• O. Tzintzun-Camacho
  • L. Sánchez-Segura
  • A.Z. Minchaca-Acosta Instituto Politécnico Nacional
  • L.M. Rosales-Colunga Universidad Autónoma de San Luis Potosí
  • A. Hernández-Orihuela Instituto Politécnico Nacional
  • A. Martínez-Antonio Instituto Politécnico Nacional
Keywords: avocado seed waste, Escherichia coli, growth medium, acid hydrolysis, biorreactor


Avocado (Persea americana Mill) seeds, a rich source of starch and micronutrients, are a major waste product from the agroindustrial processing of avocados. We designed and developed an experimental culture medium (ECM) from hydrolysed avocado seeds, supplemented with M9 salts (10% v/v). Breaking of starch granules of avocado seeds due to hydrolysis treatments was analysed by morphology and morphometry of granules. We evaluated the ECM functionality by measuring the growth of E. coli as aected by (i) the carbon source (reducing sugars concentration), (ii) the nitrogen source, and (iii) mixing and aeration in a stirred tank bioreactor. ECM containing 13.33 and 20 g/L of reducing sugars reached a biomass production of 1.75 and 2.22 gDCW/L, respectively. Interestingly, the biomass yield from ECM was at least 2.5-fold higher than that obtained using Luria-Bertani Broth (LB) medium (0.23 vs 0.09). In addition, the growth rate increased with the agitation velocity (0.44 h-1 at 200 rpm; 0.36 h-1 at 150 rpm). Our findings suggest that avocado seeds represent a cost-eective material for producing a sustainable culture medium for bacterial growth of E. coli and other strains of interest in biotechnological processes


Adel, M. A., El-Wahab, A. H. Z., Ibrahim, A. A. and Al-Shemy, T. M. (2011). Characterization of microcrystalline cellulose prepared from materials. Part II:Physicochemical Properties. Carbohydrate Polymers 83, 676-687.

Aguilar-Rivera, N. and Canizales-Leal, M.J. (2004). Cin´etica de la hidr´olisis ´acida de la cascarilla de cebada. Revista Mexicana de Ingenier´ıa Qu´ımica 3, 257-263.

Akhtar, M. K. and Jones, P. R. (2009). Construction of a synthetic YdbK-dependent pyruvate:H2 pathway in Escherichia coli BL21(DE3). Metabolic Engineering 3, 139-147.

Andualem, B. and Gessesse, A. (2013). Production of microbial medium from defatted brebra (Milletia ferruginea) seed flour to substitute commercial peptone agar. Asian Pacific Journal of Tropical Biomedicone 3, 790-797.

Aspmo, S. T., Horn, S. J. and Eiksink, V. G. H. (2005). Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochemistry 40, 3714- 3722.

Asim, N., Emdadi, Z., Mohammad, M., Yarmo, M. A. and Sopian, K. (2014). Agricultural solid wastes for green desiccant applications: an overview of research achievements, opportunities and perspectives. Journal of Cleaner Production 91, 26-35.

Bolio-L´opez, G.I., Valadez-Gonz´alez, A., Veleva, L. and Andreev, A. (2011). Cellulose whiskers from agro-industrial banana wastes: isolation and characterization. Revista Mexicana de Ingenier´ıa Qu´ımica 10, 291-299.

Bouwman, M. A., Bosma, C. J., Vonk, P., Wesselingh, A. J. and Frijlink, W. H. (2004). Which shape factor(s) best describe granules? Powder Technology 146, 66-72.

Casas-Forero, N. and C´aez-R´amirez G. (2011). Morphometric and quality changes by application of three calcium sources under mild termal treatment in pre-cut fresh mel´on (Cucumis melo L.). Revista Mexicana de Ingenier´ıa Qu´ımica 10, 431-444.

Dabas, D., Elias, J. R., Lamebrt, D. J. and Ziegler, R. G. (2011). A colored avocado seed extract as a potential natural colorant. Journal of Food Science 76, 1335-1341.

FAO. (2014). Agricultural statics for 2014, FAOSTAT. Food and Agriculture Organization of the United Nations, Rome. Famureawa, O. and David, O. (2008). Formulation and evaluation of dehydrated microbiological media from avocado pear (Persea americana Cmill). Research Journal of Microbiology 3, 326-330.

Garc´ıa-Ochoa, F. and G´omez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances 27, 153-176.

Hachiya, T., Terashima, I. and Noguchi, K. (2007). Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia x hybrid petals. Plant, Cell & Environment 30, 1269-1283.

Jiménez-Arellanes, A., Luna-Herrera, J., Ruiz- Nicol´as, R., Cornejo-Garrido, J., Tapia A. and Y´epez-Mulia, L. (2013). Antiprotozoan and antimycobacterial activities of Persea americana seeds. BMC Complementary and Alternative Medicine 13, 109.

Jayakody, L. and Hoover, R. (2002). The effect of lintnerization on cereal starch granules. Food Research International 35, 665-680.

Kahn, V. (1987). Characterization of starch isolated from avocado seeds. Journal of Food Science 52, 1646-1648.

Kobayashi, F., Sawada, T., Nakamura, Y., Ohnaga, M., Godliving, M., Ushiyama, T. (1998). Saccharification and Alcohol Fermentation in Starch Solution of Steam-Exploded Potato. Applied Biochemical and Biotechnology 69,177-189.

Lacerda, L.G., Denck-Colman, A.D., Bauab, da Silva Carvalho Filho, M.A., Demiate, I.M., Carvalho de Vasconcelos, E., Schnitzler, E. (2014). Thermal, structural and rheological properties of starch from avocado seeds (Persea americana, Miller) modified with standard sodium hypochlorite solutions. Journal of Thermal Analysis and Calorimetry 115, 1893-1899.

Maniatis, T., Sambrook, J. and Fritsch, E. F. (1982). Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, USA.

Matusiewicz, P., Czarski, A. and Adrian, H. (2007). Estimation of materials microstructure parameters using computer program SigmaScan Pro. Metallurgy and Foundry Engineering 1, 33-40.

Miller, G. L. (1959). Use of dinitrosalicilic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428.

Neidhart, F., Ingraham, J. and Schaechter, M. (1990). Physiology of the bacterial cell: A molecular approach. Sinauer Associates, USA.

Peralta V.D., He J., Wheeler A.D., Zhang Z.J. and Tarr A.M. (2014). Encapsulation gold nanomaterials into size-controlled human serum albumin nanoparticles for cancer therapy platforms. Journal of Microencapsulation 31, 824-831.

Picker-Freyer, K. M. (2007). An insight into the process of tablet formation of microcrystalline structural changes on a nanoscale level. Journal of Thermal Analysis and Calorimetry 89, 745-748.

Raffo-Dur´an, J., A. Figueredo-Cardero, A. and Dustet-Mendoza, J.C. (2014). Hydrodynamic characteristics of the industrial stirred tank bioreactor. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 823-839.

Ramos-Jerz, M. del R. (2007). Phytochemical analysis of avocado seeds (Persea americana Mill., c.v. Hass). Cuvillier Verlag G¨ottingen, Germany. Rosales-Colunga, L. M., and Mart´ınez-Antonio, A. (2014). Engineering Escherichia coli to use starch. Microbial Cell Factories 13, 74.

S´anchez-Segura L., T´ellez-Medina D.I., Evangelista-Lozano S., Garc´ıa-Armenta E., Alamilla-Beltr´an L., Hern´andez-S´anchez H., Jim´enez-Aparicio A.R. and Guti´errez-L´opez G.F. (2015). Morpho-structural description of epidermal tissues related to pungency of Capsicum species. Journal of Food Engineering 252, 95-104.

Sezonov, G., Joseleau-Petit, D. and D’Ari, R. (2007). Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology 23, 8746-8749

Taskin, M. and Kurbanoglu, E. B. (2011). Evaluation of waste chicken feathers as peptone source for bacterial growth. Journal of Applied Microbiology 111, 826-834.

Wang, W., Bostic, T. R. and Gu, L. (2010). Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chemistry 122, 1193-1198.

Wang, S., Blazek, J., Gilbert, E. and Copeland, L. (2012). New insights on the mechanism of acid degradation of pea starch. Carbohydrate Polymers 87, 1941-1949.

Weatherby, L. S. and Sorber, D. G. (1931). Chemical composition of avocado seed. Industrial & Engineering Chemistry 23, 1421-1423.
How to Cite
Tzintzun-Camacho, O., Sánchez-Segura, L., Minchaca-Acosta, A., Rosales-Colunga, L., Hernández-Orihuela, A., & Martínez-Antonio, A. (2019). DEVELOPMENT OF BACTERIAL CULTURE MEDIUM FROM AVOCADO SEED WASTE. Revista Mexicana De Ingeniería Química, 15(3), 831-842. Retrieved from
Food Engineering

Most read articles by the same author(s)