Termiticidal activity of mycosynthesized silver nanoparticles from Aspergillus fumigatus BTCB15

  • M. Iqtedar
  • N. Mirza
  • A. Aihetasham
  • S. Iftikhar
  • A. Kaleem
  • R. Abdullah
Keywords: Aspergillus fumigatus: silver nanoparticles: termites: Wood Protection.


Termites, due to their feeding behavior are exceedingly disastrous to the community affecting not only the infrastructure of buildings but also responsible in converting fields into barren lands. Though insecticides are used to control termites but it is not an ecofriendly approach. In the current study silver nano particles were produced from Aspergillus fumigatus BTCB10 and its effect was observed in controlling termites. Feeder blocks were treated with different concentrations (0.1, 1, 5, 10 and 15ppm) of nanoparticles and fed to the subterranean termites of Coptotermes sp. for two weeks. Among all the concentrations used 15ppm was the most effective in which 100 % mortality was achieved on the 9th day and the mean weight loss of block was 3.3% as compared to control in which it was 32.2%. Among all the concentrations used 0.1 ppm treated blocks were also affected by fungus which showed that higher concentrations were also effective in inhibiting fungal growth. Conclusively, this study showed that mycosynthesized silver nanoparticles are very effective protecting the wood from damaging not only from termite but also from wood deteriorating fungus. Further study should be undertaken to bring this approach at commercial scale.


Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., and Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and surfaces B: biointerfaces 68, 88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022

Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., and Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin 43, 1164-1170. https://doi.org/10.1016/j.materresbull.2007.06.020

Bhainsa, K. C., and D'souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces 47, 160-164. https://doi.org/10.1016/j.colsurfb.2005.11.026

Chaloupka, K., Malam, Y., and Seifalian, A. M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology 28, 580-588. https://doi.org/10.1016/j.tibtech.2010.07.006

Clausen, C. A., Kartal, S. N., Arango, R. A., and Green, F. (2011). The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Research Letters 6, 427. https://doi.org/10.1186/1556-276x-6-427

Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., and Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology 3, 8.

Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N., and Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy 2, 243-247. https://doi.org/10.1166/jbmb.2008.401

Govorushko, S. (2019).Economic and ecological importance of termites: A global review. Entomological Science 22, 21-35.  https://doi.org/10.1111/ens.12328

Green, F., and Arango, R. A. (2007). Wood protection by commercial silver formulations against Eastern subterranean termites. In: IRG Secretariat, Pp. 1-6. IRG/WP; 07-30422, Stockholm, Sweden.

Gutarowska, B., Rembisz, D., Zduniak, K., Skóra, J., Szynkowska, M., Gliścińska, E., and Koziróg, A. (2012). Optimization and application of the misting method with silver nanoparticles for disinfection of the historical objects. International Biodeterioration and Biodegradation 75, 167-175. https://doi.org/10.1016/j.ibiod.2012.10.002

He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., and Gu, N. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters 61, 3984-3987. https://doi.org/10.1016/j.matlet.2007.01.018

Hemath Naveen, K. S., Kumar, G., Karthik, L., and Bhaskara Rao, K. V. (2010). Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Archives of Applied Science Research 2, 161-167.

Husseiny, M. I., El-Aziz, M. A., Badr, Y., and Mahmoud, M. A. (2007). Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 67, 1003-1006. https://doi.org/10.1016/j.saa.2006.09.028

Kartal, S. N., Green Iii, F., and Clausen, C. A. (2009). Do the unique properties of nanometals affect leachability or efficacy against fungi and termites? International Biodeterioration & Biodegradation 63, 490-495. https://doi.org/10.1016/j.ibiod.2009.01.007

Kathiresan, K., Manivannan, S., Nabeel, M. A., and Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces 71, 133-137. https://doi.org/10.1016/j.colsurfb.2009.01.016

Kim, H. A., Lee, B. T., Na, S. Y., Kim, K. W., Ranville, J. F., Kim, S. O., and Eom, I. C. (2017). Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS). Chemosphere 171, 468-475. https://doi.org/10.1016/j.chemosphere.2016.12.063

Mantanis, G., Terzi, E., Kartal, S. N., and Papadopoulos, A. N. (2014). Evaluation of mold, decay and termite resistance of pine wood treated with zinc-and copper-based nanocompounds. International Biodeterioration and Biodegradation 90, 140-144. https://doi.org/10.1016/j.ibiod.2014.02.010

Németh, R., Bak, M., Yimmou, B. M., Csupor, K., Molnár, S., and Csóka, L. (2013). Nano-zinc as an agent against wood destroying fungi. In: Wood the Best Material for Mankind , ( J. Kúdela and M. Babiak (eds.), Pp.59-63. Arbora Publishers, Zvolen.

Orkin (2019). Termite damage signs. Available at: https://www.orkin.com/termites/damage/signs. Accessed: September 30, 2016.

Raheman, F., Deshmukh, S., Ingle, A., Gade, A., and Rai, M. (2011). Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomedicine and Engineering 3, 174-178. https://dio.org/10.5101/nbe.v3i3.p174-178.

Rai, M., Yadav, A., and Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002

Ranjbar Navazi, Z., Pazouki, M., and Halek, F. S. (2010). Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigatus. Iranian Journal of Biotechnology 8, 56-61.

Saha, S., Sarkar, J., Chattopadhyay, D., Patra, S., Chakraborty, A., and Acharya, K. (2010). Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Digest Journal of Nanomaterials and Biostructures 5, 887-895.

Serrano-Niño, J., Contreras-Martínez, C., Solis-Pacheco, J., Zamudio-Ojeda, A., Aguilar-Uscanga, B., & Cavazos-Garduño, A. (2019). Optimization of the byosynthesis of gold nanoparticles using Hypericum perforatum and evaluation of their antimicrobial activity. Revista Mexicana De Ingeniería Química, 19, 889-902. https://doi.org/10.24275/rmiq/Bio790

Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., and Pandey, A. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry 44, 939-943. https://doi.org/10.1016/j.procbio.2009.04.009

Shiny, K., Sundararaj, R., Mamatha, N. and Lingappa, B. (2019). A new approach to wood protection: Preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites. Maderas. Ciencia y Tecnología 21, 347-356. https://doi.org/10.4067/S0718-221X2019005000307

Singh, P., and Raja, R. B. (2011). Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian Journal of Experimental Biological Sciences 2, 600-605.

Singh, T., and Singh, A. P. (2012). A review on natural products as wood protectant. Wood Science and Technology 46, 851-870. https://doi.org/10.1007/s00226-011-0448-5

Su, N. Y. (2002). Novel technologies for subterranean termite control. Sociobiology 40, 95-102.

Terzi, E., Kartal, S. N., Yılgör, N., Rautkari, L., and Yoshimura, T. (2016). Role of various nano-particles in prevention of fungal decay, mold growth and termite attack in wood, and their effect on weathering properties and water repellency. International Biodeterioration and Biodegradation 107, 77-87. https://doi.org/10.1016/j.ibiod.2015.11.010

Vahabi, K., Mansoori, G. A., and Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences 1, 65-79. http://dx.doi.org/10.5640/insc.010165

Vanaja, M., Rajeshkumar, S., Paulkumar, K., Gnanajobitha, G., Chitra, K., Malarkodi, C., and Annadurai, G. (2015). Fungal assisted intracellular and enzyme based synthesis of silver nanoparticles and its bactericidal efficiency. International Research Journal of Pharmaceutical and Biosciences 2, 8-19.

Velu, M., Lee, J. H., Chang, W. S., Lovanh, N., Park, Y. J., Jayanthi, P., and Oh, B. T. (2017). Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. 3 Biotech 7, 1-9. https://doi.org/10.1007/s13205-017-0749-y

Verma, V. C., Kharwar, R. N., and Gange, A. C. (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5, 33-40. https://doi.org/10.2217/nnm.09.77

Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., and Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters 61, 1413-1418. https://doi.org/10.1016/j.matlet.2006.07.042

Zheng, Y., Wang, Z., Peng, F. and Fu, L. (2017). Biosynthesis of silver nanoparticles by Plectranthus amboinicus leaf extract and their catalytic activity towards methylene blue degradation. Revista Mexicana de Ingeniería Química 16, 41-45.
How to Cite
Iqtedar, M., Mirza, N., Aihetasham, A., Iftikhar, S., Kaleem, A., & Abdullah, R. (2020). Termiticidal activity of mycosynthesized silver nanoparticles from Aspergillus fumigatus BTCB15. Revista Mexicana De Ingeniería Química, 19(3), 1201-1211. https://doi.org/10.24275/rmiq/Bio1022