• M.E. Estrada-Zuñiga Universidad Autónoma del Estado de México
  • R.C. Arland Universidad Autónoma Metropolitana-Iztapalapa
  • F. Rivera-Cabrera Universidad Autónoma Metropolitana-Iztapalapa
  • A. Bernabé-Antonio Universidad de Guadalajara
  • L. Buend´ıa-Gonzalez Universidad Autónoma del Estado de México
  • F. Cruz-Sosa Universidad Autónoma Metropolitana-Iztapalapa
Keywords: Buddleja cordata, in vitro propagation, plant growth regulators, secondary metabolites, radical scavenging


Buddleja cordata is a medicinal plant distributed in Mexican territory that is characterized for producing phenolic compounds possessing antioxidant activity. It was evaluated the type of morphogenetic responses induced by plant growth regulators. Furthermore, the content of verbascoside and total phenols was determined, as well as the antioxidant activity in regenerated plantlets. The greatest shoot proliferation (29.2 shoots per explant) was achieved in the stem-nodes that were grown in a half-strength Murashige and Skoog medium containing 4.44 µM N6-benzyladenine. The greatest shoot heights of 4.3 and 4.7 cm (statistically not different) were obtained with gibberellic acid at 4.34 and 8.67 µM, respectively. The highest percentage of rooting (89.4%) occurred with 2.45-µM indole-3-butyric acid with 20.3 roots per shoot and an average root length of 4.4 cm. Of the rooted shoots, 91.7% were able to survive after 30 days of acclimatization. The verbascoside (1.0 mg g−1 ) and total phenols (24.8 mg of gallic acid equivalents g−1 ) content was related to antioxidant activity of the regenerated plantlets. The micropropagation of B. cordata might represent an alternative about massive production and depict the basis of the establishment of commercial crops and genetic studies.


Aguilar-Rodríguez, S., Terrazas, T. and Lopéz-Mata, L. (2006). Anatomical wood variation of Buddleja cordata (Buddlejaceae) along its natural range in Mexico. Trees-Structure and Function 20, 253-261.

Alipieva, K., Korkina, L., Orhan, I.E. and Georgiev, M.I. (2014). Verbascoside - A review of its ocurrence, (bio)synthesis and pharmacological significance. Biotechnology Advances 32, 1065- 1076.

Avila, J.G., Castañeda, C.M.C., Benites, F.J.C., Durán, D.A., Barroso, V.R., Martínez, C.G., Muñoz, L.J.L., Martínez, C.A. and Romo de Vivar, A. (2005). Photoprotective activity of Buddleja scordioides. Fitoterapia 76, 301-309.

Bai, P., Peng, X.M., Gao, L., Huo, S.X., Zhao, P.P. and Yan, M. (2013). Study on protective effect of acteoside on cellular model of Alzheimer´s disease induced by okadaic acid. Zhongguo Zhongyao Za Zhi 38, 1323-1326.

Bermejo, P., Abad, M.J., Diaz, A.M., Fernández, L., De Santos, J., Sanchez, S., Villaescusa, L., Carrasco, L. and Irurzun, A. (2002). Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside axtracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Medica 68, 106-110.

Bowers, M.D. and Stamp, N.E. (1993). Effects on plant age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74, 1778- 1791.

Cardenas-Sandoval, B.A., Bravo-Luna, L., Bermúdez-Torres, K., Trejo-Espino, J.L., Zamilpa, A. and Trejo-Tapia, G. (2015). Enhancement of phenylethanoid glycosides biosynthesis in Castilleja tenuiflora Benth. shoot cultures with cell wall oligosaccharides from Fusarium oxysporum f. sp. lycopersici race 3. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 631-639.

Cardoso, J.C. and da Silva, J.A.T. (2013). Micropropagation of Zeyheria montana Mart. (Bignoniaceae), an endangered endemic medicinal species from the Brazilian cerrado biome. in vitro Cellular and Developmental Biology-Plant 49, 710-716.

De Marco, E., Savarese, M., Paduano, A. and Sacchi, R. (2007). Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chemistry 104, 858- 867.

Estrada-Zuñiga, M.E., Cruz-Sosa, F., Verde-Calvo, R., Rodríguez-Monroy, M. and Vernon-Carter, E.J. (2009). Phenylpropanoid production in callus and cell suspension cultures of Buddleja cordata Kunth. Plant Cell, Tissue and Organ Culture 97, 39-47.

Furani, C.S., Gullo, F.P., Napolitano, A., Carneiro, R.L., Mendez-Giannini, M.J., Fusco-Almeida, A.M., Piacente, S., Pizza, C. and Silva, D.H.S. (2012). Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chemistry 135, 2086-2094.

Georgiev, M.I., Ali, K., Alipieva, K., Verpoorte, R. and Choi, Y.H. (2011). Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics. Phytochemistry 72, 2045-2051.

Gobbo-Neto, L. and Lopes, N.P. (2007). Medicinal plants: factors of influence on the content of secondary metabolites. Qu´ımica Nova 30, 374- 381.

Gouvea, D.R., Gobbo-Neto, L. and Lopes, N.P. (2012). The influence of biotic and abiotic factors on the production of secondary metabolites in medicinal plants. In: Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives, (V. Cechinel-Filho, eds.), Pp. 419-452. John Wiley & Sons, Inc., Hoboken, NJ, USA. 4th edn.

Hill, K. and Schaller, G.E. (2013). Enhancing plant regeneration in tissue culture: a molecular approach through manipulation of cytokinin sensivity. Plant Signaling and Behavior 8, 10, e25709.

Iliev, I., Gajdosova, A., Libiakova, G. and Jain, S.M. (2010). Plant micropropagation. In: Plant Cell Culture: Essential Methods, (M.R. Davey and P. Anthony, eds.), Pp. 1-23. John Wiley & Sons, Ltd., Chichester, UK.

Kennedy, D.O. and Wightman, E.L. (2011). Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Advances in Nutrition 2, 32-50.

Kernan, M.R., Amarquaye, A., Chen, J.L., Chan, J.L., Sesin, D.F., Parkinson N., Ye, Z., Barrett, M., Bales, C., Stoddart, C.A., Sloan, B., Blanc, P., Limbach, C., Mrisho, S. and Rozhon, E.J. (1998). Antiviral phenylpropanoid glycosides from medicinal plant Markhamia Lutea. Journal of Natural Products 61, 564- 570.

Kitisripanya, T., Komaikul, J., Tawinkan, N., Atsawinkowit, C. and Putalun, W. (2013). Cicentrine production in callus and cell suspension cultures of Stephania venosa. Natural Product Communications 8, 443-445.

Korkina, L.G., Mikhalchik, E.V., Suprun, M.V., Pastore, S. and Dal Toso, R. (2007). Molecular mechanisms underlying wound healing and anti-inflammatory properties of naturally occurring biotechnologically produced phenylpropanoid glycosides. Cellular and Molecular Biology (Noisy-le-Grand) 53, 78-83.

Kostyuk, V.A., Potapovich, A.I., Lulli, D., Stancato, A., De Luca, C., Pastore, S. and Korkina, L. (2013). Modulation of human keratinocyte responses to solar UV by plant polyphenols as a basis for chemoprevention of non-melanoma skin cancers. Current Medicinal Chemistry 20, 869-879.

Kurisi, M., Miyamae, Y., Murakami, K., Han, J., Isoda, H., Irie, K. and Shigemori, H. (2013). Inhibition of amyloid β aggregation by acteoside, a phenylethanoid glycoside. Bioscience, Biotechnology, and Biochemistry 77, 1329-1132.

Marco-Medina, A. and Casas, J.L. (2014). in vitro multiplication and essential oil composition of Thymus moroderi Pau ex Martinez, an endemic Spanish plant. Plant Cell, Tissue and Organ Culture 120, 99-108.

Martínez, M. (1989). Las Plantas Medicinales de México. Ediciones Botas, Mexico City

Marzocco, S., Piccinelli, A.L., Rastrelli, L., Mazzon, E., Cuzzocrea, S. and Autore, G. (2007). Inhibition of inducible nitric oxide synthase in vitro and in vivo by a water-soluble extract of Wendita calysina leaves. Naunyn-Schmiedeberg’s Archives of Pharmacology 375, 349-358.

Mazzon, E., Esposito, E., di Paola, R., Riccardi, L., Caminiti, R., Dal Toso, R., Pressi, G. and Cuzzocrea, S. (2009). Effects of verbascoside biotechnologically produced by Syringa vulgaris plant cell cultures in a rodent model of colitis. Naunyn-Schmiedeberg’s Archives of Pharmacology 380, 79-94.

Mendoza-Hernández, P.E. (2003). El tepozán. Ciencias 70, 32-33.

Molavi, B. and Mehta, J.L. (2004). Oxidative stress in cardiovascular disease: Molecular basis of its deleterious effects, its detection, and therapeutic considerations. Current Opinion in Cardiology 19, 488-493.

Mosca, M., Ambrosone, L., Semeraro, F., Casamassima, D., Vizzarri, F. and Costagliola, C. (2014). Ocular tissues and fluids oxidative stress in hares fed on verbascoside supplement. International Journal of Food Sciences and Nutrition 65, 235-240.

Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.

Mustafa, Y. (2012). The prerequisite of the success in plant tissue culture: high frequency shoot regeneration. In: Recent Advances in Plant in vitro Culture, (A. Leva and L.M.R. Rinaldi, eds.), Pp. 63-90. In Tech, Croatia.

Obied, H.K., Bedgood, Jr D.R., Prenzler, P.D. and Robards, K. (2007). Bioscreening of Australian olive mill waste extracts: Biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food and Chemical Toxicology 45, 1238-1248.

Oksman-Caldentery, K.M. and Inze, D. (2004). Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends in Plant Science 9, 433-440.

Onay, A., Yildirim, H., Tokatli, Y.O., Akdemir, H. and Suzerer, V. (2011). Plant tissue culture techniques-tools in plant micropropagation. Current Opinion in Biotechnology 22, S130.

Paola, R.D.I., Oteri, G., Mazzon, E., Crisafulli, C., Galuppo, M., Toso, R.D.A.L., Pressi, G., Cordasco, G. and Cyzzocrea, S. (2011). Effects of verbascoside, biotechnologically purified by Syringa vulgaris plant cell cultures, in a roden model of periodontitis. The Journal of Pharmacy and Pharmacology 63, 707-717.

Phelan, S., Hunter, A. and Douglas, G.C. (2009). Effect of explants source on shoot proliferation and adventitious regeneration in 10 Buddleia cultivars. Scientia Horticulturae (Amsterdam) 120, 518-524.

Piatczak, E., Grzegorczyk-Karolak, I. and Wysokinska, H. (2014). Micropropagation of Rehmannia glutionosa Libosch.: production of phenolics and flavonoids and evaluation of antioxidant activity. Acta Physiologiae Plantarum 36, 1693-1702.

Piccinelli, A.L., De Simone, F., Passi, S. and Rastrelli, L. (2004). Phenolic constituents and antioxidant activity of Wendita calyssina leaves (Burrito), a folk Paraguayan tea. Journal of Agricultural and Food Chemistry 52, 5863- 5868.

Pollastri S. (2008). Biotechnological advances in olive (Olea europaea L.). A review. Advances in Horticultural Science 22, 123-128.

Quirantes-Piné, R., Zurek, G., Barrajón-Catalán, E., BaBmann, C., Micol, V., Segura-Carretero, A. and Fernández-Gutíerrez A. (2013). A metabolite-profiling approach to assess the uptake and metabolism of phenolic compounds from olive leaves in SKBR3 cells by HPLCESI-QTOF-MS. Journal of Pharmaceutical and Biomedical Analysis 72, 121-126.

Ramos, P., Santos, S.A.O., Guerra, A.R., Guerreiro, O., Fel´ıcio, L., Jerónimo, E., Silvestre, A.J.D., Neto, C.P. and Duarte, M. (2013). Valorization of olive mill residues: antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Industrial Crops and Products 46, 359-368.

Ramos-Palacios, R., Orozco-Segovia, A., Sánchez-Coronado, M.E. and Barradas, V.L. (2012). Vegetative propagation of native species potentially useful in the restoration of Mexico City’s vegetation. Revista Mexicana de Biodiversidad 83, 809-826.

Rodríguez-Zaragoza, S., Ordaz, C., Avila, G., Muñoz, J.L., Arcienegas, A. and Romo de Vivar, A. (1999). in vitro evaluation of the amebicidal activity of Buddleia cordata (Loganiaceae, H.B.K.) on several strains of Acanthamoeba. Journal of Ethnopharmacology 66, 327-334.

Romero, S., Aguilar, S. and Rojas, E.C. (2003). Buddleja cordata H.B.K. ssp. cordata (Buddlejaceae): propagación y anatomía de la madera. Polibotanica 16, 63-78.

Rose, J.B., Kubba, J. and Tobutt, K.R. (2000). Induction of tetraploidy in Buddleia globosa. Plant Cell, Tissue and Organ Culture 63, 121- 125.

Sagare, A.P., Kuo, C.L., Chueh, F.S. and Tasy, H.S. (2001). De novo regeneration of Scrophularia yoshimurae Yamazaki (Scrophulariaceae) and quantitative analysis of harpagoside, an iridoid glucoside, formed in aerial and underground parts of in vitro propagated and wild plants by HPLC. Biological and Pharmaceutical Bulletin 24, 1311-1315.

Sánchez-Rangel, J.C., Benavides, J. and Jacobo-Velázquez, D.A. (2014). Abiotic stress based bioprocesses for the production of high value antioxidant phenolic compound in plants: an overview. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 49-61.

Santner, A., Calderon-Villalobos, L.I.A. and Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 5, 301-307.

Sawadogo, W.R., Meda, A., Lamien, C.E., Kiendrebeogo, M., Guissou, I.P. and Nacoulma, O.G. (2006). Phenolic content and antioxidant activity of six Acanthaceae from Burkina Faso. Journal of Biological Sciences 6, 249-252.

Sepúlveda-Jiménez, G., Reyna-Aquino, C., Chaires-Martínez, L., Bermúdez-Torres, K. and Rodríguez-Monroy, M. (2009). Antioxidant activity and content of phenolic compounds and flavonoids from Justicia spicigera. Journal of Biological Sciences 9, 629-632.

Si, C-L., Liu, S-C., Hu, H-Y., Jiang, J-Z., Yu, GJ., Ren, X-D. and Xu, G-H. (2013). Activityguided screening of the antioxidants from Paulownia tomentosa var. tomentosa Bark. BioResources 8, 628-637.

Smulders, M.J.M. and de Klerk, G.J. (2011). Epigenetics in plant tissue culture. Plant Growth Regulation 63, 137-146.

Soobrattee, M.A., Neergheen, V.S., LuximonRamma, A., Auroma, O.I. and Bahorum, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 579, 200-213.

Tarbeeva, D.V., Fedoreyev, A., Veselova, M.V., Kalinovskiy, A.I., Seletskaya, L.D., Mazurok, T.I. and Bulgakov, V.P. (2013). Polyphenolic compounds from callus cultures of Iris pseudacorus. Natural Product Communications 8, 1419-1420.

Thomas, T.D. and Yoichiro, H. (2010). in vitro propagation for the conservation of a rare medicinal plant Justicia gendarussa burm. f. by nodal explants and shoot regeneration from callus. Acta Physiologiae Plantarum 32, 943- 950.

Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions 160, 1-40.

Vertuani, S., Beghelli , E., Scalambra, E., Malisardi, G., Copetti, S., Dal Toso, R., Baldisserotto, A. and Manfredini S. (2011). Activity and stability studies of verbascoside, a novel antioxidante, in dermo-cosmetic and pharmaceutical topical formulations. Molecules 16, 7068-7080.

Wang, Y.H. and Irving, H.R. (2011). Developing a model of plant hormone interactions. Plant Signaling and Behavior 6, 494-500.

Wu, X., He, W., Zhang, H., Li, Y., Liu, Z. and He, Z. (2014). Acteoside: a lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chemistry 142, 306-310.

Zhang, F., Jia, Z., Deng, Z., Wei, Y., Zheng, R. and Yu, L. (2002). in vitro modulation of telomerase activity, telomere length and cell cycle in MKN45 cells by verbascoside. Planta Medica 68, 115-118.

Zhao, C., Dodin, G., Yuan, C., Chen, H., Zheng, R., Jia, Z. and Fan, B-T. (2005). “in vitro” protection of DNA from Fenton reaction by plant polyphenol verbascoside. Biochimica et Biophysica Acta-General Subjects 1723, 114- 123.
How to Cite
Estrada-Zuñiga, M., Arland, R., Rivera-Cabrera, F., Bernabé-Antonio, A., Buend´ıa-GonzalezL., & Cruz-Sosa, F. (2019). MICROPROPAGATION OF Buddleja cordata AND THE CONTENT OF VERBASCOSIDE AND TOTAL PHENOLS WITH ANTIOXIDANT ACTIVITY OF THE REGENERATED PLANTLETS. Revista Mexicana De Ingeniería Química, 15(2), 333-346. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1003