Decentralized robust tube-based model predictive control: application to a four-tank system

Control predictivo robusto descentralizado basado en tubos: aplicación a un sistema de cuatro tanques

F.D.J. Sorcia-Vázquez¹, C.D. Garcia-Beltran², G. Valencia-Palomo³, J.A. Brizuela-Mendoza¹, J.Y. Rumbo-Morales¹*

¹Universidad de Guadalajara. Centro Universitario de los Valles. Carretera Guadalajara-Ameca Km.45.5 C.P. 46600, Ameca, Jalisco, México.
²Tecnológico Nacional de México, TecNM/CENIDET. Int. Internado Palmia S/N, Col. Palmira, Cuernavaca C.P. 62490, Mexico.
³Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Sonora, Mexico.

Received: August 6, 2019; Accepted: December 17, 2019

Abstract
This paper presents a decentralized model predictive controller for nonlinear systems that considers interaction between control inputs. The controller is based on a centralized robust tube-based nonlinear model predictive controller. The main contribution is a procedure to split the process model into s subsystems in order to construct s robust tube-based controllers ensuring a bounded linearization error. In order to show the applicability and effectiveness of the development, the proposed controller is tested on a coupled-tank system and the results are compared with a centralized nonlinear model predictive controller and a cascade PI controllers scheme.

Keywords: Model predicted control, decentralized control, nonlinear control, robust control.

1 Introduction

Model Predictive Control (MPC) was introduced as Model Predictive Heuristic Control (Richalet et al., 1978). With great success from its beginnings in industrial applications, Dynamic Matrix Control (DMC) (Cutler & Ramaker, 1979), Generalized Predictive Control (GPC) (Clark et al., 1987; Clark et al., 1987) and Predictive Functional Control (PFC) (Richalet, 1993) were the first linear developments. The space state formulation was proposed later opening the possibility to deal with open-loop stable and unstable systems (Marquis & Broustails, 1988; Lee et al., 1992; Lee et al., 1994; Morari M. et al., 1994). This MPC representation facilitated the stability analysis (Kwon & Byun, 1989; Rawlings & Musle, 1993; Mayne D. et al., 1993), robustness against parameter uncertainty, noise and bounded disturbances (Bemporad & Morari, 1999), and now, it can be found in the literature MPC developments for specific applications (e.g. a gyroscopic inverted pendulum system (Chu & Chen, 2017), a reverse osmosis unit (Rivas-Perez et al., 2016), a PSA process (Rumbo-Morales et al., 2018)). Nonlinear formulations were also developed (Patwardhan et al., 1990), rendering a nonlinear and possibly non-convex optimization problem, increasing the complexity of the solution (Morari & Lee, 1993).
Robust MPC formulation is the tube-based model predictive control (tube-based MPC) is another variation of model predictive control, and was applied to linear systems (Langson et al., 2004). This scheme generates tubes that are optimized within the state space. It is guaranteed that the control law maintains the desired controlled variables in the tube, despite model parameter uncertainties. Modifications to this scheme considered bounded disturbances (Mayne et al., 2005) and it was extended to nonlinear systems under additive disturbances (Mayne et al., 2011).

Gonzalez et al. (2011) proposed a controller for time-varying systems with additive uncertainty. It is stated that the approach improves the scheme presented by Langson et al. (2004), due to a larger generation of the solution feasibility region. As a consequence, a tube-based MPC scheme applied to mobile robots modelled as time-varying systems was presented by Gonzalez et al. (2011).

Cannon et al. (2009) developed a stochastic tube-based MPC for linear systems with additive and multiplicative uncertainty. Afterwards, a tube-based MPC for nonlinear systems was formulated. This scheme proposes an online system linearization in order to construct tubes along the prediction trajectories guaranteeing robustness against linearization errors (Cannon et al., 2011).

The development of a tube-based MPC scheme for systems with additive uncertainties was presented in Limon et al. (2010). These uncertainties are confined to a bounded polyhedral set, corroborating its effectiveness through a set of experimental tests in a four-tank system. In the context of distributed control, MPC has been developed in distributed form called Distributed MPC (DMPC), based on the partition of the system model into several subsystems. From its conception, DMPC was formulated considering only state interaction between subsystems and no interactions between inputs and outputs (Jia & Krogh, 2001; Camponogara et al., 2002). Later works addressed the dynamical relationship between inputs (Venkat et al., 2008) and the entire interaction between the state, inputs and outputs of the system (Vaccarini et al., 2009; Sorcia-Vázquez et al., 2015), disturbance rejection (Zheng et al., 2017), or even considering the dynamics of the network as it is the data package dropouts (Zhang et al., 2019).

A novel tube-based distributed MPC was introduced by Trodden & Richards (2010) for multiple dynamically decoupled systems. Distributed control agents exchange plans to achieve a set of coupling constraints. This algorithm presents robustness against persistent disturbances and low susceptibility to communication and computation adverse effects. In this context, a controller was proposed for robotic vehicles in order to avoid obstacles (Trodden & Richards, 2014).

Riverso & Ferrari-Trecate (2012) introduced a tube-based distributed MPC for linear constrained systems. This formulation depends on the availability of a decentralized stabilizing regulator with a two-layer controller for each subsystem. The upper controller receives planned trajectories from neighboring subsystems and the lower controller generates planned trajectories using MPC. The scheme applies the tube notation presented by Langson et al. (2004) for achieving, with respect to the coupling, robust stability.

Unlike the papers presented before (Trodden & Richards, 2010; Trodden & Richards, 2014; Riverso & Ferrari-Trecate, 2012), the proposed controller called decentralized robust tube-based model predictive control (DNMPC) is based on the centralized MPC presented in (Cannon et al., 2011). The main advantage of the tube-based MPC is that the nonlinear system model is not used to construct the prediction model as, in some cases, it can be a model of great complexity; instead, the prediction model uses a linear model that is obtained through online linearization at each step time.

The decentralized robust tube-based model predictive control, with the characteristic of online linearizing each nonlinear local model, considers that the system has control input interactions, as it is the interaction type most frequently found in the process industry. Interacting control inputs are sent through a Local Area Network (LAN) to each local subcontroller, where the main assumption is that the controller only introduces one sample-time delay.

The paper has the follow structure: Section 2 presents the background on MPC; Section 3 addresses the development of the decentralized MPC scheme; Section 4 presents the numerical results obtained from applying the centralized MPC, the decentralized MPC and cascade PI scheme to a four-tank process; finally, conclusions are presented in Conclusions.
2 Preliminaries of Model Predictive Control

Model Predictive Control (MPC), as it was mentioned in the introduction, was introduced in the late seventies and has developed considerably since then. The term Model Predictive Control does not designate a specific control strategy but rather an ample range of control methods which make explicit use of a model of the process in order to obtain the control signal by minimizing an objective function or a cost function. These design methods lead to controllers which have practically the same structure and present adequate degree of freedom. The main ideas appearing, in greater or lesser degree, in the predictive control family are:

- explicit use of a model to predict the process output at future time instance (horizon);
- calculation of a control sequence minimizing an objective or cost function; and
- receding strategy, so that at each instant the horizon is displaced towards the future, which involves the application of the first control signal of the sequence calculated at each step (Camacho & Bordons, 2007).

MPC presents a series of advantages over other methods, amongst which the following stand out:

- The predictive control is very intuitive, so it becomes particularly attractive to staff with only a limited knowledge of control.
- It can be used to control a great variety of processes; the multivariable case can easily be dealt with; it intrinsically has compensation for dead times.
- It introduces feed forward control in a natural way to compensate for measurable disturbances.
- The resulting controller is an easy-to-implement control law.
- Its extension to the treatment of constraints is conceptually simple, and these can be systematically included during the design process.
- It is very useful when future references (robotics or batch processes) are known.
- It is a totally open methodology based on certain basic principles which allows for future extensions (Camacho & Bordons, 2007, 2007).

The methodology of all the controllers belonging to the MPC family is characterized by the following strategy, represented in Fig. 1:

1. The future outputs for a determined horizon N, called the prediction horizon, are predicted at each instant t using the process model. These predicted outputs \(y(k + i | k) \) (for \(i = 1 \ldots H_P \)) depend on the known values up to instant \(k \) (past inputs and outputs) and on the future control
signals \(u(k + ik)\) (for \(i = 0 \ldots H_C\)), which are those to be sent to the system and calculated.

2. The set of future control signals is calculated by optimizing a determined criterion to keep the process as close as possible to the reference trajectory \(r(k+i)\) (which can be the setpoint itself or a close approximation of it). This criterion usually takes the form of a quadratic function of the errors between the predicted output signal and the predicted reference trajectory. The control effort is included in the objective function in most cases.

3. The control signal \(u(k|k)\) is sent to the process whilst the next control signals calculated are rejected, because at the next sampling instant \(y(k+1)\) is already known and step 1 is repeated with this new value and all the sequences are brought up to date. Thus the \(u(k+1|k+1)\) is calculated (which in principle will be different from the \(u(k+1|k)\) because of the new information available) using the receding horizon concept (Camacho & Bordons, 2007).

In order to implement this strategy, the basic structure shown in Fig. 2 is used. A model is used to predict the future plant outputs, based on past and current values and on the proposed optimal future control actions. These actions are calculated by the optimizer taking into account the cost function (where the future tracking error is considered) as well as the constraints. The process model plays, in consequence, a decisive role in the controller. The chosen model must be able to capture the process dynamics to precisely predict the future outputs and be simple to implement and understand. As MPC is not a unique technique but rather a set of different methodologies, there are many types of models used in various formulations (Camacho & Bordons, 2007).

Regarding the robust MPC methodology based on tubes (Cannon et al., 2011), this methodology is based on the construction of ellipses along the prediction trajectory in order to generate bounds on the linearization errors of each linear model.

The construction of a tube for a given predicted trajectory is depicted in Fig. 3. From the referred figure, there is a given predicted trajectory whose initial point is \(x_0\). At the point \(x_0^k + z_k\), the uncertainty due to the linearization errors is contained within the set \(E(V_k, \beta^2_k)\), as well as the predicted system state \(x_k\). The next step is to find the set \(E(V_{k+1}, \beta^2_{k+1})\) for the next predicted state \(x_0^{k+1} + z_{k+1}\). This process is repeated until the end of the prediction horizon \(N\). The ellipse generated by the set \(E(V_N, \beta^2_N)\), as a consequence, is contained in the ellipse generated by the terminal set \(E(\hat{V}, 1)\). This terminal is calculated off-line (Buerger, 2013).

The robust MPC based on tubes presents some advantages respect the basic MPC controllers:

- It is a nonlinear control scheme, which considers the complete dynamic of the system.
- This control strategy generate linear models of the process along the predicted trajectory.
- It is a robust control technique, which generate bounds around the linearization errors.
- The process can be controlled at any operation point without having to make modifications.

![Fig. 2. Basic structure of Model Predictive Controller.](www.rmiq.org)
3.1 Nonlinear decentralized robust model predictive control

The development of the decentralized robust model predictive control (DNMPC) scheme is an extension of the centralized robust tube-based model predictive control (Cannon et al., 2011).

The present section addresses the nonlinear decentralized robust model predictive control (DNMPC). This control scheme is an extension of the centralized robust tube-based model predictive control (Cannon et al., 2011).

The development of the decentralized robust model predictive control considers the following nonlinear systems general definition conformed by \(s \) subsystems with interaction between control inputs

\[
x_{ik+1} = f_i(x_{ik}, u_{ik}, \ldots, u_{ik}),
\]

where \(x_{ik} \in \mathbb{R}^{n_i} \) and \(u_{ik} \in \mathbb{R}^{m_i} \) are the state and the control signal vectors for each subsystem, respectively. In (1), \(f_i \) is continuous and differentiable for all \((x_i, u_i) \) in an operating region, and \(f_i(0,0) = 0 \) with \(i = 1, \ldots, s \).

The design is based on a local optimal regulation problem for each subsystem with respect to a local quadratic cost function

\[
J_i = \sum_{k=0}^{\infty} \left(\|x_{ik}\|^2_{Q_i} + \|u_{ik}\|^2_{R_i} \right),
\]

subject to decentralized linear restrictions of the form

\[
F_i x_{ik} + G_i u_{ik} \leq h_i, \quad k = 0, 1, \ldots,
\]

where \(F_i \in \mathbb{R}^{n_i \times n_i} \), \(G_i \in \mathbb{R}^{n_i \times m_i} \). It is assumed that the state of each subsystem \(x_i \) is measured at each time step \(k \).

For each local subsystem, state and control input trajectories from time instant \(k \) to the horizon \(N \) are stipulated as well as the interacting control input predictions over the \(k - 1 \) time instant. These considerations are defined as \(\{x^0_{ik+l|ik}, u^0_{ik+l|ik}, l = 0, \ldots, N-1\} \) in the following expression, in concordance to the model (1)

\[
x^0_{ik+l|ik} = f \left(x^0_{ik+l|ik}, u^0_{ik+l|ik}, u^0_{ik+l|ik-1}, \ldots, u^0_{ik+l|ik-l} \right)
\]

with \(x^0_{ik+l|ik} = x_{ik+l|ik} \) representing the measured current state for each local subsystem and \(j = 1, \ldots, s \) for \(j \neq i \).

The subsystem state and control input are redefined as function of the predicted state and input, therefore

\[
x_{ik+l|ik} = x^0_{ik+l|ik} + x^\delta_{ik+l|ik},
\]

\[
u_{ik+l|ik} = u^0_{ik+l|ik} + u^\delta_{ik+l|ik},
\]

for \(l = 1, \ldots, N - 1 \) with \(x^\delta_{ik+l|ik} = 0 \). \(u^\delta_{ik+l|ik} \) is parametrized as the sum of a decentralized control law and a feedforward term \(v_i \),

\[
u^\delta_{ik+l|ik} = K_{ik+l|ik} x^\delta_{ik+l|ik} + v_{ik+l|ik}.
\]

In order to synthesize the DNMPC scheme a decentralized linear time-variant model is used, with the following general form

\[
x^\delta_{ik+l|ik} = F_{ik+l|ik} x^\delta_{ik+l|ik} + B_{ik+l|ik} v_{ik+l|ik} + w_{ik+l|ik},
\]
Let us point out that this model is derived from the linearization of the nonlinear model (1) around x_{ik+ljk}^0, u_{ik+ljk}:

$$
\begin{align*}
\Phi_{ik+ljk} &= A_{ik+ljk} + B_{ik+ljk} K_{ik+ljk} \\
A_{ik+ljk} &= \frac{\partial f_i}{\partial x_{ik+ljk}} |_{x_{ik+ljk}^0, u_{ik+ljk}^0}, \\
B_{ik+ljk} &= \frac{\partial f_i}{\partial u_{ik+ljk}} |_{x_{ik+ljk}^0, u_{ik+ljk}^0},
\end{align*}
$$

with w_{ik+ljk} representing the linearization error for each subsystem. Predictions for $l \geq N$ are determined from the linearization error boundary of each subsystem can be used to bound the predicted cost and to determine a robust feasible set for the local subsystem x_{ik+ljk}. It is assumed that \hat{K}_i is polytopic.

$$
\begin{align*}
x_{ik+l+1|k} &= \hat{\Phi}_i x_{ik+ljk} + \hat{\Phi}_i w_{ik+ljk}; \\
u_{ik+l|k} &= \hat{K}_i x_{ik+ljk}.
\end{align*}
$$

3.2 Construction of the decentralized tubes with fixed and variable cross sections

A fundamental part of the DNMPC scheme is to generate bounds around the linearization error component $e_{ik+l+1|k}$ and the state prediction x_{ik+ljk} of each subsystem. These boundaries are ellipses with fixed or variable cross sections

$$
\begin{align*}
e_{ik+ljk} &\in \mathcal{E}(V_{ik+ljk}, \beta^2_{ik+ljk}), l = 1, \ldots, N \quad (12a) \\
x_{ik+ljk} &\in \mathcal{E}({\hat{V}}_{i}, 1), l \geq N, \quad (12b)
\end{align*}
$$

where $\mathcal{E}(P_i, \beta^2_i)$, for $P_i > 0$, denotes the ellipsoidal set $\mathcal{E}(P_i, \beta^2_i) = \{ x_i : x_i^T P_i x_i \leq \beta^2_i \}$, for each subsystem. From (12b), $\mathcal{E}({\hat{V}}_{i}, 1)$ is a local subsystem restriction terminal set, which is invariant under (7) and (8), therefore, it is required

$$
\hat{\Phi}_i x_i + \hat{\Phi}_i w_i \in \mathcal{E}({\hat{V}}_{i}, 1), \forall \hat{w}_i \in Co \{ \hat{C}_j + \hat{D}_j \hat{K}_i \} , \quad (13)
\forall x_i \in \mathcal{E}({\hat{V}}_{i}, 1).
$$

It is also required, for $\mathcal{E}({\hat{V}}_{i}, 1)$, to be feasible with respect to (3) in order to satisfy the input/state restrictions over an infinite horizon. This is accomplished if

$$
(F_i + G_i \hat{K}_i) x_i \leq h_i, \forall x_i \in \mathcal{E}({\hat{V}}_{i}, 1). \quad (14)
$$

In order to obtain the matrices \hat{K}_i and \hat{V}_i for each subcontroller, a semidefinite program (SDP) is solved off-line to maximize the local terminal set $\mathcal{E}(\hat{V}_{i}, 1)$ subject to (13) and (14). Thus, being \hat{S}_i, \hat{Y}_i the problem solution:

$$
\begin{align*}
\max & \det(\hat{S}_i) \\
\text{s. t.} \quad \begin{bmatrix} \hat{S}_i & (\hat{A}_i + \hat{C}_j) \hat{S}_i + (B_i + \hat{D}_j) \hat{Y}_i \\ * & * \end{bmatrix} & \geq 0, j = i, \ldots, p \\
\begin{bmatrix} \hat{h}_i^2 & F_i \hat{S}_i + G_i \hat{Y}_i \\ * & * \end{bmatrix} & \geq 0, q = 1, \ldots, n_c
\end{align*}
$$

the volume of $\mathcal{E}(\hat{V}_i, 1)$ is maximized with $\hat{V}_i = \hat{S}_i^{-1}$ and $\hat{K}_i = \hat{Y}_i \hat{S}_i^{-1}$, where \hat{V}_i is the local ellipse generator set and \hat{K}_i is the local feedback gain.

With the previously mentioned in mind, two kind of tubes can be constructed from the gain \hat{K}_i and the set \hat{V}_i: (i) fixed cross section tubes and (ii) variable cross sections.
cross section tubes. Gains based on variable cross section tubes can be computed by solving a local SDP:

\[
\begin{align*}
\text{max} & \quad \gamma_i \\
\text{s.t.} & \quad S_i \geq \gamma_i I \\
& \quad j = 1, \ldots, p,
\end{align*}
\]

and, finally, by defining \(V_{ik+j} = S_i^{-1} \), \(K_{ik+j} = Y_i S_i^{-1} \), variable cross section tubes are obtained. Fixed cross section tubes can be computed by solving the SDP (15) with \(V_{ik+j} = \hat{V}_i \), \(K_{ik+j} = \hat{K}_i \).

3.3 Decentralized cost function

A local cost function for each DNMPC subcontroller is given by:

\[
J_i(x_{ik}, u_{ik}) = \sum_{k=0}^{N-1} \left(\|x_{ik+k}\|^2_{Q_i} + \|u_{ik+k}\|^2_{R_i} \right) + \|x_{ik+Nk}\|^2_{P_i},
\]

where \(P_i \) is a local weighting matrix optimized off-line by solving the SDP:

\[
\begin{align*}
\text{min} & \quad \text{tr}(P_i) \\
\text{s.t.} & \quad P_i - (\hat{C}_i + \hat{D}_i \hat{K}_i)^T P_i (\hat{C}_i + \hat{D}_i \hat{K}_i) \geq Q_i + \hat{K}_i R_i \hat{K}_i, \\
& \quad j = 1, \ldots, p,
\end{align*}
\]

Each cost function term from (17) is individually represented as \(J_{i,x,l}, J_{i,u,l}, \) for \(l = 0, \ldots, N-1 \), and \(J_{i,x,N} \):

\[
\begin{align*}
J_{i,x,l} &= \|x_{ik+l}\|^2_{Q_i} + \beta_{ik+l} \|V_{ik+l}^{-1/2}\|_{Q_i}, \quad (19a) \\
J_{i,u,l} &= \|u_{ik+l}\|^2_{R_i} + \beta_{ik+l} \|K_{ik+l}^{-1/2}\|_{R_i}, \quad (19b) \\
& \quad + \beta_{ik+l} \|K_{ik+l}^{-1/2}\|_{R_i}, \quad (19c) \\
J_{i,x,N} &= \|x_{ik+Nk}\|^2_{P_i} + \beta_{ik+Nk} \|\hat{V}_i^{-1/2}\|_{P_i}. \quad (19d)
\end{align*}
\]

Proposition 3.1 Consider a decentralized nonlinear system (1), a terminal set and a set of gains varying along the prediction trajectory, obtained by solving (15-16), that generate fixed or variable cross section tubes. Considering local cost functions of the form (17) a Decentralized Nonlinear Model Predictive Control (DNMPC) can be obtained if the following conical problem is feasible:

\[
\begin{align*}
(v_{ik}^*, \hat{v}_{ik}^*) &= \min \sum_{i=0}^{N-1} (J_{i,x,l} + J_{i,u,l} + J_{i,x,N}) \\
\text{s.t.} & \quad z_{ik+l} = \Phi_{ik+l} z_{ik+l} + B_{ik+l} v_{ik+l} \geq 0, \quad (20a) \\
& \quad \beta_{ik+l} \geq \lambda_{i,j} \beta_{ik+i}, \quad (20b) \\
& \quad \|C_i + D_i \hat{K}_i z_{ik+l} + D_i \hat{v}_{ik+l}\| \geq 0, \quad (20c) \\
& \quad J_{i,x,l} \geq \|u_{ik+l}\|^2_{Q_i} + \beta_{ik+l} \|V_{ik+l}^{-1/2}\|_{Q_i}, \quad (20d) \\
& \quad J_{i,u,l} \geq \|u_{ik+l}\|^2_{R_i} + \beta_{ik+l} \|K_{ik+l}^{-1/2}\|_{R_i}, \quad (20e) \\
& \quad z_{ik+l} = 0, \quad (20f) \\
& \quad \beta_{ik+l} = 0, \quad (20g) \\
& \quad 1 \geq \|x_{ik+Nk}\|^2_{P_i} + \beta_{ik+Nk} \|\hat{V}_i^{-1/2}\|_{P_i}, \quad (20i) \\
& \quad J_{i,x,N} \geq \|x_{ik+Nk}\|^2_{P_i} + \beta_{ik+Nk} \|\hat{V}_i^{-1/2}\|_{P_i} \geq 0, \quad (20j)
\end{align*}
\]

where \(\lambda_{i,j} = 1 \) if a variable cross section tube is used or \(\lambda_{i,j} = 0 \) if a variable cross section tube is used.

From Proposition 3.1, Algorithm 1 is established. This algorithm describes the steps to follow in order to apply the DNMPC scheme.

4 Four-tank system

The four-tank process is a multivariable plant of interconnected tanks, used to validate the proposed DNMPC scheme. The process has two direct current pumps and two three-way valves that distribute the flow generated by the pumps to the tanks. The process model representing its dynamics can be partitioned into two subsystems. Depending on the partition done on the process model, this process can exhibit input or state interaction (Johansson, 2000).

The Fig. 4 shows the quadruple-tank schematic diagram. The output flow of Tank 2 feeds Tank 1 and the output flow of the Tank 3 feeds Tank 4.
Algorithm 1 (DNMPC)
1: Offline: Compute \hat{V}_i, \hat{K}_i by solving (15) that define the terminal set and control law. Solve (18) to compute the terminal weight matrix P_l.
2: Online: set $k = 0$:
3: Find initial conditions u^{0}_{0}, x^{0}_{0} using the interacting input prediction $u^{0}_{j|0:k−1}$.
4: Initialize $\text{iter}=1$. Given u^{0}_{ik}, calculate x^{0}_{ik} that satisfies (1) with $x^{0}_{ik|0:k} = x_{ik}$.
5: Linearize the model (1) around u^{0}_{ik}, x^{0}_{ik} without considering the inputs to determine $A_{ik+l|k}, B_{ik+l|k}$ for $l = 0, \ldots, N−1$.
6: If a variable cross section tubes are used, calculate $V_{ik+l|k}$ and $K_{ik+l|k}$ by solving (16) for $l = N−1, \ldots, 0$ with $x^{0}_{ik|k} = 0$.
7: Else, assign $V_{ik+l|k} = \hat{V}_i$, $K_{ik+l|k} = \hat{K}_i$ for fixed cross section tubes.
8: Solve (20) to determine V^{0}_{ik}.
9: Determine x_{ik}, u_{ik} satisfying (1), (4), (5) with $v_{ik} = v^{*}_{ik}$ by means of: (a) the use of (4) and (5) to calculate $u_{ik+l|k}$ given $x_{ik+l|k}, V_{ik+l|k}, x^{0}_{ik+l|k}, u^{0}_{ik+l|k}$; (b) the use of (1) to calculate $x_{ik+l|k}$; for $i = 0, \ldots, N−1$ with $x^{0}_{ik|0:k} = 0$.
10: If $\text{iter} < \text{Maxiters}$ and $||v^{*}_{ik}|| \geq \text{tolerance}$, assign $x^{0}_{ik} = x_{ik}, u^{0}_{ik} = u_{ik}, \text{iter} = \text{iter}+1$ and return to step 5.
11: Else, assign
$$u^{0}_{ik+1} = \{u^{0}_{ik+1|k}, \ldots, u^{0}_{ik+N−1|k}, Kx^{0}_{ik+N|k+1}\}$$
and implement $u_{ik} = u_{ik} + v^{*}_{ik}$.
12: Acquire through the LAN the predicted control inputs trajectories of the interacting subsystems $u^{0}_{j|0:k−1}$.
13: Increment the index $k = k + 1$ and return to step 3.

Regarding the output flow of the pumps, the flow of the Pump 2 feeds Tank 1 and Tank 3 through valve 2; the flow of the Pump 1 feeds Tank 2 and Tank 4 through valve 1. Considering the structure of the tank system, the system partitioning can be done in two ways: (i) considering Tanks 1 and 2 as Subsystem 1 and Tanks 3 and 4 as Subsystem 2, obtaining input interactions but not states interactions; and (ii) considering Tanks 1 and 3 as Subsystem 1 and Tanks 2 and 4 as Subsystem 2, obtaining interaction between states but not between inputs. For the application of the DNMPC scheme, the first option was selected.

4.1 Four-tank system model

The nonlinear model of the four-tank system is computed from the interaction between the input and output flows. This model is given by the following differential equations:

$$\dot{h}_1 = -\frac{a_1}{A_1} \sqrt{2gh_1} + \frac{a_2}{A_1} \sqrt{2gh_2} + \left(1-\gamma_2\right)k_2 \frac{v_2}{A_1}$$

Fig. 4. Four tanks system scheme.
Subsystem 1 is the state vector \(x = [h_1, h_2, h_3, h_4]^T \), where \(h_i \) the level of tank \(i \), \(v_i \) the voltage applied to the pump \(i \) and the rest of the parameter values are shown in Table 1 defining the physical geometry of the system.

As it was described at the beginning of this section, the model (21) is partitioned as follows: Subsystem 1 is conformed by the equations of Tanks 1 and 2

\[
\dot{h}_1 = -\frac{a_1}{A_1} \sqrt{2gh_1} + \frac{a_2}{A_1} \sqrt{2gh_2} + \frac{(1 - \gamma_1)k_1}{A_1} v_1,
\]

\[
\dot{h}_2 = -\frac{a_2}{A_2} \sqrt{2gh_2} + \frac{a_1}{A_1} \sqrt{2gh_1} + \frac{\gamma_1 k_2}{A_2} v_2;
\]

and Subsystem 2 is conformed by the equations of Tanks 3 and 4

\[
\dot{h}_3 = -\frac{a_3}{A_3} \sqrt{2gh_3} + \frac{\gamma_2 k_2}{A_3} v_2;
\]

\[
\dot{h}_4 = -\frac{a_4}{A_4} \sqrt{2gh_4} + \frac{a_3}{A_3} \sqrt{2gh_3} + \frac{(1 - \gamma_1)k_1}{A_4} v_1.
\]

With the partitioned system, Subsystem 1 has the state vector \(x_1 = [h_1, h_2] \) and Subsystem 2 has the state vector \(x_2 = [h_3, h_4] \). The main control input of Subsystem 1 is \(u_1 = v_1 \), which corresponds to the pump 1 shared with Subsystem 2 through valve 1. In a similar way, the main control input of Subsystem 2 is \(u_2 = v_2 \) (pump 2) shared with Subsystem 1 through valve 2.

4.2 Numerical results

4.2.1 Centralized controller application

In order to apply the centralized controller to the plant, a discrete-time model of the four-tank process with the state \(x_c = [h_1(kT), h_2(kT), h_3(kT), h_4(kT)]^T \) and sampling time \(T = 3 \) s is computed online, with the initial condition \(x_0 = [5, 2, 2, 6]^T \) and \(N = 15 \). For the setpoints \(x_r = [10.8, 4.9, 3.8, 10.1]^T \), \(\forall t \in [0, 75] \) and \(x_r = [15.6, 7.5, 14.4]^T \), \(\forall t \in [75, 150] \), and weight matrices \(Q = 20 \times I \), \(R = 0.1 \times I \), with \(I \) defined as an identity matrix of compatible dimensions. The terminal set parameters \(\bar{K} \) and \(\bar{V} \) are computed off-line subject to bounds \(|x - x_*| \leq 2 \times [1, 1, 1, 1]^T \). The pump control signals have the following constraints

\[
\begin{bmatrix}
0 \\
0 \\
10 \\
10
\end{bmatrix}
\]

where \(u = [v_1, v_2]^T \).

In Fig. 5, left column, the evolution of tank levels with centralized MPC and variable gain tubes is shown, and the right column shows the evolution tank levels with centralized MPC with fixed gain tubes. Top sub-plots present the evolution of levels in the \((h_1, h_2) \) plane, and bottom sub-plots the evolution of levels in the \((h_3, h_4) \) plane. From the referred figure, the tank levels reach a steady state within the terminal set \(\bar{V} \), but it can not be plotted easily as it is in \(\mathbb{R}^4 \).

The Fig. 6 shows the tank levels evolution using the centralized MPC with fixed gains and cross section tubes. The tank levels converge successfully to desired

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variable</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump gains</td>
<td>((k_1, k_2))</td>
<td>(3.35, 3.33)</td>
<td>([\text{cm}^3/\text{Vs}])</td>
</tr>
<tr>
<td>3-way valves</td>
<td>((\gamma_1, \gamma_2))</td>
<td>(0.6, 0.7)</td>
<td></td>
</tr>
<tr>
<td>Area Tanks 1 and 2</td>
<td>((A_1, A_2))</td>
<td>28</td>
<td>([\text{cm}^2])</td>
</tr>
<tr>
<td>Area Tanks 3 and Discharge constant of Tanks 1 and 2</td>
<td>((a_1, a_2))</td>
<td>0.071</td>
<td>([\text{cm}^2])</td>
</tr>
<tr>
<td>Discharge constant of Tanks 3 and 4</td>
<td>((a_3, a_4))</td>
<td>0.057</td>
<td>([\text{cm}^2])</td>
</tr>
<tr>
<td>Level sensor gains</td>
<td>(k_c)</td>
<td>0.5</td>
<td>[V/cm]</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>(g)</td>
<td>981</td>
<td>[cm/s^2]</td>
</tr>
</tbody>
</table>
reference. Tanks 2 and 3 present an overshoot and Tanks 1 and 4 have a smooth convergence due to the fact that the output flow of the pumps enter directly to the Tanks 2 and 3. Bottom sub-plot presents the control signals applied to the pumps, with values within the defined limits.

Fig. 6. Tank levels and control signals for the centralized controller with fixed gains.

The Fig. 7 shows the results obtained when the centralized MPC with variable gains and cross section tubes is used. As in the results obtained when fixed gain and cross section tubes were applied, tank levels converge to the desired reference. It can be observed that the level evolution is similar with respect to the results obtained with the fixed gains and cross section tubes. The pump control signals present slight differences compared with the results shown in Fig. 6.

4.2.2 Decentralized controller application

Addressing the application of the DNMPC scheme, two discrete models of the tank systems with the states \(x_{1k} = [h_1(kT), h_2(kT)]^\top \), \(x_{2k} = [h_3(kT), h_4(kT)]^\top \) and sampling time \(T = 3 \) s are computed online, with the initial conditions \(x_{10} = [5,2] \), \(x_{20} = [2,6]^\top \) and \(N = 15 \). The initial conditions and the prediction horizon are similar to those used in the centralized scheme. The setpoints are divided for each subsystem as \(x_{1r} = [10.8,4.9]^\top \), \(x_{2r} = [3.8,10.1]^\top \), \(\forall t \in [0,75] \) and \(x_{1r} = [15.6,7]^\top \), \(x_{2r} = [5.7,14.4]^\top \), \(\forall t \in [75,150] \), and weight matrices \(Q_1 = Q_2 = 0.1 \times I \), \(R_1 = R_2 = 1 \).

Fig. 8 shows the evolution of tank levels with the decentralized MPC. The left column presents the results obtained with variable gain tubes and the second column presents the results obtained with fixed gain tubes. In both cases, levels reach a steady state within the terminal sets. Each setpoint \(x_{ir} \) generate its own terminal set and, unlike the previous result, it is possible to plot the terminal sets because each subsystem belongs to \(\mathbb{R}^2 \).

Fig. 9 presents the evolution of tank levels for a single step time \(k \). As it is observed, the predicted trajectory (grey line) is in the tube generated by the ellipses (solid black) and the initial trajectory \(x_{10} \) is represented by the dashed black line. Both trajectories converge to the terminal set (dashed ellipse). The left column of the figure shows the results obtained with variable gain tubes and the right column shows the results obtained with fixed gain tubes. The variable gain tubes generate ellipses with a larger cross section than the ellipses generated by the fixed gain tubes, this represents a better disturbance rejection, which allows for larger perturbations \(x_i \), \(u_i \) for each subsystem.

Fig. 10 presents tank levels with the decentralized MPC using fixed gain tubes. The tank levels converge to the desired setpoint and, in comparison with the results obtained with the centralized controller, Tanks 2 and 3 have smaller overshoots. In the same way, Fig. 11 presents the results with the decentralized MPC using variable gain tubes. As in the results obtained.
with fixed gains, the tank levels converge to desired setpoint. Comparing the results of the Fig. 10 and Fig. 11, the behavior of the levels is similar, only the pump control signals present slight differences, which can be observed at the bottom of the figures.

Fig. 8. Evolution of the tank levels and their convergence to the terminal sets with the decentralized controller.

Fig. 9. A predicted trajectory for the tank levels and the tubes generated with the decentralized controller.

Fig. 10. Tank levels and control signals for the decentralized controller with fixed gains.

Fig. 11. Tank levels and control signals for the decentralized controller with variable gains.

In order to make a more fair comparison of the proposed controller performance, a cascade PI controllers scheme was applied. Fig. 12 depicts the PI scheme. \(K_{p1} = 0.6203, K_{i1} = 0.0113, K_{p2} = 0.2219, K_{i2} = 2.4188 \times 10^{-4}, K_{p3} = 0.6203, K_{i3} = 0.0113, K_{p4} = 8.6661, K_{i4} = 1.7168 \). Fig. 13 presents the results with the cascade PI controllers. As observed in the figure, the response obtained is too slow with these controllers, taking into account the same initial conditions and references which were established for predictive controllers.
Table 2. Costs obtained with centralized MPC, decentralized MPC and cascade PI.

<table>
<thead>
<tr>
<th>Controller</th>
<th>J_e</th>
<th>J_u</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized MPC fixed gains</td>
<td>159.49</td>
<td>992.93</td>
<td>1152.42</td>
</tr>
<tr>
<td>Centralized MPC variable gains</td>
<td>159.41</td>
<td>993.83</td>
<td>1153.24</td>
</tr>
<tr>
<td>Decentralized MPC fixed gains</td>
<td>209.59</td>
<td>955.74</td>
<td>1165.33</td>
</tr>
<tr>
<td>Decentralized MPC variable gains</td>
<td>213.87</td>
<td>954.5</td>
<td>1168.37</td>
</tr>
<tr>
<td>Cascade PI controllers</td>
<td>2206.28</td>
<td>12809.21</td>
<td>15015.49</td>
</tr>
</tbody>
</table>

A more accurate way to obtain a measure of the performance and differences between the controllers is to evaluate the following cost function

$$J = J_e + J_u$$

where J_e and J_u are given by

$$J_e = \sum_{k=1}^{k_f} ||x_k - x_{ref}||_Q^2$$

and

$$J_u = \sum_{k=1}^{k_f} ||u_k||_R^2$$

Table shows the results obtained after evaluating the cost function (24) for the applied MPC controllers and cascade PI schemes. As can be seen from the table, the centralized MPC scheme has almost the same performance with respect to the decentralized MPC controller. Taking into account each term of the cost function, the centralized controller has a better performance related to the tracking error, but the centralized controller has a lower control effort. Using the centralized controller, the tank levels converge faster than the decentralized controller. This is because the centralized controller has a higher control effort. Regarding the performance of the cascade scheme, it is observed in the table that this controller has poor performance with respect to the performance of the MPC controllers. Table shows these facts.

Conclusions

In this paper, a decentralized MPC development based on robust tubes is presented. Both schemes, the centralized MPC and the decentralized MPC, were applied to a four-tank process. The numerical results show that there are slight differences between the performance of the controllers. Analyzing the cost of each controller, it was observed that the centralized controller has a higher control effort than the decentralized controller. In the case of the tracking error, the centralized controller has a better
performance than the decentralized controller. With the centralized controller, the tank levels reach the desired setpoint faster. This is because, unlike the decentralized controller, the centralized controller has complete system information at each sampling time. Regarding the performance and computational cost of each controller, controllers with fixed gain tubes have a lower computational cost than controllers with variable gain tubes, eliminating the need for the use of a more complex controller. Referring to the results obtained from the cascading PI controllers, it was observed that this control scheme could not improve the performance of the MPC controllers. This is related to the fact that classical PI controllers do not have access to complete information about the states and the interaction of control inputs. Another important fact is that PI controllers are linear. These controllers can only regulate a nonlinear system in a small region of operation.

References

Trodden, P., & Richards, A. (2010). Distributed model predictive control of linear systems with
where \(x \in \mathbb{R}^n \) and \(u \in \mathbb{R}^m \) are the state and the control input, respectively. \(f \) is continuous and differentiable \(\forall (x,u) \) in a operating region and \(f(0,0) = 0 \). The control problem is established as an optimal regulator with respect to the quadratic cost

\[
J = \sum_{k=0}^{\infty} \left(\|x_k\|^2_Q + \|u_k\|^2_R \right),
\]

subject to linear constraints of the form

\[
F x_k + G u_k \leq h, \quad k = 0, 1, \ldots ;
\]

for \(F \in \mathbb{R}^{n \times m}, G \in \mathbb{R}^{n \times m} \), considering the state \(x_k \) measured at each sample \(k \), with \(R > 0 \) and \(Q \geq 0 \).

The state and the control predicted trajectories at sample \(k \) over an N-step horizon are defined by \(\{x_{0+k}^0, u_{0+k}^0, \ldots, x_{N+k}^0, u_{N+k}^0\} \). From model (A.1), as a consequence,

\[
x_{k+i+1|k}^0 = f(x_{k+i|k}^0, u_{k+i|k}^0),
\]

with \(x_{k+k}^0 = x_k \).

The system state and control input are defined in terms of the state and control predicted trajectories

\[
x_{k+i|k} = x_{0+k}^0 + x_{k+i|k}^0, \quad u_{k+i|k} = u_{0+k}^0 + u_{k+i|k}^0,
\]

for \(i = 1, \ldots, N - 1 \), with \(x_{N+k}^0 = 0 \), and parametrizing \(u_{k+i|k}^0 \) as the sum of a linear feedback control law and a feedforward \(v \)

\[
u_{k+i|k}^0 = K_{k+i|k} x_{k+i|k}^0 + v_{k+i|k}.
\]

A centralized time-varying linear model is used to set the restrictions, described by

\[
x_{k+i+1|k}^0 = \Phi_{k+i|k} x_{k+i|k}^0 + B_{k+i|k} v_{k+i|k} + w_{k+i|k}.
\]

This model is derived from the linearization of the global nonlinear model (A.1) around \(x_{0+k}^0, u_{0+k}^0 \)

\[
\Phi_{k+i|k} = A_{k+i|k} + B_{k+i|k} \hat{K}_{k+i|k};
\]

\[
A_{k+i|k} = \frac{\partial f}{\partial x_k} \bigg|_{x_k(x_{0+k}^0, u_{0+k}^0), u_k(x_{0+k}^0, u_{0+k}^0)}, \quad B_{k+i|k} = \frac{\partial f}{\partial u_k} \bigg|_{x_k(x_{0+k}^0, u_{0+k}^0), u_k(x_{0+k}^0, u_{0+k}^0)},
\]

and \(w_{k+i|k} \) is the linearization error. Matrices \(A_{k+i|k} \) and \(B_{k+i|k} \) are updated along the predicted trajectory at each step time. Predictions for \(i \geq N \) are determined from the linearization of (A.1) about the target set-point (\(x_k, u_k \) = (0,0) (around the state space origin), and a fixed control law \(\hat{K} x_k \)

\[
x_{k+i+1|k} = \hat{\Phi} x_{k+i|k} + \hat{w} x_{k+i|k};
\]

\[
u_{k+i|k} = \hat{K} x_{k+i|k},
\]

for \(i = N, N+1, \ldots \), where \(\hat{\Phi} = \hat{A} + \hat{B} \hat{K} \), with

\[
\hat{A} = \frac{\partial f}{\partial x_k} \bigg|_{x_k(0,0)}, \quad \hat{B} = \frac{\partial f}{\partial u_k} \bigg|_{u_k(0,0)}.
\]
Matrices \hat{A} and \hat{B} are terminal matrices calculated off-line. Bounds on the linearization error w and \hat{w} can be used to bound the predicted cost and to determine robustly feasible constraints. Since f is continuous and differentiable, exits a convex set $\Omega \subset \mathbb{R}^{n(x+m)}$ such that $w_k \in \Omega \left(x_k^T u_k^T \right)^T$. It is assumed that Ω is polytopic with vertices $\left[C_j \quad D_j \right]$, $j = 1, ..., p$, as a result

$$w_k \in \text{Co} \left\{ C_j x_k^0 + D_j u_k^0, j = 1, ..., p \right\} \quad (A.8)$$

where Co denotes the convex hull. Similarly, for $i \geq N$ the errors $\hat{w}_{k+i|k}$ necessarily lie within the convex set

$$\hat{w}_k \in \text{Co} \left\{ \hat{C}_i x_k + \hat{D}_i u_k, j = 1, ..., p \right\} \quad (A.9)$$

In order to bound the effects of the linearization errors on predicted trajectories, a tube is constructed containing the component of the predicted state appearing from the linearization errors. The tube is used to derive bounds on the cost and constraints in the nonlinear MPC optimization.

The prediction of x_k^0 is divided into a nominal component $z_{k+i|k}$ and a component $e_{k+i|k}$ which depends only on the linearization $w_{k+i|k}$:

$$x_{k+i|k}^0 = z_{k+i|k} + e_{k+i|k} \quad (A.10a)$$

$$z_{k+i|k+1} = \Phi_{k+i|k} z_{k+i|k} + B_{k+i|k} v_{k+i|k} \quad (A.10b)$$

$$e_{k+i|k+1} = \Phi_{k+i|k} e_{k+i|k} + w_{k+i|k}, \quad (A.10c)$$

with $z_{k|k} = e_{k|k} = 0$. The constructed tubes will have an ellipsoidal cross section

$$e_{k+i|k} \in E(\hat{V}_{k+i|k}, \hat{g}^2_{k+i|k}), i = 1, ..., N \quad (A.11a)$$

$$x_{k+i|k} \in E(\hat{V}, 1) \geq N, \quad (A.11b)$$

where $E(P, \rho^2)$, for $P > 0$ denotes the ellipsoidal set $E(\hat{V})$, $E(\hat{V}, 1)$ is a terminal constraint set which must be invariant under (A.6) and (A.7), requiring that

$$\hat{f} x + \hat{w} \in E(\hat{V}, 1), \forall \hat{w} \in \text{Co} \left[(\hat{C}_j + \hat{D}_j \hat{K}) x \right], \quad (A.12)$$

$$\forall x \in E(\hat{V}, 1).$$

It is also required a feasible $E(\hat{V}, 1)$ with respect to (A.3), in order to ensure the achievement of the input and state constraints over an infinite prediction horizon. From this consideration,

$$(F + G \hat{K}) x \leq h, \forall x \in E(\hat{V}, 1). \quad (A.13)$$

In order to obtain the matrices \hat{K} and \hat{V}, a semidefinite program (SDP) is solved off-line to maximize the local terminal set $E(\hat{V}, 1)$ subject to (A.12) and (A.13). Thus, being \hat{S}_i, \hat{Y}_j the problem solution:

$$\begin{aligned}
\max \det(\hat{S}) \\
\text{s.t.} \\
\hat{S} \left(\hat{A} + \hat{C}_j \hat{S} + (\hat{B} + \hat{D}_j \hat{Y}) \right) \geq 0, j = i, ..., p \\
\hat{h}^T_i \hat{S} - \hat{F}_i \hat{S} + \hat{G}_i \hat{Y} \geq 0, q = 1, ..., n_c,
\end{aligned} \quad (A.14)$$

then the volume of $E(\hat{V}, 1)$ is maximized with $\hat{V} = \hat{S}^{-1}$ and $\hat{K} = \hat{Y} \hat{S}^{-1}$. Notice that $[\cdot]_q$ denotes the q_{th} row of $[\cdot]$.

Two different types of tubes can be constructed: (i) time-varying cross section tubes and feedback gains and, (ii) fixed cross section tubes and feedback gains. In order to construct a time-varying tube and feedback gains, the following SPD in variables S, Y, γ is defined

$$\begin{aligned}
\max \gamma \\
\text{s.t.} \\
S \geq \gamma I \\
{\begin{bmatrix} S & (A_{k+i|k} + C_j) S + (B_{k+i|k} + D_j Y) \end{bmatrix}} \geq 0, \\
\forall j = i, ..., p, \\
A_{k+i|k} \geq \gamma S \quad (A.15)
\end{aligned}$$

as a result, by considering $V_{k+i|k} = S^{-1}$, $K_{k+i|k} = Y S^{-1}$, the variable cross section tubes are computed. The fixed cross section tubes, on the other hand, are obtained by defining $V_{k+i|k} = \hat{V}$, $K_{k+i|k} = \hat{K}$.

The cost function to optimize is

$$J(x_k, u_k) = \sum_{k=0}^{N-1} \left(\| x_{k+i|k} \|_Q^2 + \| u_{k+i|k} \|_R^2 + \| x_{k+i|k} \|_P^2 \right) \quad (A.16)$$

where P is computed off-line from

$$\begin{aligned}
\min \text{tr}(P) \\
\text{s.t.} \\
P - (\Phi + \hat{C}_j + \hat{D}_j \hat{K})^T P (\Phi + \hat{C}_j + \hat{D}_j \hat{K}) \geq Q + \hat{K}^T \hat{R} \hat{K}, \\
\forall j = 1, ..., p.
\end{aligned} \quad (A.17)$$

The cost function (A.16) is divided into individual
terms \(l_{x,i} \), \(l_{u,i} \), for \(i = 0, \ldots, N - 1 \), and \(l_{x,N} \)

\[
l_{x,i} = \| x_{k+i+j}^0 + z_{k+i+j} \|_Q^2 + \beta_{k+i+j} \| V^{-1/2}_{k+i+j} \|_Q^2 \quad (A.18a)
\]

\[
l_{u,i} = \| u_{k+i+j}^0 + K_{k+i+j} z_{k+i+j} + v_{k+i+j} \|_R^2 + \beta_{k+i+j} \| V^{-1/2}_{k+i+j} \|_R^2 \quad (A.18b)
\]

\[
l_{x,N} = \| x_{k+N+j}^0 + z_{k+N+j} \|_P^2 + \beta_{k+N+j} \| \hat{V}^{-1/2} \|_P^2 \quad (A.18d)
\]

Finally, the solution of the centralized MPC is obtained by solving the following optimization problem

\[
(\mathbf{v}^*_k, \beta^*_k) = \min_{\mathbf{v}_k, \beta_k} \frac{\sum \limits_{i=0}^{N-1} (l_{x,i}^2 + l_{u,i}^2) + l_{x,N}^2}{N} \quad (A.19a)
\]

s. t.

\[
z_{k+i+1+j} = \Phi_{k+i+j} z_{k+i+j} + B_{k+i+j} v_{k+i+j} \quad (A.19b)
\]

\[
\beta_{k+i+1+j} \geq \lambda_{i,j} \beta_{k+i} + \| (C_j + D_j K_{k+i+j}) z_{k+i+j} + D_j v_{k+i+j} \|_{\mathcal{P}} \quad (A.19c)
\]

\[
l_{u,i} \geq \| u_{k+i+j}^0 + K_{k+i+j} z_{k+i+j} + v_{k+i+j} \|_R \quad (A.19d)
\]

\[
h_q \geq (F_q x_{k+i+j}^0 + G_q u_{k+i+j}^0) + (F_q + G_q K_{k+i+j}) z_{k+i+j}
\]

\[
+ G_q \hat{v}_{k+i+j} + \beta_{k+i+j} \| \hat{V}_{k+i+j} \|_{\mathcal{P}} \quad (A.19e)
\]

for \(i = 1, \ldots, N - 1 \), and

\[
z_{0} = 0 \quad (A.19f)
\]

\[
\beta_{0} = 0 \quad (A.19g)
\]

\[
1 \geq \| x_{k+N+j}^0 + z_{k+N+j} \|_P + \beta_{k+N+j} \| \hat{V} \|_P \quad (A.19i)
\]

where \(\lambda_{i,j} = 1 \) if a variable tube cross sections are used or \(\lambda_{i,j} = 0 \) if a fixed tube cross sections are used.