c f . Goharzadeh et al., 2005). At
this point, it is worth recalling that the size of r0
is not only related to the sampling instrument size
but this parameter is also linked to the width of the
inter-regions and thus to the limits of applications of
the average models. This is a sensible issue because
one may intuitively associate the positions ξ0 = −Lω
and ξ0 = Lη as the points where non-slip boundary
conditions must be applied macroscopically because
they locate the physical system walls. As explained
above, this is actually true if r0 is sufficiently small
(i.e., for r0 smaller or at most equal to `); however,
one should not expect the average velocity to be zero at
these positions if r0 is one or two orders of magnitude
larger than `.

In Fig. 6 we plot the average velocity profiles in the
wall-porous medium inter-region arising from taking
different sizes of the averaging domain for four values
of εβω. Results are presented only from the location of
the physical lower wall (i.e., ξ0 = −Lω) up until the end
of this transition region, which is given at ξ0 = −Lω+r0
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where the Darcy-velocity is recovered. Actually this
limit value was chosen to make the average velocity
dimensionless. In this way, we note that the average
velocity is one half of the Darcy velocity in all cases at
ξ0 = −Lω and it then increases in an oscillatory manner
until reaching the Darcy velocity. From the results in
Fig. 6 we observe that the number of oscillations, no
is found to be equal to r0/` + 1. Evidently, as the
size of the averaging volume increases the number of
oscillations becomes so large that the velocity profiles
tend to a straight line. Certainly, the amplitude of
the oscillations decreases as the homogeneous porous
medium porosity increases thus making it easier
to approach the straight line tendency. Under these
conditions, it is thus not surprising that the average

velocity acquires the arithmetic mean value between
its bulk value and zero when the centroid is located
at the physical lower wall (i.e., at ξ0 = −Lω). From
the plots in Fig. 6 one can appreciate the need for the
disparity of characteristic lengths between the pore-
scale and the macroscale. Indeed, if one takes Lω =

102`, one may not go as high as r0 = 100` and recover
the straight-line profile. Nevertheless, this profile is
still reachable for Lω = 103` as stated before.

From the above, it can be deduced that the size of
the transition zone is directly linked to the size of the
averaging volume. Moreover, it is important to remark
that our intention in this work is not to provide the
definitive sample size (and thus the transition layer
thickness) to be used in any situation.

a) b)
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Fig. 6 Dimensionless average velocity profiles near the lower wall taking different sizes of the averaging domain r0 for a)
εβω = 0.2, b) εβω = 0.4, c) εβω = 0.6 and d) εβω = 0.8. In all the simulations we fixed Lη = Lω = 105`.

from the location of the physical lower wall (i.e., ξ0 = −Lω) up until the end of this transition region,
which is given at ξ0 = −Lω + r0 where the Darcy-velocity is recovered. Actually this limit value was
chosen to make the average velocity dimensionless. In this way, we note that the average velocity is one
half of the Darcy velocity in all cases at ξ0 = −Lω and it then increases in an oscillatory manner until
reaching the Darcy velocity. From the results in Figure 6 we observe that the number of oscillations, no
is found to be equal to r0/`+ 1. Evidently, as the size of the averaging volume increases the number of
oscillations becomes so large that the velocity profiles tend to a straight line. Certainly, the amplitude
of the oscillations decreases as the homogeneous porous medium porosity increases thus making it easier
to approach the straight line tendency. From the plots in Figure 6 one can appreciate the need for
the disparity of characteristic lengths between the pore-scale and the macroscale. Indeed, if one takes
Lω = 102`, one may not go as high as r0 = 100` and recover the straight-line profile. Nevertheless, this
profile is still reachable for Lω = 103` as stated above.

In the homogeneous porous medium region the velocity value is a constant that is only dependent
on the porosity and the distribution of pores in the unit cell. We thus direct the attention to the
velocity profiles in the fluid-porous medium inter-region shown in Figure 7. In this case we observe a
dramatic increase of the velocity from the Darcy value to the one corresponding at the beginning of
the homogeneous fluid region, which is about 9 orders of magnitude larger than the Darcy velocity. This
increment is faster as the size of r0 is increased. The velocity profiles in this particular inter-region clearly
show the existence of the Brinkman boundary layer. It is interesting to note that this transition zone is
not the outcome of an upscaling procedure such as the volume averaging method or homogenization. The
results shown in Figure 7 evidence the existence of this boundary layer directly from the averaging of the
pore-scale velocity profiles and it is the main contribution of this study. These remarks are applicable to
all the porosity values considered here.
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Figure 6: Dimensionless average velocity profiles near the lower wall taking different sizes of the averaging
domain r0 for a) εβω = 0.2, b) εβω = 0.4, c) εβω = 0.6 and d) εβω = 0.8. In all the simulations we fixed
Lη = Lω = 105`.
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Fig. 6. Dimensionless average velocity profiles near the lower wall taking different sizes of the averaging domain r0
for a) εβω = 0.2, b) εβω = 0.4, c) εβω = 0.6 and d) εβω = 0.8. In all the simulations we fixed Lη = Lω = 105`.
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Fig. 7 Dimensionless average velocity profiles near the fluid-porous medium boundary taking different sizes of the averaging
domain r0 for a) εβω = 0.2, b) εβω = 0.4, c) εβω = 0.6 and d) εβω = 0.8. In all the simulations we fixed Lη = Lω = 105`.

It is worth noting that, in both inter-regions that bound the porous medium, the size of the averaging
volume must be about two orders of magnitude larger than ` in order to obtain representative predictions
of the average velocity profiles. In addition, we performed simulations considering the five-pore unit cell
depicted in Figure 3a as well as using parallel plates as a porous medium model (i.e., a plane Poiseuille-
flow model). In both situations we obtained qualitatively the same velocity profiles shown in figures 6
and 7 for r0 < 100` and quantitatively the same values for r0 ≥ 100`. Finally, the velocity profiles in the
homogeneous fluid region are insensitive to the averaging volume size and of the type of porous medium
considered and are not presented here.

To conclude this section, it is appropriate to redirect the attention to the wall-porous medium inter-
region and suggest a methodology for choosing an appropriate value for r0. As a particular criterion, one
may take the average of the velocity profiles in the inter-region (say 〈vβ〉ω) for each value of r0/` and
choose the value of r0 that leads to closer predictions to an asymptotic value of the average velocity. An
example of the application of this criterion is shown in Figure 8, which corresponds to the averages of the
data presented in Figure 6a) along with a statistical fit that was obtained by means of a logistic equation.
In this case we observe that for r0 = 20` a close agreement with the asymptotic value is achieved. We
performed tests for the other velocity profiles shown in Figures 6 and 7 obtaining similar results. This
criterion for choosing the averaging volume size should be relevant for carrying out numerical simulations
to predict the spatial variations of effective medium coefficients, present in upscaled models, that take
place in the inter-region but also should shed some light about the size of the sampling device that should
be used to collect experimental data.
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Figure 7: Dimensionless average velocity profiles near the fluid-porous medium boundary taking different
sizes of the averaging domain r0 for a) εβω = 0.2, b) εβω = 0.4, c) εβω = 0.6 and d) εβω = 0.8. In all the
simulations we fixed Lη = Lω = 105`.
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Fig. 7. Dimensionless average velocity profiles near the fluid-porous medium boundary taking different sizes of the
averaging domain r0. In all the simulations we fixed Lη = Lω = 105`.

Actually, in practice, the averaging size is
determined according to the measuring device and
the precision required in the experiment. Indeed, the
averaging domain may be viewed as the response
of an instrument probing intensive field variables
as explained by Baveye and Sposito (1984) and
Cushman (1984). In this way, the existence of a
transition layer near porous media boundaries does
not require a separation of scales as it is usually
necessary in upscaling methods. However, the average
velocity profiles depend, in general, on the size of the
averaging volume as it is expected when performing
experimental measurements where the results are
dependent on the size of the probing device.

In the homogeneous porous medium region the
velocity value is a constant that is only dependent
on the porosity and the distribution of pores in

the unit cell. We thus direct the attention to the
velocity profiles in the fluid-porous medium inter-
region shown in Fig. 7. In this case, we observe
a dramatic increase of the velocity from the Darcy
value to the one corresponding at the beginning of the
homogeneous fluid region, which is about 8 orders
of magnitude larger than the Darcy velocity. This
increment is faster as the size of r0 is increased.
It is interesting to note that the existence of this
transition zone is not the outcome of an upscaling
procedure such as the volume averaging method or
homogenization. Results shown in Fig. 7 evidence
the existence of this boundary layer directly from the
averaging of the pore-scale velocity profiles and it is
the main contribution of this study. These remarks are
applicable to all the porosity values considered here.
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Figure 8: Average of the dimensionless velocity profiles shown in Figure 6a for several values of the ratio
r0/` (dots) and statistical fit using a logistic equation (line).
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Fig. 8. Dimensionless average velocity profiles near
the fluid-porous medium boundary taking different
sizes of the averaging domain r0. In all the simulations
we fixed Lη = Lω = 105`.

For briefness in presentation, we normalized the
results by presenting them in terms of ε2〈vβ〉ηω/〈vβ〉ω
instead of plotting the average velocity in the fluid-
porous medium transition layer for each porosity
value. Interestingly, under this form, the shape of these
velocity profiles resembles the one exhibited by the
experimental results reported in Fig. 6b by Morad
and Khalili (2009). The results shown in figures 6
and 7 clearly show that there is a slip velocity when
the centroid of the averaging domain is located at
the physical lower wall and when it is located at the
surface of the last channel in contact with the fluid.

In addition, we performed simulations considering
the five-pore unit cell depicted in Fig. 3a as well
as using parallel plates as a porous medium model
(i.e., a plane Poiseuille-flow model). In both situations
we obtained qualitatively the same velocity profiles
as those shown in figs. 6 and 7 for r0 < 100` and
quantitatively the same values for r0 ≥ 100`. Finally,
the velocity profiles in the homogeneous fluid region
are independent to the averaging volume size and of
the type of porous medium under consideration and,
for the sake of brevity, are not presented here.

To conclude this section, it is appropriate to
redirect the attention to the wall-porous medium inter-
region and suggest a methodology for choosing an
appropriate value for r0. As a particular criterion, one
may take the average of the velocity profiles in the
inter-region (say 〈vβ〉ωW ) for each value of r0/` and
choose the value of r0 that leads to closer predictions
to an asymptotic value of the average velocity. An
example of the application of this criterion is shown
in Fig. 8, which corresponds to the averages of the

data presented in Fig. 6a) along with a statistical fit
that was obtained by means of a logistic equation. In
this case we found that, for r0 = 20`, the relative error
percent with respect to the asymptotic value was less
than 0.01%, whereas for r0 = 100` the value of the
error percent is reduced in one order of magnitude. We
performed tests for the other velocity profiles shown
in Fig. 6 obtaining similar results. This criterion for
choosing the averaging volume size should be relevant
for carrying out numerical simulations to predict the
spatial variations of effective medium coefficients,
present in upscaled models, that take place in the
wall-porous medium inter-region but should also shed
some light about the size of the sampling device
that should be used to collect experimental data in
that region. Nevertheless, these observations should
be taken with care because the weighting function for
the intrinsic averages is taken here to be the inverse
of the rectangular function of the fluid within the
averaging domain, while in practice this weighting
function could be more complicated.

Conclusions

In this work we studied momentum transport near
porous media boundaries in an idealized system
resembling the classical one proposed by Beavers and
Joseph (1967). In specific, the fundamental question
that motivated this work is whether or not the existence
of transition layers is the result of an upscaling
process. With this in mind, we proposed an idealized
model for the porous medium geometry consisting
of arrays of channels that yield analytical solutions
for the pore-scale velocity profiles. While spatially
smoothing (i.e., averaging) the pore-scale velocity
fields we obtained velocity profiles at the Darcy
scale that evidenced the existence of transitions layers
as shown in figs. 6 and 7. From these results, it
is clear that the existence and size of these layers
(either between a porous medium and a wall or a
porous medium and a fluid) is directly related to the
averaging volume size, r0. Before moving on, it is
worth recalling that the latter conclusion was reached
in a simplified system that did not allow momentum
exchange between the porous medium and the fluid.
More than a limitation, this choice of geometry is a
point of emphasis, because it indicates that, given that
a sufficiently large averaging domain exists, boundary
layers in this type of systems are the result of an
averaging process. In our computations we took the
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modeling choice of fixing the averaging volume size
to be the same regardless of the centroid position;
hence once an r0 value is chosen so are the widths
of the transition layers. Interestingly, boundary layers
appear even for cases in which r0 is equal to the
unit cell size `, which is the minimum value of r0
required to recover the seepage velocity. As expected,
when r0 is sufficiently large with respect to ` (i.e.,
r0 = O(102`)), the Darcy velocity predictions at the
porous-medium/wall boundary tend to a single profile,
which is the same when using other configurations for
the pores in the unit cell.

Although the porous medium configuration is
certainly idealized and does not allow pore-scale
momentum exchange between the porous medium
and the adjacent fluid, the fact that it yields
analytical predictions of the pore-scale and Darcy-
scale velocities is encouraging because of the minimal
computational cost that implies simulating the entire
system. As a matter of fact, the numerical solution of
the pore-scale equations in a system with the disparity
of characteristic lengths involved in figs. 6 and 7 is
a tremendous computational challenge and may only
be addressed in an approximate manner. Furthermore,
in dispersed porous media it is well known that the
effect of the upper free flow motion on the local
velocity reaches the depth of two or three particles.
However the effect on the average velocity will be
of the same order of magnitude as the one found in
the present study. The minimum size of the sample
will correspond to one unit cell and even in such
a case a transition layer will exist. A much larger
sample may be required due to changes in the micro
structure or to experimental needs. For this reason,
simulations performed here, although approximate,
provide a qualitative idea of the spatial variations of
the velocity near porous media boundaries. It should
be stressed that, for situations in which many transport
processes take place, such as convective heat transfer
in porous media, the approach used in this work is
not that simple and additional criteria are needed in
order to define the thickness of the transition layer.
Nevertheless, our approach may be used for example
to study diffusive mass transfer between a porous
medium and a fluid or between different porous media.

Finally, as a matter of prospective, the analysis
presented here may be used to predict the spatial
variations of effective-medium terms and coefficients
involved in the one-domain approach. In other
words, the transport phenomena taking place in the
transition layers may not necessarily be completely

captured only by the Brinkman correction term;
instead other correction terms (involved in the one-
domain approach) are necessary. Indeed, as explained
by Valdés-Parada et al. (2013) this information is
necessary for the closure process involved in jump
boundary conditions.
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Nomenclature

Aβσ solid-fluid interface
B half of the width of the upper channel, m
f fraction of a unit cell
g gravity acceleration vector, m/s2

Kβ permeability tensor, m2

` size of the unit cell side, m
L channel length, m
Li width of the i-region (i = ω,η), m
n0 number of unit cells contained by the

averaging volume
np number of unit cells in the averaging volume

that are contained in the porous medium
N number of unit cells in half of the width of the

upper channel
pβ pore-scale pressure, Pa
pi (i = inlet) inlet or (o = outlet) outlet pressure,

Pa
〈pβ〉β intrinsic average pressure, Pa
r radial local coordinate normal to axis of each

pore direction, m
rp radius of each pore, m
r0 half of the characteristic length size of the

averaging volume, m
vβ pore-scale velocity vector, m/s
vi

z axial component of the velocity vector in the
channel (i = f ) or in each pore (i = p), m/s

vi
z,max maximum velocity in the channel (i = f ) or in

each pore (i = p), m/s
〈vβ〉 superficial average velocity vector, m/s
V averaging domain of norm V
Vβ domain occupied by the β-phase within V
y f local coordinate normal to the axial direction

in the middle of the upper channel, m

Greek symbols
α angle that defines fraction of pore that

contributes to flow
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εβ fluid volume fraction
µβ fluid dynamic viscosity, Pa·s
µe f f effective viscosity, Pa·s
ρβ fluid density, kg/m3

ξ coordinate normal to the flow direction whose
origin is located at the interface between the
upper fluid and the first solid of the porous
medium, m

Subscripts
β refers to the β-phase
η refers to the homogeneous fluid region
ηω refers to the homogeneous fluid/porous

medium inter-region
ω refers to the homogeneous porous medium

region
ωW refers to the homogeneous porous

medium/lower wall inter-region
Wη refers to upper wall/homogeneous fluid inter-

region

Superscripts
f refers to the upper channel fluid
p refers to the pore fluid
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