IMPORTANCE OF DIFFUSSIVE FLUXES ON THE CARBON FATE WITH Aspergillus niger SURFACE CULTURES

  • I. Sánchez-Sánchez Universidad Politécnica de Tlaxcala
  • E. Favela-Torres Universidad Autónoma Metropolitana, Unidad Iztapalapa
  • R. Hernández-Martínez CONACYT-Instituto Tecnológico Superior de Tierra Blanca
  • G. Viniegra-González Universidad Autónoma Metropolitana-Iztapalapa
  • E. Ortega-Sánchez Universidad Politécnica de Tlaxcala
Keywords: surface culture, Aspergillus niger, uptake glucose, fate of carbon, citric acid

Abstract

This paper presents a simple experimental system to study surface cultures made of test tubes with height, L = 18.5 cm and internal diameter, D = 3.3 cm (A = 8.553 cm2). In this system, surface cultures of Aspergillus niger were supplied with 1.2 g total glucose but with dierent agar depths, H: 1.2, 2.3, 3.5 and 4.6 cm. Experimental variables were, surface uptake of glucose, biomass production, citric acid production and carbon dioxide as well as the final height of mycelia. The results show a positive linear correlation between S 0 and average glucose flux (JS ) as well as the respiratory rate, Rc. However, the flux of biomass (JX) and citric acid (JP) are negatively correlated to substrate initial concentration (S 0). The results suggest that carbon fate in these surface cultures depends on the magnitude of substrate influx to the fungal mat and the substrate uptake seems to be controlled by the rate of diusion of substrate of the medium to the surface of culture. Such results support the need to understand the importance of JS , in order to control carbon fate in fungal surface cultures.

References

Chaudhary, K., Ethiraj, S., Lakshminarayana, K. and Tauro, P. (1978). Citric acid production from Indian cane molasses by Aspergillus niger under solid state fermentation conditions. Journal of Fermentation Technology 56, 554-557.

Diano, A., Bekker-Jensen, S., Dynesen, J., and Nielsen, J. (2006). Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism. Biotechnology and Bioengineering 94, 899-908.

Favela-Torres, E., C´ordova-L´opez, J., Garc´ıa-Rivero, M. and Guti´errez-Rojas M. (1998). Kinetics of growth of Aspergillus niger during submerged, agar surface and solid-state fermentations. Process Biochemistry 33, 103-107.

Fick, A. (1855). Ueber Diusion (On Diffusion). Annalen der Physik und Chemie von J. C. Pogendorff 94, 59-86.

Guti´errez-Rojas, M., Hosn, S. A. A., Auria, R., Revah, S., and Favela-Torres, E. (1996). Heat transfer in citric acid production by solid state fermentation. Process Biochemistry 31, 363-369.

Hern´andez-Rodr´ıguez, B., C´ordova, J., B´arzana, E.,and Favela-Torres E. (2009). Eects of organic solvents on activity and stability of lipases produced by thermotolerant fungi in solid-state fermentation. Journal of Molecular Catalysis B: Enzymatic 61, 136-142.

Larralde-Corona, C.P., L´opez-Isunza, F, and Viniegra-Gonz´alez, G. (1997). Morphometric evaluation of the specific growth rate of Aspergillus niger grown in agar plates at high glucose levels. Biotechnology and Bioengineering 56, 287-294.

L´opez-Flores, A.R., Luna-Urban, C., Buenrostro-Figueroa, J.J., Hern´andez-Mart´ınez, R., Huerta-Ochoa, S., Escalona-Buend´ıa, H., Aguilar-Gonz´alez, C.N., Prado- Barrag´an, L.A. (2016). Eect of pH, temperature and protein and carbohydrates source in protease production by Yarrowia lipolytica in solid culture. Revista Mexicana de Ingenier´ıa Qu´ımica 15, 57-67.

Mart´ınez-Corona, R., Gonz´alez-Hern´andez, J.C., Radames-Trejo, V., Cort´es-Penagos, C., Ch´avez-Parga, M.C., and Zamudio-Jaramillo, M.A. (2015). Effect of initial substrate concentration and agitation on xylitol production by fermentation of hydrolyzed tamarind seed media with Kluyveromyces marxianus. Revista Mexicana de Ingenier´ıa Qu´ımica 14, 393-403.

Nopharatana, M., Howes, T., Mitchell, D. (1998). Modelling fungal growth on surfaces. Biotechnology Techniques 12, 313-318.

Olsson, S. and Jennings, D.H. (1991). A glass fiber filter technique for studying nutrient uptake by fungi: the technique used on colonies grown on nutrient gradients of carbon and phosphorus. Experimental Mycology 15, 292-301.

Ortega-S´anchez, E., Loera, O., and Viniegra-Gonz´alez, G. (2012). The effect of the ratio between substrate concentration and specific area of the support on the biomass yield of fungal surface cultures. Revista Mexicana de Ingenier´ıa Qu´ımica 11, 485-494.

Papagianni, M., Mattey, M. and Kristeansen, B. (1998). Citric acid production and morphology of Aspergillus niger as functions of the mixing intensity in a stirred tank and a tubular loop bioreactor. Biochemical Engineering Journal 2, 197-205.

Rahardjo, Y.S.P., Weber, F.J., le Comte, E.P., Tramper J. and Rinzema A. (2002). Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnology and Bioengineering 78, 539-544.

Rajagopalan, S. and Modak, J. M. (1995). Modeling of heat and mass transfer for solid state fermentation process in tray bioreactor. Bioprocess Engineering 13, 161-169.

Schlosser, D., R. Grey, and W. Fritsche. (1997). Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extraand intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Applied Microbiology and Biotechnology 47, 412-418.

T´ellez-Jurado, A., Arana-Cuenca, A., Becerra, A. G., Viniegra-Gonz´alez, G., and Loera, O. (2006). Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzyme and Microbial Technology 38, 665-669.

Volke-Sepulveda, T.L., Guti´errez-Rojas, M., and Favela-Torres, E. (2003). Biodegradation of hexadecane in liquid and solid-state fermentations by Aspergillus niger. Bioresource Technology 87, 81-86.
Published
2019-11-19
How to Cite
Sánchez-Sánchez, I., Favela-Torres, E., Hernández-Martínez, R., Viniegra-González, G., & Ortega-Sánchez, E. (2019). IMPORTANCE OF DIFFUSSIVE FLUXES ON THE CARBON FATE WITH Aspergillus niger SURFACE CULTURES. Revista Mexicana De Ingeniería Química, 15(3), 693-701. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1008