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Abstract
Solving models represented by non-linear equations is a common situation in engineering and can be a challenging task.
Homotopy Continuation Methods have shown globally convergent behavior, capable of finding all the possible roots of algebraic
systems. Based on these methods, a new Microsoft Office Excel add-in was developed, SphereSolver, aiming to enhance the
ability to use this easily obtainable software as a simulation computing platform for engineering problems. SphereSolver was
applied over different types of engineering models and the non-linear equations were solved successfully each time. Selected
problems were solved with SphereSolver and compared with other solution tecniques, e.g., classical Newton’s method, Fixed
Point homotopy or Affine Homotopy. It was observed that using SphereSolver the solution for selected problems was improved,
i.e., the interval of convergence is extended massively and/or additional roots can be found. It can be concluded that SphereSolver
is a new and efficient tool that can be used within Microsoft Excel for solving engineering problems where other software or
traditional tools could fail or present limitations.
Keywords: engineering non-linear models, homotopy continuation methods, excel add-in, hyperspherical path tracking.

Resumen
Resolver modelos matemáticos representados por ecuaciones no lineales es común en la ingenierı́a y puede ser una tarea difı́cil.
Los métodos de Continuidad Homotópica han mostrado ser globalmente convergentes y capaces de encontrar todas las posibles
raı́ces de sistemas algebraicos. Con base en este tipo de métodos, se presenta un nuevo complemento para Microsoft Office Excel,
SphereSolver, desarrollado con el objetivo de mejorar la capacidad de este software común, como una plataforma de computación
de simulación para problemas de ingenierı́a. SphereSolver se aplicó sobre diferentes tipos de modelos de ingenierı́a y en todos
los casos, las ecuaciones no lineales se resolvieron con éxito. La solución con SphereSolver a los problemas seleccionados se
comparó con otras técnicas de solución, por ejemplo, el método clásico de Newton, Homotopı́a de punto fijo y Homotopı́a Afı́n.
Se observó que usando SphereSolver el intervalo de convergencia se extiende masivamente y / o se pueden encontrar raı́ces
adicionales, es decir, se mejoró la solución. Se concluye que SphereSolver es una herramienta eficiente que se puede utilizar
en Microsoft Excel para resolver problemas de ingenierı́a donde otros programas o herramientas tradicionales pueden fallar o
presentar limitaciones.
Palabras clave: modelos de ingenierı́a no lineales, métodos de continuidad homotópica, complemento de excel, seguimiento
hiperesférico.

1 Introduction

The solution of systems of non-linear equations is a
common practice in engineering, and transcendental
functions are usually part of these models (Jiménez-
Islas et al., 2014; Rodrı́guez and Niño, 2016). Newton-

like methods are a classical approach used in these
cases, though they are locally convergent, i.e., they
require an initial approximation close enough to the
solution to find the value of the vector that satisfies a
given convergence criterion (Davis, 1984). Homotopy
Continuation Methods (HCMs) have emerged as an
alternative strategy, which uses the local convergence
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properties of such methods in a gradual deformation
scheme (Allgower and Georg, 1990). They have
been shown to be accurate, robust, and able to
converge from almost any arbitrary starting point.
These techniques have been successfully applied to
solve polynomial systems of equations, constrained
and unconstrained optimization problems, and non-
linear partial differential equations. Therefore, the
applications of HCMs to solve engineering models
have been numerous, including phase separation and
transport phenomena problems, among others (Jalali
et al,. 2008; Menglong and Zhenxin, 2008; Laiadi and
Merzougui, 2012; Yang et al., 2012; Jimenez-Islas et
al., 2013; Torres-Muñoz et al., 2015).

The solution of systems of non-linear equations is
a common practice in engineering, and transcendental
functions are usually part of these models (Jiménez-
Islas et al., 2014; Rodrı́guez and Niño, 2016). Newton-
like methods are a classical approach used in these
cases, though they are locally convergent, i.e., they
require an initial approximation close enough to the
solution to find the value of the vector that satisfies a
given convergence criterion (Davis, 1984). Homotopy
Continuation Methods (HCMs) have emerged as an
alternative strategy, which uses the local convergence
properties of such methods in a gradual deformation
scheme (Allgower and Georg, 1990). They have
been shown to be accurate, robust, and able to
converge from almost any arbitrary starting point.
These techniques have been successfully applied to
solve polynomial systems of equations, constrained
and unconstrained optimization problems, and non-
linear partial differential equations. Therefore, the
applications of HCMs to solve engineering models
have been numerous, including phase separation and
transport phenomena problems, among others (Jalali
et al,. 2008; Menglong and Zhenxin, 2008; Laiadi and
Merzougui, 2012; Yang et al., 2012; Jimenez-Islas et
al., 2013; Torres-Muñoz et al., 2015).

HCMs are recognized by their potential as a
reliable and efficient seeker of all the set of possible
roots of a multivariable function from one starting
point (Rahimian et al. 2011). The general problem
that faces HCMs is to find the solution xF of the
system of equations F(xF) = 0, where the mapping
F : <n → <n represents a set of equations, which
in the general case includes transcendental functions.
The basic idea of HCMs is fully described in the
literature and deals with the gradual deformation from
an auxiliary function, E(x), to the function to be
solved, F(x), where xE , such as E(xE) = 0, is known.
This deformation is developed using an artificial

parameter t that establishes specific conditions to be
satisfied by the homotopic function, H(t, x), i.e., Eq.
(1) (Cveticanin et al., 2012; Ward and King, 2012).

H(t, x) =

E(x) if t = 0
F(x) if t = 1

(1)

Thus the standard convex homotopic function, Eq.
(2), is stated (Verschelde and Cools, 1994; Thompson,
2006).

H(t, x) = (1− t)E(x) + tF(x) (2)

Starting from t = t0 = 0, if a small increment ∆t is
applied over t0, such as t1 = t0 + ∆t → t1 ≈ t0 →
H(t1, x) ≈ H(0, x), it is expected that x(H,1) ≈ xE ,
where H(t1, xH,1) = 0. Once the value of xH1 is
obtained, t is slightly changed again, such as t2 =

t1 + ∆t → t2 ≈ t1 → H(t2, x) ≈ H(t1, x), and therefore
x(H,2) ≈ x(H,1), where H(t2, xH,2) = 0. Following this
pattern, an increase in t is made such as tk+1 = tk+∆t→
tk+1 ≈ tk → H(tk+1, x) ≈ H(tk, x), using xH,k as the
initial trial in a locally convergent numerical method
to find the vector xH,k+1. Following this strategy, every
time t = 1 is reached, a solution of the problem F(x) =

0 is found.
Different types of HCMs can be obtained

according to the specific form of the auxiliary function
E(x), the numerical method used to solve H(tk, xH,k) =

0 for each discretized value tk, and the selected
homotopic path tracking method (Menglong and
Zhenxin, 2008; Jimenez-Islas et al., 2013). Some
typical auxiliary functions found in the literature
include Fixed Point Homotopy (Eq. (3)), Affine
Homotopy (Eq. (4)) and Newton or global Homotopy
(Eq. (5)).

E(x) = x− x0 (3)
E(x) = A · (x− x0) (4)
E(x) = F(x)− F(x0) (5)

Where x0 is a known value (initial estimate) and A is a
scaling matrix, e.g., Jacobian matrix.

Regarding to the numerical method used to solve
H(tk, xH,k) = 0 for each discretized value tk, the
basic Predictor-Corrector approach is recommended
(Wayburn and Seader, 1987). Taking the total
derivative with respect to t of the homotopic function
given by Eq. (2), the Initial Value Problem, IVP (Eq.
(6)), is obtained (Georg, 1981).

dxH

dt
= [t · JF(xH) + (1− t) · JE(xH)]−1 · [E(xH)− F(xH)],

xH(t = 0) = xE
(6)
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Where JF(xH) and JE(xH) represent the derivative
or Jacobian matrix of the original function and the
auxiliary function, respectively.

In a basic Predictor-Corrector scheme, instead of
directly using the solution obtained at point k as the
initial guess for the problem for the next point k + 1, a
simple strategy such as Euler’s method is applied over
the IVP given by Eq. (6) using the new initial condition
xH(tk) = xH,k, and this numerical result is used as the
initial guess for the problem at the next point k + 1.

By other side, among different homotopic path
tracking methods discussed in the literature, the
circle tracking method, generalized as hyperspheres,
exhibited the best behavior (Yamamura, 1993;
Jiménez-Islas, 1996). The hypersphere that is
represented by Eq. (7) must be solved for each
discretized point k following the algorithm described
in Table 1.

‖x− xH,k‖
2 + (t− tk)2 = R2 (7)

Fig. 1 shows how, for a two-dimensional xH , the
tangent line from the center of the sphere given by
Euler’s predictor intersects the surface of the sphere,
and this point feeds a locally convergent method that
finds the intersection of the path with the sphere. A
detailed analysis of this tracking method is presented
by Oliveros-Muñoz and Jiménez-Islas, (2013).

One known problem of HCMs appears when the
homotopic path presents turning points as described
by Watson (2001), where an inappropriate step
increase could skip roots of the homotopic path.

Such situation can be avoided by using the
arc length p as alternative tracking parameter
(Klopfenstein, 1961), wherein x and t are taken as
functions of this new parameter. Hence, the total

derivative of each component of the homotopic
function H(t, x) = 0 regarding to “p” will be described
by Eq. (8).

dH1
dp
...

dHn
dp

 =


∂H1
∂x1

dx1
dp + · · ·+

∂H1
∂xn

dxn
dp +

∂H1
∂t

dt
dp +

∂H1
∂p

...
∂Hn
∂x1

dx1
dp + · · ·+

∂Hn
∂xn

dxn
dp +

∂Hn
∂t

dt
dp +

∂Hn
∂p

 = 0

(8)
where x = [x1 · · · xn]T and H(t, x) = [H1 · · ·Hn]T .

Considering that ∂H1/∂p = · · · = ∂Hn/∂p = 0, and
using the compact notation of Eq. (9), Eq. (10) can be
obtained.

JHx
dx
dp

= −
dt
dp

∂H
∂t

(9)

dx
dp

= −
dt
dp

[JHx]−1 ∂H
∂t

(10)

Fig. 1. Euler’s predictor for hyperspheres as
homotopic path tracking method.

Table 1. Algorithm steps for hyperspheres as homotopic path tracking method.

Step Description

1. Hypersphere setting Taking the point (tk, xH,k) as the center of the sphere, with an established radius
R, Eq. (7) is set.

2. Euler’s predictor step Applying Euler’s method over Eq. (6) a tangent line is formed, and the
intersection point of this line and the hypersphere surface is obtained.

3. Corrector step
The point obtained from step 2 is used as an initial trial to find the simultaneous
solution of H(t, x) = 0 and Eq. (7), using a locally convergent Newton-like method
as a corrector strategy. The solution will be the next point (tk+1, xH,k+1) of the
homotopic path.

4. Loop The point (tk+1, xH,k+1) is set as the center of a new hypersphere, and the tracking
strategy continues with step 1.

www.rmiq.org 1013
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On the other hand, the approximate calculation
of dt/dp can be performed using the determinant of
the homotopic Jacobian matrix (Oliveros-Muñoz and
Jiménez-Islas, 2013), Eq. (11).

dt
dp

= (−1)n+1 · det(JHx) (11)

In a Predictor-Corrector scheme, Euler’s method is
applied over the problem at the center of the sphere.
Thus, for a given change in the new path tracking
parameter, ∆p, the initial estimate that feeds the
locally convergent method, t0, and the vector, x0,
are found using eqs. (12) and (13), respectively.
This approach permit to follow any n-dimensional
homotopic path only in terms of t(p).

t0 = t +
dt
dp
∆p (12)

x0 = x +
dx
dp
∆p (13)

When this approach is combined with the hypersphere
radius R (Eq. (7)), the change in the arc length can
be described by Eq. (14), where the sign for the square
root is set according to the positive or negative advance
of p (Oliveros-Muñoz and Jiménez-Islas, 2013).

∆p = ±

√√√ R2

1 + ‖ dx
dp ‖

2 +
(

dt
dp

)2 (14)

According to the literature survey, it was found that
different computational tools have been developed
based on HCMs, most of them implemented
in scientific computation packages as Matlab
(Thompson, 2006; Lee et al., 2008); while the
use of HCMs as an add-in for the widely known
software Microsoft Excel Office is scarce and limited
to Fixed Point and Affine Homotopies (Henao and
Velásquez, 2004), without including hyperspheres as
homotopic path tracking method, neither arc length p
as alternative tracking parameter.

In this contribution, a new code for HCMs
developed in Visual Basic for Applications 7.1©,
to be used as Microsoft Office Excel add-in
(named SphereSolver) is presented. SphereSolver
uses Newton Homotopy (Eq. (5)) as auxiliary
equation, hyperspheres as the tracking device of
the homotopic path; arc length p as alternative
tracking parameter; and second-order finite central
differences to approximate the required derivatives.
The simplicity associated to the use of widely known
software as Microsoft Office Excel improves the

range of applications for the HCMs methods in
solving engineering problems. In the next section, the
software is presented and then a problem is proposed
as case study. For comparison proposes, the case
study is analyzed by using different approaches, i.e.,
classical Newton´s method; Fixed Point Homotopy,
Affine Homotopy, and the SphereSolver. Finally, it is
illustrated the use of SphereSolver for solving different
kinds of typical engineering problems.

2 Software presentation

Microsoft Excel© by Microsoft© can be considered
a low-cost program with uses in several engineering
applications (Huddleston et al., 2004; Wong and Zhou,
2004; Bhattacharjya, 2010; Le Roux et al., 2010).
Excel is widely available and easily adaptable to
individual needs for solving engineering problems.
Although several add-ins and templates have been
developed in Excel, as far as we know, there have been
no tools capable of finding several roots of system
of non-linear equations using a globally convergent
method. The newly developed add-in SphereSolver
was designed with a friendly user interface, and with
default settings suitable for users who are not familiar
with the numerical method. The size of the add-in is
143 kB.

The code was developed in Visual Basic for
Applications 7.1©. A description of the main
algorithm is included as supporting material.
The developed add-in uses Newton Homotopy;
hyperspheres as the tracking device of the homotopic
path; and second-order finite central differences to
approximate the required derivatives.

To use the developed add-in, Microsoft Office
Excel spreadsheets are used to set up the model that
contains the system of equations to be solved. Specific
information shown in Figs. 2 and 3 is related with the
case study described in the next section. As shown in
Fig. 2, at least two set of cells are required to capture
the information of the model from the spreadsheet.
The first set contains n cells, where the different values
that the unknown variables adopt during the execution
of the algorithm are downloaded (cell D7, Fig. 2). The
initial values for the HCM are recommended to be
entered there. The second set contains other n cells,
where the formulas of the system of equations are
introduced. They must depend directly or indirectly
on the first set of cells (cell F7, Fig. 2). In general,
SphereSolver changes the values of the cells that
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represent the unknown variables as the homotopic path
is followed, and the solution will be the values that

satisfies the equations with in a convergence criterion.

Fig. 2. Example of a set up in a spreadsheet used to capture the information of a model (case study presented in the
next section).

Fig. 3. SphereSolver’s interface. a) Page to capture the information of the system of equations from an Excel Office
spreadsheet. b) Page to acquire basic numerical parameter values. c) Page to set advanced parameters for the HCM.

www.rmiq.org 1015
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After installation, the add-in can be executed from
the Excel Office ribbon with the name SphereSolver.
The interface consists of three pages: Problem (Fig.
3a), Settings (Fig. 3b) and Advanced (Fig. 3c). In
Problem (Fig. 3a), using two different reference
selection controls, the cells containing the functions
and the variables are captured. In Settings (Fig. 3b),
some basic settings for the HCM are entered, i.e.,
tolerance of convergence (ε), the initial value of the
radius (Rinit) and the maximum number or iterations
in the correction step (Imax). In this page the user
has the option of taking one particular initial value
for all the variables, or taking the values initially
entered in the spreadsheet. Finally in Advanced (Fig.
3c), advanced numerical parameters can be entered,
i.e., the minimum slope value of both sides of a return
and the maximum error at an intersection with the
hyperplane t = 1. The option to set the domain for
the homotopic parameter t is also available for users
which are familiar with the HCMs and the homotopic
function behavior. In this study, the machine used
has an Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz
60 GHz processor and 8.00 GB RAM installed.
Because the developed add-in is intended for a wide
variety of users, the characteristics of the machine are
intentionally easy to obtain.

3 Case of study

Redlich-Kwong (Eq. (15)) represents one of the most
classical and widely used equations of state in the
calculation of thermodynamic properties required in
several chemical engineering applications (Murdock,
1993).

P =
RT

v− b
−

a
T 1/2v(v + b)

(15)

where parameters a and b are functions of the critical
properties of the gas, and can be described by eqs. (16)
and (17), respectively (Murdock, 1993).

a =
0.42748023354R2T 2.5

c

Pc
(16)

b =
0.086640349965RTc

Pc
(17)

The case study consists in applying the Redlich-
Kwong model (Eq. (15)) to estimate the molar volume
v of n-butane with the conditions and parameters given
in Table 2 (Smith et al. 2005).

3.1 Use of the classical Newton’s method in
the case study

Eq. (15) is written as a function of molar volume, Eq.
(18)

F(v) =
RT

v− b
−

a
√

Tv(v + b)
− P = 0 (18)

A plot F(v) (Eq. 18) using condition from Table 1
reveals several asymptotes (Fig. 4).

To apply classical Newton’s method (Ramı́rez et
al. 2006; Bürgisser and Cucker, 2013) and find the root
of the function given by Eq. (18), the derivative with
respect to the unknown variable v is required, i.e., Eq.
(19).

F′(v) = −
RT

(v− b)2 +
a(2v + b)
√

T [v(v + b)]2
(19)

Iterations with the classical Newton’s method are
given by vk+1 = vk − F(vk)/F′(vk), in this case
represented by Eq. (20).

vk+1 = vk −

[
RT

vk−b −
a√

Tvk(vk+b)
− P

]
[
−RT

vk−b)2 +
a(2vk+b)

√
T [vk(vk+b)]2

] (20)

Table 2. Values for Redlich-Kwong cubic equation.

Parameter Name Units Value

P Pressure atm 50
T Temperature K 298.15

Pc Critical pressure atm 37.5*
Tc Critical temperature K 425.2*
R Universal gas constant L·atm/mol K 0.08205

* Taken from (Smith et al., 2005)
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Fig. 4. Graph of the function F(v) = RT
v−b −

a√
Tv(v+b)

− P using conditions from Table 1.

Fig. 5. Estimative of vk+1 as a function of the estimate vk of Newton’s method (Eq. (18) with conditions from Table
1); a) Higher scale; b) Smaller scale.

www.rmiq.org 1017
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Typical drawbacks of Newton’s method are related
with the adequate choice of the initial guess. Fig. 5
shows the behavior of the first estimate as a function of
the initial value for Newton’s method in two different
scales. The sequence reveals only one continuous
interval containing the root where convergence
can be achieved, i.e., from 0.0806047752495982
to 0.127396259816616. In other words, the initial
estimate must go from -26.41% to 16.31% of
the solution. Thus, the interval of convergence of
Newton’s method for this case of study is tight.
Importantly, the common initial value for the molar
volume in a real model is the one obtained from
the ideal gas equation, and in this case it is
v=RT/P=0.48926415 L/mol, which falls outside the
interval of convergence.

3.2 Use of the Fixed Point Homotopy in the
case study

Using the same case study, when the molar volume
obtained from the ideal gas equation is used as the
initial estimate (i.e., x0 = v0 = RT/P =0.48926415,
t = 0), and Fixed Point Homotopy (eqs. (2) and (3))
is applied; the homotopic path shown in Fig. 6 is
obtained.

In Fig. 6, the portion of the homotopic path that
is above the horizontal asymptote comes from the
point (xH = xE = v0 =0.48926415,t = 0). Due to
the horizontal asymptote, there is no continuous path
that connects the initial point to the desired root at
t = 1. Setting the Homotopy function equal to 0, and
combining eqs. (2) and (3), Eq. (21) can be obtained.

t =
(x− x0)

(x− x0)− F(x)
(21)

Fig. 6. Homotopic path for the study case of the
Redlich-Kwong cubic equation under the conditions
given in Table 1 using Fixed Point Homotopy.

Thus, when x− x0 = F(x), t becomes ±∞. Hence,
the horizontal asymptote in Fig. 6 is due to the type
of Homotopy itself, and not due to the nature of the
original function.

For the given set of parameters (Table 1), the
horizontal asymptote occurs at v =0.109557347
L/mol, which is 0.0195% away from the root. In other
words, for Fixed Point Homotopy, following the path
in the real domain from the initial estimate will not
lead to the answer at t = 1.

3.3 Use of the Affine Homotopy in the case
study

The homotopic path for the implicit equation
H(xH , t) = 0 using Affine Homotopy (Eqs. (2) and (4))
over the case of study is shown in Fig. 7. It is observed
that the homotopic path presents similar behavior
to the Fixed Point Homotopy (Fig. 6). In a similar
fashioned way, the horizontal asymptote occurs when
the denominator of the Eq. (22) equals 0, i.e., when
F′(x)(x− x0) = F(x).

t =
F′(x0)(x− x0)

F′(x0)(x− x0)− F(x)
(22)

For the case study this scenario is at v=

0.111378181943983 L/mol, 1.68% away from the
root. Although not shown in Fig. 7, if the path from
the initial estimate is followed upwards, it leads to
a vertical asymptote at t = 1, and the other path
has a horizontal asymptote at the mentioned point.
This same behavior was observed for the Fixed Point
Homotopy.

Fig. 7. Homotopic path for the study case of the
Redlich-Kwong cubic equation under the conditions
given in Table 1 using Affine Homotopy.

1018 www.rmiq.org



Dı́az-Montes et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 16, No. 3 (2017) 1011-1027

Fig. 8. Homotopic path for the study case of the
Redlich-Kwong cubic equation under the conditions
given in Table 1 using Newton Homotopy.

According to the previous analysis, for the
Fixed Point Homotopy or Affine Homotopy, there
is no continuous path from the initial value
v0 =0.48926415 to the solution of the problem at
v =0.109535967857868. Again, as observed for Fixed
Point Homotopy, the horizontal asymptotes analyzed
do not rise from the nature of the function but from the
type of homotopy.

3.4 Use of the Newton Homotopy in the
case study

Using the Newton Homotopy over the case study,
i.e., combination of eqs. (2) and (5), a path from the
initial estimate, v0 =0.48926415, to the solution of the
problem exists, as shown in Figure 8.

This case study has shown the advantage of
using the Newton Homotopy over the Fixed Point
and Affine Homotopy. According to the results, the
convergence interval will be the same continuous
domain of the function F(v), given by Eq. (18),
where the root is contained. For other initial values,
a similar homotopic path could be found, but due
to the discontinuities created by the nature of the
original function, it will not be possible to obtain the

root in a continuous path. Thus, the new practical
continuous interval of convergence that contains the
root is from b =0.0806047752495982 to ∞. Further
results are shown in the use of SphereSolver, which
include Newton Homotopy with in the code.

3.5 Use of the SphereSolver in the case
study

The SphereSolver presented in Section 2 was also used
with the case study, using several initial values for the
HCM. Three of them are shown in Table 3, with their
corresponding performance within the application.
The initial value of the first case in Table 3 was
obtained using the ideal gas equation of state, which
is common for this type of problem and, as previously
shown, is not useful in this case when Fixed Point
Homotopy or Affine Homotopy are used. Even when
more initial values were used (with SphereSolver),
they presented similar behavior.

As analyzed in Section 3.1, the highest continuous
interval where the classic Newton’s method converges
is from 0.0806047752495982 to 0.127396259816616,
i.e., the initial estimate must go from -26.41% to
16.31% of the solution. Using SphereSolver (which
applies Newton Homotopy), any value higher than
0.0806047752495982 can be used where a horizontal
asymptote exists due to the nature of the original
function and not the type of HCM, will go from the
initial value to the root of the equation at t = 1, i.e., the
interval of convergence is extended massively.

4 Additional engineering
problems solved with
SphereSolver

Three additional engineering models that include non-
linear system of equations were selected to be solved
by using SphereSolver.

Table 3. Performance of SphereSolver over the case study with three different initial values. Initial sphere radius:
0.1. Tolerance: 1× 10−6. Max. Iterations for each step: 2. Max. error for t = 1: 5× 10−7.

Case Initial value Time [s] Number of Spheres Norm

1 0.48926 39.93 393 3.42× 10−7

2 10 33.45 337 1.87× 10−10

3 20 35.46 360 4.91× 10−7
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Table 4. Value of parameters for the adiabatic equilibrium temperature model, taken from Fogler (2016).

Parameter Name Units Value

H0
A Heat of formation for A at 298 K cal/mol -40,000

H0
B Heat of formation for B at 298 K cal/mol -60,000

CPA Heat capacity of A at 298 K cal/mol K 50
CPB Heat capacity of B at 298 K cal/mol K 50

R Universal gas constant cal/mol K 1.987
Ke Equilibrium constant at 298 K — 100,000

Table 5. Tests of SphereSolver solving Eq. (23) by using different initial guess. Minimum slope in a return: 0.005.
Max. error for t = 1 : 5× 10−7.

Case Initial value Initial sphere radius Tolerance Max. Iterations Time (s) Spheres Norm
for each step

1 100 10 1× 10−3 2 140.84 517 7× 10−8

2 10000 1000 1× 10−6 5 29.55 113 4× 10−7

3 100000 10000 1× 10−3 5 26.18 125 8× 10−4

4 30 100 1× 10−3 5 22.09 93 4× 10−7

5 30 10 1× 10−3 5 22.6 94 1× 10−7

Selected models include the adiabatic equilibrium
temperature in a chemical reactor, the Benzene
production in a plant performance evaluation, and an
electronic circuit with two-tunnel exponential diodes.
Depending on the nature of the functions, different
aspects are highlighted for each simulation, i.e., severe
non-linearity, restricted convergence with traditional
methods, several sets of possible solutions, and so on.

4.1 Chemical reactor: Adiabatic equilibrium
temperature

The highest conversion that can be achieved in
reversible reactions is obtained at the equilibrium
temperature. Fogler (2016) presents an example for
an elementary solid-catalyzed liquid-phase reaction
A ↔ B, where the adiabatic equilibrium temperature
T is determined when pure A is fed to the reactor at a
temperature of 3000 K. The resulting Eq. (23), which
deduction is presented by Fogler (2016), should be
solved to find the adiabatic equilibrium temperature.
Supplied information is given in Table 4.

F(T ) =

Ke exp
[

(H0
B−H0

A)
R

(
1

T1
− 1

T

)]
1 + Ke exp

[
(H0

B−H0
A)

R

(
1

T1
− 1

T

)]
−

CPA (T −T0)

−(H0
B −H0

A)
= 0 (23)

A typical approach for solving the problem is by using
Newton’s method, in such case, the derivative of Eq.
(23), (Eq. (24)), should be considered.

dF
dt

=

Ke exp
[

(H0
B−H0

A)
R

(
1

T1
− 1

T

)]
(
1 + Ke exp

[
(H0

B−H0
A)

R

(
1

T1
− 1

T

)])2

(H0
B −H0

A)

RT 2

−
CPA

−(H0
B −H0

A)
(24)

Fig. 9 shows the behavior of the function
convergence. For the Newton’s method, it is achieved
if the initial trial is within the interval 400.569432
< T < 522.389085, which is -13% to +13.46% away
from the root at T = 460.399642820735. In Fig. 9,
the dotted vertical lines are part of the convergence
interval for Newton’s method

Alternatively, SphereSolver add-in was used to
solve the non-linear equation under different initial
guess. The convergence criteria were satisfied in each
occasion, and the performance of the method for five
different cases is reported in Table 5.

4.2 Plant performance evaluation: Benzene
production

The hydrodealkylation of toluene to benzene is an
important petrochemical process; an industrial process
for this transformation is shown in Fig. 10 (Henao,
2010).
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Fig. 9. Graph of the function given by Eq. (23).
Values wherein the dotted vertical lines are part
of the convergence interval for Newton’s method.

Fig. 10. Hydrodealkylation toluene plant for producing
benzene.

The global reaction uses toluene and hydrogen as
reactants to obtain bencene and methane as products
by the chemical reaction: C6 H5 CH3+H2 →C6
H6+CH4. The system of equations that represents the
process at T=620°C and P=3400 KPa is depicted in
Table 6. Table 7 presents the meanings of the variables
used in the model.

Resulting non-linear system includes 44 equations
and 58 unknowns. To fix the degrees of freedom,
the information in Table 8 is used. Upon setting
these values, the system of equations becomes a
performance evaluation. Henao (2010) reported one
solution of this problem. Using SphereSolver add-in,
three solutions were found (Table 9). The answer that
satisfies the equilibrium conditions will be the one that
represents the phenomena most accurately, but this
question is beyond the scope of the current research.

Taking into account that this system of equations
is multivariable, the representation of the homotopic

path in terms of the homotopic parameter t and the
unknown variables is not practical. As shown in the
Introduction section, the arc length p of the Homotopy
function could be used as a new parameter to represent
the path. In this manner, a graph of p vs. t describes
the hotomopic path accurately, and each intersection
with the horizontal line t = 1 represents a root of the
original function. A wide set of initial values were
tested, and at least one of the roots listed in Table 8 was
always found. In Fig. 11, different homotopic paths are
shown, where the same initial value, Xo, were used
for all unknown variables. Most of them, except for
Xo = 6, led to the three possible roots. For Xo = 6, only
one root was found showing that the initial value of the
homotopic path is still a relevant subject and must be
explored in future researches.

4.3 Electronic circuits: Circuit with two-
tunnel exponential diodes

Torres-Munoz et al. (2014), presents a circuit with
two tunnel diodes, one voltage source and a resistor
in series. Using the Kirchoff’s current law, with E=1,
R=20Ω, Ip = 100×10−3, Vp = 50×10−3, I0 = 1×10−9

and q/RT = 40, eqs. (25) - (27) are obtained.

f1 =
1

20
−

v1

20
+ Iv1 = 0 (25)

f2 = −
1

20
+

v1

20
+ 2(v1 − v2)e1−20v1+20v2

+ 1× 10−9e40v1−40v2 = 0 (26)

f3 = 2(v1 − v2)e1−20v1+20v2 + 1× 10−9e40v1−40v2

− 2v2e1−20v2 − 1× 10−9e40v2 = 0 (27)

Torres-Muñoz et al., (2014) reported 5 solutions to
this system of equations. Using SphereSolver with 0.5
as the initial value for all three variables, 9 solutions
were found (Table 10). Therefore, it is demonstrated
again that SphereSolver is a powerful tool for solving
different kind of engineering problems.

Conclusions

SphereSolver, an add-in for use in Microsoft Office
Excel© to solve systems of non-linear equations,
was developed and applied to several engineering
models. The Newton Homotopy Method was chosen
over Affine and Fixed Point Homotopy as the main
algorithm.
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Table 6. Equations for benzene production model. Index 1, 2, 3, 4 refers to toluene; hydrogen; benzene; and
methane, respectively.

Unit Type of equation Equations

Mixer M-1001 Material balances C1 = A1 + B1 + H1 + L1
C2 = A2 + B2 + H2 + L2
C3 = A3 + B3 + H3 + L3
C4 = A4 + B4 + H4 + L4

Furnace F-1001 Material balances D1 = C1
D2 = C2
D3 = C3
D4 = C4

Reactor R-100 Material balances E1 = D1 − r ·V
(Continuous E2 = D2 − r ·V

stirred- E3 = D3 + r ·V
tank E4 = D4 + r ·V

reactor Reaction kinetics r = kc1,Ec1/2
2,E

model) equations k = k0 exp(−Ea/RTE)
c1,E =

PE
RTE

( E1
E1+E2+E3+E4

)
c2,E =

PE
RTE

(
E2

E1+E2+E3+E4

)
Cooler C-1001 Material balances F1 = E1

F2 = E2
F3 = E3
F4 = E4

Vessel V-1001 Material balances G1 + J1 = F1
G2 + J2 = F2
G3 + J3 = F3
G4 + J4 = F4

Operation equations G1 = 0.0001 · F1
G2 = 0.99 · F2

G3 = 0.001 · F3
G4 = 0.95 · F4

Splitter S-1001 Material balances H1 + I1 = G1
H2 + I2 = G2
H3 + I3 = G3
H4 + I4 = G4

Operation equations H1 = α ·G1
H2 = α ·G2
H3 = α ·G3
H4 = α ·G4

Distillation Tower T-1001 Material balances K1 + L1 = J1
K2 + L2 = J2
K3 + L3 = J3
K4 + L4 = J4

Operation equations K1 = 0.0001J1
K2 = 0.9999 · J2
K2 = 0.999 · J3

K2 = 0.9999 · J4
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Fig. 11. Discretized homotopic path t vs. p for differential initial conditions, Xo, and different scales.

Table 7. Notation for the benzene production model.

Name Definition

Xi Molar flow of substance i in stream X, for i = 1, ..4
V Reactor volume

ci,X Molar concentration of substance i in stream X
TE Stream E temperature
PE Stream E pressure

r Reaction rate
k Reaction rate coefficient
α Molar flow ratio of stream H to stream G
R Universal gas constant: 8.314 kJ/kmol K

Table 8. Parameter values for the benzene production model.

Parameter Units Value

k0 kmol1/2/m3/2 h 2.268× 1014

Ea kJ/K kmol 2.18× 105

V m3 100
α - 0.7
TE K 893.15
PE kPa 3 400
A1,A3,A4 kmol/h 0
A2 kmol/h 130
B2,B3,B4 kmol/h 0
B1 kmol/h 100
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Table 9. List of solutions for the benzene production model.

Variable Units Solution 1 Solution 2 Solution 3

C1 kmol/h 225.4 15 524.9 532 750.5
C2 kmol/h 197.76 202.25 354.04
C3 kmol/h 0.17016 0.16678 0.05234
C4 kmol/h 198.48 194.53 61.05
D1 kmol/h 225.4 15 524.9 532 750.5
D2 kmol/h 197.76 202.25 354.04
D3 kmol/h 0.17016 0.16678 0.05234
D4 kmol/h 198.48 194.53 61.05
E1 kmol/h 125.4 15 427.0 532 719.8
E2 kmol/h 97.77 104.25 323.29
E3 kmol/h 100.15 98.16 30.80
E4 kmol/h 298.46 292.53 91.80
F1 kmol/h 125.4 15 427.0 532 719.8
F2 kmol/h 97.77 104.25 323.29
F3 kmol/h 100.15 98.16 30.80
F4 kmol/h 298.46 292.53 91.80
G1 kmol/h 0.013 1.543 53.272
G2 kmol/h 96.80 103.21 320.05
G3 kmol/h 0.1002 0.0982 0.0308
G4 kmol/h 283.54 277.90 87.21
H1 kmol/h 0.0088 1.0799 37.2904
H2 kmol/h 67.76 72.25 224.04
H3 kmol/h 0.0701 0.0687 0.0216
H4 kmol/h 198.478 194.530 61.045
I1 kmol/h 0.0038 0.4628 15.9816
I2 kmol/h 29.039 30.963 96.016
I3 kmol/h 0.0300 0.0294 0.0092
I4 kmol/h 85.062 83.370 26.162
J1 kmol/h 125.4 15 425.4 532 666.5
J2 kmol/h 0.978 1.043 3.233
J3 kmol/h 100.05 98.06 30.77
J4 kmol/h 14.923 14.626 4.590
K1 kmol/h 0.013 1.543 53.267
K2 kmol/h 0.978 1.042 3.233
K3 kmol/h 99.954 97.965 30.743
K4 kmol/h 14.922 14.625 4.589
L1 kmol/h 125.4 15 423.9 532 613.2
L2 kmol/h 0.000098 0.000104 0.000323
L3 kmol/h 0.100054 0.098063 0.030773
L4 kmol/h 0.001492 0.001463 0.000459

c1,E kmol/m3 0.092370 0.443639 0.457490
c2,E kmol/m3 0.071992 0.002998 0.000278

r kmol/m3h 0.999837 0.979947 0.307518
k kmol1/2/m3/2h 40.342 40.342 40.342

The proposed algorithm uses hyperspheres as a
tracking method for the homotopic path, which has
been proven to be a reliable method, following the path
without losing it. The other two main elements of the

algorithm are Euler’s tangent plane as a predictor and
Newton’s method as the locally convergent method
for the corrector step at each discretized point of the
homotopic path.
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Table 10. List of solutions for the circuit with two-tunnel exponential diodes.

Solution # Iv1 v1 v2 Norm

1 -0.0282803 0.43439597 0.4285488 4.70× 10−7

2 -0.0421756 0.15648531 0.14713161 2.99× 10−7

3 -0.0488741 0.02252113 0.01126054 1.98× 10−7

4 -0.0421755 0.15648584 0.00935372 1.99× 10−7

5 -0.0336138 0.32772635 0.16386296 2.18× 10−7

6 -0.0189197 0.62160289 0.41818366 8.27× 10−7

7 -0.0099145 0.80171369 0.40085755 5.44× 10−7

8 -0.0189198 0.62159913 0.20341635 6.88× 10−7

9 -0.0282804 0.4343955 0.00584709 4.31× 10−7

Based on the obtained results, SphereSolver is
shown to be a powerful tool for developing simulations
in Microsoft Excel office, finding the solutions of
the system of non-linear equations that represents the
corresponding model. By comparison on the use of
SphereSolver for solving the case study (section 3)
and additional engineering problems (section 4) it is
concluded that SphereSolver improves the numerical
solution by increasing the interval range of the
possible initial values that lead to the solution of the
problems and/or increasing the amount of found roots.

SphereSolver uses Microsoft Excel Office ©, thus
it offers a user-friendly spreadsheet environment,
where models represented by algebraic equations
(including transcendental functions) are introduced
easily, presenting the information and results in an
organized and personalized set up.
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Jiménez-Islas, H., Calderon-Ramı́rez, M., Molina-
Herrera, F., Martı́nez-Gonzalez, G., Navarrete-
Bolanos, J. and Castrejon-González, E. (2014).
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