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MODELADO Y OPTIMIZACIÓN DE UN CICLO OTTO UTILIZANDO LA MEZCLA
ETANOL-GASOLINA
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Abstract
The use of bio-fuels, like bio-ethanol mixed with gasoline, is growing interest in the automotive industry, to reduce the fossil
fuels dependence. However, the air/fuel ratio for any blend is not found in the literature. It is found only for specific values such
as: E10, E50 and E85 for example. For this reason, in the present work a mathematical model is presented to determine the
stoichiometric air/fuel ratio of the ethanol-gasoline blend in the range between 0% to 100% of ethanol molar percentage in the
blend. The model is based on combustion chemical analysis for any composition ethanol-gasoline. The optimum compression
ratio for maximum network is also obtained, considering isentropic processes during compression and expansion. The analysis of
the Otto cycle with the air/fuel model and optimum compression ratio is developed. Results show that the stoichiometric air/fuel
ratio of the blend ethanol-gasoline is not linear. The maximum difference between air/fuel ratios predicted and experimentally
reported is 7% in the whole range of the blend. The analysis of the Otto cycle, using the equation derived shows that the power
and the torque decrease when the ethanol mole fraction grows. The equations obtained in this work can be used to predict the
performance of internal combustion engines using the ethanol-gasoline blend in the continuous range of ethanol molar percentage
between 0% and 100%.
Keywords: modeling, Otto cycle, ethanol-gasoline blend.

Resumen
La relación aire/combustible para cualquier mezcla no está reportada en la literatura, sólo para valores especı́ficos. En este trabajo,
se presenta un modelo matemático para determinar la relación estequiométrica aire/combustible de la mezcla etanol-gasolina en
el intervalo de 0% a 100% del porcentaje molar de etanol en la mezcla. El modelo se basa en el análisis quı́mico de la combustión
para cualquier composición etanol-gasolina. También se obtiene la relación de compresión óptima para el trabajo neto máximo,
considerando procesos isentrópicos durante la compresión y la expansión. Se realiza el análisis del ciclo Otto con el modelo
aire/combustible y la relación de compresión óptima. Los resultados muestran que la relación estequiométrica aire/combustible
de la mezcla etanol-gasolina no es lineal. La diferencia máxima reportada entre las relaciones aire/combustible que se predicen
y experimentales es de 7% en todo el intervalo de la mezcla. El análisis del ciclo Otto, utilizando la ecuación derivada muestra
que la potencia y el torque decrecen cuando la fracción mol de etanol aumenta. Este trabajo se puede utilizar para predecir el
rendimiento de los motores de combustión interna utilizando la mezcla etanol-gasolina en el intervalo continuo entre 0% y 100%.
Palabras clave: modelado, ciclo Otto, mezcla etanol-gasolina.

1 Introduction

Deployment of fossil fuels has increased the interest
in using new alternatives energy sources. Otto and
Diesel engine models with cyclic variability were

performed by Rocha-Martı́nez et al. (2002), while the
desires properties for a rocket fuel were studied by
Miranda (2003). The synthesis and characterization
of perovskites for fuel cells as an alternative energy
source was analyzed by Chávez-Guerrero et al.
(2003), while Carbon nanotubes produced from
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hexane and ethanol has been used by Mendoza et al.
(2006). The use of bio-fuels, like biodiesel studied
by Gonca and Dobrucali (2016) o bio-methanol and
bio-ethanol mixed with gasoline, is getting growing
interest in the automotive industry, to reduce the
fossil fuels dependence Murali et al. (2012). The
use of ethanol blend gasoline is demonstrated also
by Yücesu et al. (2006), who give results of the
ethanol use to reduce the gasoline consumption, the
emissions during the cold start up of a flex fuel
engine, the experimental determination of ethanol
physical properties, and the heat flux characteristics
of spray wall impingement with ethanol, respectively.
The economy and emissions of light vehicles, and the
dynamic analysis of the supply chain feasibility for
the ethanol-gasoline mixture in Mexico, are shown in
Hernández et al. (2014). The use of this fuels blendin
motorcycles was reported by Yao et al. (2013), where
the authors show the good results obtained.

The air/fuel ratio is of significant importance
for the analysis and measurement of combustion,
as shown by Clements and Smy (1976) for the
measurement of the ionization density. Someone
papers have been found on this issue. Polymeropoulos
and Sernas (1977) determined the droplet size and
the fuel-air ratio for a spray, Deadmore et al. (1979)
studied the effect of fuel-to-air ratio on burner rig hot
corrosion, Desoky and Rabie (1983) showed the fuel
economy benefits of using alcohols gasoline blends
when experimental investigations were carried out
to judge the performance of small spark ignition
engines running on alcohols, gasoline and alcohol-
gasoline blends. Bardaie and Janius (1984) during
their experimental investigation found the power loss
of 3-4% when using ethanol in SI engine with a
modified carburetor. Barwan (1985) studied blended
fuel ranging from E10 to E70 and concluded that
the highest antiknock capability was obtained with
E50. Palmer (1986) in his experimental investigation
reported the engine power improved by 5% when
10% in gasoline was used as a fuel additive. Hamdam
and Jubran (1986) during their investigations using
5% ethanol in gasoline under partial load found the
thermal efficiency improved by 4-12%. Ohsuga and
Ohyama (1986) studied the oxygen-biased wide range
air-fuel ratio sensor for rich and lean air-fuel ratios.
Additionally, according to Rigatos et al. (2014) the
control of the air/fuel ratio is very important in
the operation of spark-ignition engines.To study the
performance of internal combustion engines using this
mixture, the air/fuel ratio is required. This ratio has
been determined in different ways for the ethanol-

gasoline blend; one of them is taking into account
the volume percentage considering that for gasoline
is 14.6 and for ethanol 9.0, according to Pulkrabek
(2003). On the other hand, as it can be observed in
Chen et al. (2012), the vaporization enthalpy respect
to the fraction of ethanol in gasoline is linear when it
is based on the volume. On the contrary, its tendency
is quadratic if it is based on the molar mass. Further,
the air/fuel ratio for the ethanol-gasoline blend has
been compiled in Kasseris (2011), based on different
bibliographic data. There, the ratio is presented for
the mixtures E0, E10, E20, E50, E85 and E100
(the number represents the percentage of ethanol
in gasoline). Further, the air/fuel ratio, AF, can be
obtained by different ways as discussed briefly in the
following:

1. By means of chemical analysis, considering:
flame velocity, problem geometry, mass
flow rate, time, species concentration, etc.
This analysis is complex, due to partial
differential equations are coupled and they
require numerical solution. This process may
increase the cost of the research, mainly for
the computing time that can be excessive.
This makes difficult the determination of the
air/fuel ratio in the entire range of ethanol
mole fractions. This method is useful to find
experimentally the air/fuel ratio.

2. Experimentally, by two different ways: a) using
the Brettschneider’s equation Brettschneider
(1979, 1997), Schifter et al. (2011), Zhang et
al. (2013) that shows how the fuel is burned
by means of the combustion exhaust gases
analysis. Results obtained from this equation,
using experimental data of exhaust gases, show
if the combustion is clean or not. Experiments
need to be performed as many times as the blend
composition of ethanol-gasoline is changed. b)
using the following equation, Cengel and Boles
(2012):

AF =
ma

m f
(1)

where: ma: air mass, measured using a
flowmeter.

m f : fuel mass, calculated from the heat supplied
during combustion, Qs.

The heat supplied, Qs, is calculated as:

Qs = m f LHV (2)

where:
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LHV: lower heating value, which should be
obtained for each ethanol-gasoline blend.

In the same way, the experiments should be
repeated for each one of the blend compositions
tested.

3. Analytically, performing a chemical analysis
of combustion for each ethanol-gasoline
composition. One way to obtain the air/fuel
ratio of this mixture is shown in Cordeiro et
al. (2012), where the authors give and equation
for this ratio proposed by Heywood Heywood
(1988). However, in order to use this equation
the ratios H/C and O/C should be known,
making the analysis complex.

The chemical analysis of combustion can be
developed supposing that combustion is instantaneous
and 100% efficient (ideal combustion), i.e., the
reactants burn totally generating a clean combustion.
Further, products are considered to be: water vapor,
carbon dioxide and gaseous nitrogen. Taking into
account these assumptions, a chemical equation can
be written including in the reactants the percentages
of ethanol and gasoline, reacting with atmospheric air.
This analysis can be performed for the whole range
of the ethanol-gasoline blend, from 0% to 100% of
ethanol (E0 to E100, respectively).

This method simplifies considerably the
determination of the air/fuel ratio, because using a
single equation it is possible obtaining the ratio for the
continuous range between E0 and E100. Additionally,
this equation can be modified for more specific cases
in a simple manner, for example if excess of air or a
third fuel is present, etc.

This last method is used in the present work to
derive a general equation for the air/fuel ratio of the
ethanol-gasoline blend for any composition between
0% and 100% of ethanol. This equation is a function
only of the mole fraction of ethanol in the blend.

This work is organized in four sections. The model
development section presents: i) the chemical analysis
for the whole range of the ethanol-gasoline blend,
ii) the analysis developed to the ideal Otto cycle for
the ethanol-gasoline blend, iii) a compression ratio
equation that maximizes the net work of the cycle,
for each ethanol fraction in the blend. Finally, iv) the
results and discussion section presents the principal
findings of this research.

2 Model development

2.1 Air/fuel ratio equation

The procedure used in this section, is described in a
detailed way in Gómez (2014), it is used to obtain
the equation for the air/fuel ratio as a function of the
ethanol mole fraction.

As previously commented, combustion products
only include CO2, H2O and N2, the excess air
for tempering is not considered. Other products
like CO and nitrogen oxides are neglected, because
an ideal analysis is performed. Also, nitrogen and
other gases of atmospheric air are considered to be
chemically neutral, as in Pulkrabek (2003). However,
nitrogen affects the temperature and pressure during
the combustion process. The maximum heat generated
by combustion depend on the LHV and on the ethanol
concentration in the blend, it can be estimated from
equations 11 and 12 presented later. The higher
temperature reached correspond to E0 (only gasoline)
in the entire range, the higher temperature generated
by the stoichiometric reaction correspond to E0 or
lower for any blend. The mechanical elements of
combustion chamber are designed for this operation
conditions, the used of ethanol/gasoline blends do
not need any modification in design or in mechanical
elements to be implemented.

The ideal combustion equation for the blend
ethanol-gasoline can be written as follows,
considering that x is the mole fraction of ethanol and
1− x the mole fraction of gasoline:

xC2H5OH + (1− x)C8H15 + a(O2 + 3.76N2)→
bCO2 + cH2O + dN2 (3)

Taking into account the law of mass conservation,
algebraic equations can be written for each chemical
element, obtaining the following results for the
coefficients of Eq. (3):

a =
47− 35x

4
(4)

b = 8− 6x (5)

c =
15− 9x

2
(6)

d = 3.76
(

47− 35x
4

)
(7)

The number of moles of each chemical element in
the reactants and combustion products can be seen in
Table 1.

www.rmiq.org 1067
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Table 1. Number of atoms in the reactants and
combustion products.

Number of atoms Element

8− 6x C
15− 9x H
47−35x

2 O
3.76

(
47−35x

2

)
N

Table 2. Molecular weights of the reactants and
combustion products.

Compound Molecular weight (g/mole)

C2 H5 OH (Ethanol) 46
C8 H15 (Gasoline) 111
O2 32
N2 28
CO2 46
H2 O 18

Taking into account the molecular weights of
reactants and combustion products (Table 2), the mass
of each individual compound can be obtained using the
number of moles of each compound calculated from
Eqs. (4) to (7).

Further, the total mass of fuel is:

m f = me + mg (8)

where:
me: mass of ethanol
mg: mass of gasoline
In this way, the following equation is obtained for

the air/fuel ratio of the ethanol-gasoline blend, using
the definition given in Eq. (1):

AF = 34.32
(

47− 35x
111− 65x

)
(9)

Eq. (9) is only a function of the mole fraction of
ethanol in the blend. It expresses the ratio between the
mass of atmospheric air and blend required to obtain
an ideal combustion process.

2.2 Analysis of the Otto-cycle

The analysis developed in this section applies to
the ideal air-standard conditions, Po= 101.325 kPa,
To=25°C of Otto cycle, represented in Fig. 1. The
procedure followed is similar to that described by
Pulkrabek (2003). The engine develops an isentropic
compression from state 1 to 2, heat is supplied at

Fig. 1. Otto Cycle on a a) pressure-specific volume
diagram, b) temperature-specific entropy diagram.

constant volume from state 2 to 3, the useful stroke is
developed during the isentropic expansion from state
3 to 4 and, finally, heat is released to the cold reservoir
following a constant volume process from state 4 to 1,
closing the cycle. All the processes are developed in
a closed system by ideal gases with constant specific
heats.

Heat supplied during process 2-3 can be calculated
as:

Qin = m f LHV f ηc = (ma + m f )Cv(T3 −T2) (10)

LHV f can be obtained from:

LHV f = ωLHVe + (1−ω)LHVg (11)

The ethanol mass fraction in the blend, ω, is obtained
from Eq. (12) considering the molecular weight, M, of
ethanol and gasoline:

ω =
xMe

xMe + (1− x)Mg
=

me

mt
(12)

Net work of the cycle is the difference between
the work produced during expansion and the one
consumed during compression of the air-fuel mixture:

Wn = W34 −W12 (13)

where:

W34 = (ma + m f )Cv(T3 −T4) (14)
W12 = (ma + m f )Cv(T2 −T1) (15)

Thermodynamic efficiency of the Otto cycle is defined
as:

η =
Wn

Qin
(16)
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Power produced by the engine, as a function of the
regime is (Wn in kJ):

Nt =
Wn · n ·Ncyl

89.52
(in HP) (17)

Torque can be calculated from:

τ =
60Wn

2πn
(18)

2.3 Optimum compression ratio for
maximum net work

With the aim of searching for an optimal fraction
of ethanol in the blend, in this section an equation
is obtained that allows calculating the compression
ratio that maximizes the net work of the cycle, for
each ethanol fraction in the blend. In this way, the
blends having optimum compression ratios achievable
in practice can be identified.

The specific net work of the Otto cycles is:

wn =
Wn

(ma + m f )
(19)

Considering the isentropic processes 1-2 and 3-4:

T2

T1
=

(
V1

V2

)γ−1

=
T3

T4
= rγ−1 (20)

Combining Eqs. (13) to (15), (19) and (20), the
following equation is obtained for the specific net
work of the cycle:

wn = CvT3

(
1−

1
rγ−1

)
−CvT1

(
rγ−1 − 1

)
(21)

Deriving Eq. (21) respect to the compression ratio, r,
and making the result equal to zero:

∂wn

∂r
= −CvT3(1− γ)r−γ −CvT1(γ− 1)rγ−2 = 0 (22)

then:
T3

T1
= r2(γ−1) (23)

From Eq. (23), the optimum compression ratio that
maximizes the net work of the cycle is obtained:

ropt =

(
T3

T1

) 1
2(γ−1)

(24)

Assuming that combustion efficiency is 100%, the
maximum temperature of the cycle can be obtained
from Eqs. (10) and (20):

T3 =
m f LHV f )

(ma + m f )Cv
+ T1rγ−1 (25)

Substituting Eq. (25) for T3 in Eq. (24), the optimum
compression ratio is obtained:

ropt =

(
m f LHV f

(ma + m f )CvT1

) 1
γ−1

=

(
LHV f

(AF + 1)CvT1

) 1
γ−1

(26)
In Eq. (26), LHV f , AF, Cv and γ are a function of x.
In this model, Cp and Cv are calculated as follows:

Cp =
AF

AF + 1
Cpa +

1
AF + 1

Cp f (27)

Cv =
AF

AF + 1
Cva +

1
AF + 1

Cv f (28)

Finally, the efficiency of the cycle corresponding to the
optimized compression ratio is:

ηopt = 1−
1

rγ−1
opt

= 1−
(AF + 1)CvT1

LHV f
(29)

3 Results and discussion

3.1 Air/fuel ratio

Variation of the air/fuel ratio, as a function of the
ethanol mole fraction in the mixture, is calculated
using Eq. (9) and represented in Fig. 2. As it is
observed, this ratio is not a linear function of the
ethanol mole fraction. A similar tendency was shown
by Yao et al. (2013) for the vaporization enthalpy of
the blend. Results found in this paper can be used to
simulate the engine performance in the whole range of
concentrations. As commented before, air/fuel ratios
can be found in the open literature for discrete values
of ethanol mole fraction.

Results found using the model developed in this
work has been compared with experimental and
theoretical values found in the open literature. Fig. 2
shows the comparison with theoretical results obtained
by Kasseris (2011), Orbital (2002) and Mantilla
(2010). It is shown that, for ethanol mole fractions
lower than 20% and higher than 95%, results are
very similar to the ones obtained in the present work.
However, the results in the intermediate range defer
more significantly. As observed in Fig. 2, results
published in the open literature can be fitted using
a linear function, similar to a linear interpolation
between air/fuel ratios of pure components.
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Fig. 2. Comparison between air/fuel ratios obtained in
the present work and theoretical data found in the open
literature, as a function of the ethanol mole fraction in
the blend.
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Fig. 3 Relative error between air/fuel ratios calculated
in the present work and theoretical data found in the
open literature, as a function of the ethanol mole
fraction in the blend.

Relative errors between results predicted in this
work and theoretical values found in the open
literature can be observed in Fig. 3. As commented
before, major differences exist in the range between
20% and 95% of ethanol in the blend. For lower and
higher values, respectively, the differences are as small
as 0.7% in the blend E5.

A comparison of Eq. 9 with experimental results
reported in the literature was done to verify the
predictive capacity. Results calculated by the present
model and experimental values found in the open
literature Costa and Sodré (2010), Szybist (2010) and
Camarillo (2011) can be observed in Fig. 4. The last
work Camarillo (2011) gives results of the air/fuel
ratio for blends of ethanol-gasoline and hydrated
ethanol-gasoline.
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Fig. 5 Relative error between air/fuel ratios calculated
in the present work and experimental data found in
the open literature, as a function of the ethanol mole
fraction in the blend.

Similarly, to theoretical studies, experimental
air/fuel ratios found in the open literature are very
scarce and do not cover the whole range of ethanol-
gasoline blends. As observed, results predicted
are similar to those of Costa and Sodré (2010)
and Szybist (2010), but highly differ from values
given by Camarillo (2011). This difference can be
because of sensors errors in the experimentation or
probable not experimental stoichiometric conditions.
The difference between experimental data and values
calculated using Eq. (9) is shown in Fig. 5. Minimum
difference in the whole range of ethanol concentration
is about 0.7% respect to results of Costa and Sodré
(2010) and Szybist (2010).
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Table 3. Characteristics of the 4T Otto cycle analyzed.

Parameter Value

Displacement volume 2400 cm3

Number of cylinders 4
Bore 72 mm
Stroke 74 mm
Compression ratio 8.6:1

Table 4. Intake conditions in the 4T Otto cycle
analyzed.

Parameter Value

Intake temperature, T1 25 °C
Intake pressure, P1 101.325 kPa
Volume percentage of
ethanol in the blend

0% to 100%

Rotational speed 1500, 3000,
4500, 6000 rpm

Table 5 Thermodynamic properties, taken from
Clements and Smy (1976).

Parameter Air Bio-ethanol Gasoline

Specific heat, 1.005 2.3 2.22
Cp, kJ/kg K
Specific heat, 0.718 2.3 2.22
Cv, kJ/kg K
Lower heating value, - 26,900 44,300
kJ/kg

The results here shown indicate that Eq. (9) could
be utilized to calculate the air/fuel ratio for the ethanol-
gasoline blends with satisfactory results in the interval
of 0% to 100% of ethanol mole fraction.

3.2 Analysis of Otto-cycle

Previous studies found in the open literature about
Otto cycles using mixtures of fuels can be found in
Pulkrabek (2003), Kasseris (2011) and Szybist (2010).
In the present work, an analysis of a 4 times Otto cycle
using different concentrations of the ethanol-gasoline
blend is performed. The characteristics of the engine
used are shown in Table 3, similar to Pulkrabek (2003).
Intake conditions considered are shown in Table 4,
corresponding to temperature and pressure at sea level.
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Fig. 7. Torque of the engine as a function of the ethanol
mole fraction in the blend.

Thermodynamic properties are shown in Table 5.
The model previously described was implemented
in a computer code developed by the authors using
Engineering Equation Solver software, EEST M Klein
(2015).

Fig. 6 shows the indicated power of the engine,
as a function of the ethanol mole fraction, for
different rotational speeds of the engine. It can be
observed that the indicated power decreases slightly
when the ethanol mole fraction augments and a more
pronounced reduction takes place for compositions
of ethanol higher than 80%. Moreover, the effect of
concentration increases as the engine speed rises.

In a similar way to the power, the torque
decreases slightly when the ethanol mole fraction
augments (Fig. 7). In this case, the effect of
concentration increases as the engine speed decreases.
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3.3. Optimum compression ratio 384	

The optimum compression ratio of the cycle, corresponding to the maximum specific net 385	
work, at T3=1340 K, is shown in Fig. 8 as a function of the blend composition. It can be 386	
observed that the optimum compression ratio rises as the ethanol mole fraction in the blend 387	
increases. As real compression ratios used in gasoline engines are lower than 15, all of the 388	
cycles with ethanol-gasoline blend can operate at their optimum compression ratio. 389	
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Fig. 9. Thermodynamic efficiency of the Otto cycle as
a function of ethanol mole fraction in the blend.

The torque corresponding to pure gasoline E0
is slightly higher than that of pure ethanol E100.
Maximum difference reaches 16.3% at 1500 rpm.

3.3 Optimum compression ratio

The optimum compression ratio of the cycle,
corresponding to the maximum specific net work, at
T3=1340 K, is shown in Fig. 8 as a function of
the blend composition. It can be observed that the
optimum compression ratio rises as the ethanol mole
fraction in the blend increases. As real compression
ratios used in gasoline engines are lower than 15, all
of the cycles with ethanol-gasoline blend can operate
at their optimum compression ratio.

According to Fig. 9, the efficiency of the cycle
decreases when the ethanol mole fraction grows.
In this figure, the cycle operates at the optimum

compression ratio of each blend represented in Fig.
8. As it is observed, a more pronounced decrease
of the efficiency occurs for ethanol mole fractions
higher than 80% approximately. For this reason, it
is recommended to use ethanol concentrations lower
than this value.

Conclusions

In this paper, an equation for the stoichiometric air/fuel
ratio of the ethanol-gasoline blend is derived and the
performance of a 4 times Otto cycle using this mixture
is evaluated. The following conclusions have been
derived:

• The equation derived for the air/fuel ratio
of the ethanol-gasoline mixture can be used
straightaway and without computational cost. It
depends only on the ethanol mole fraction in
the blend and is valid for the whole range of
ethanol concentrations between 0% and 100%.
The equation obtained offers exact results for
the stoichiometric air/fuel ratio of the blend. A
comparison with experimental data reported in
literature shows that results are very similar for
low and high ethanol concentrations.

• Optimization of the compression ratio to
maximize the specific net work of the cycle, at
T3 = 1340 K, provides ratios achievable in real
gasoline engines.

• The ethanol-gasoline blend offers suitable
results of power and torque. They reduce as
maximum 6.4 and 6.44% (8.56 and 8.59%
with E80) respectively, respect to pure gasoline,
when the blend E70 is used and the rotational
speed of the engine is 6000 rpm. The lower
heating value of ethanol (40% lower), and the
fact that the fuel is oxygenated, are the reasons
of the performance decrease respect to pure
gasoline.

• The efficiency of the cycle operating at the
optimum compression ratio is evaluated. A
more pronounced decrease in the efficiency is
obtained for blends with ethanol mole fraction
higher than 80% approximately. The use of
ethanol decreases the efficiency because, as
commented before, fuel is oxygenated and it has
a lower heating value.
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This work can be improved considering a better
kinetic scheme and secondary products, resulting from
an inefficient combustion.

Nomenclature

AF air/fuel ratio
Cp specific heat at constant pressure,

kJ/kg K
Cv specific heat at constant volume, kJ/kg

K
LHV lower heating value, kJ/kg
m mass, kg
M molecular weight, g/mole
n rotational speed, rpm
Nt theoretical power, W
Ncyl cylinder number
Q heat supplied, J
r compression ratio
R ideal gas constant, kJ/kg K
T temperature, K
w specific work, J/kg
W work, J
x mole fraction of ethanol in the flexible

fuel
Greek symbols
γ ratio between Cp and Cv
η efficiency
τ torque, N m
ω mass fraction of ethanol in the flexible

fuel
Subscripts:
1− 4 thermodynamic states of the cycle
a air
c combustion
e ethanol
f fuel
g gasoline
n net
opt optimum
t total
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