Removal of heavy metals present in groundwater from a northern Mexico mining community using Agave tequilana Weber extracts

  • F. A. Alcázar-Medina
  • C. M. Núñez-Núñez
  • I. Villanueva-Fierro
  • C. Antileo
  • J. B. Proal-Nájera
Keywords: metal redisolution, hydrophobicizing agent, precipitation, spherical agglomeration technique, heavy metal evaluation index

Abstract

Groundwater samples from a mining community north of Mexico were studied, concentration of metals above the maximum allowable concentration from Mexican regulation were found. Spherical agglomeration technique (SAT) was used to remove metals (Pb, Cu, Cr, Ni, Zn, Mn, Cd). Two precipitating agents were tested: NaOH and Ca(OH)2. Also, Agave tequilana Weber extract as hydrophobicizing agent was employed to avoid metal redisolution. High metal removal proved the effectiveness on SAT application under a pH ranging between 9 and 11 and extract doses from 0.3 g extract/g pollutant. Better removal percentages were reached when using Ca(OH)2 as precipitating. Reported removal efficiency in that case yielded removal percentages as high as 99% removal for Pb under the three pH tested. The heavy metal evaluation index before treatment was 2354.91, but decreased to levels as low as 4.7 after SAT application.

References

Ahmadi, S., Jahanshahi, R., Moeini, V., and Mali, S. (2018). Assessment of hydrochemistry and heavy metals pollution in the groundwater of Ardestan mineral exploration area, Iran. Environmental earth sciences, 77(5), 212. https://doi.org/10.1007/s12665-018-7393-7

Alcázar-Medina, F. A., Núñez-Núñez, C. M., Rodríguez-Rosales, M. D. J., Valle-Cervantes, S., Alarcón-Herrera, M. T. and Proal-Nájera, J. B. (2020). Lead removal from aqueous solution by spherical agglomeration using an extract of Agave lechuguilla Torr. as biosurfactant. Revista Mexicana de Ingeniería Química, 19(1), 71-84. https://doi.org/10.24275/rmiq/Bio491

Alcázar-Medina, F., Proal-Nájera, J., Gallardo-Velázquez, T., Cháirez-Hernández, I., Antileo-Hernández, C. and Alvarado-de la Peña, A. (2014). Application of lechuguilla (Agave lechuguilla torr.) extracts for copper (II) removal from water models by spherical agglomeration. Revista Mexicana de Ingeniería Química, 605-617.

Anderson, V. L., and McLean, R. A. (2018). Design of experiments: a realistic approach. Routledge. https://doi.org/10.1201/9781315141039

Ayangbenro, A. S. and Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International journal of environmental research and public health, 14(1), 94. https://doi.org/10.3390/ijerph14010094

Bailón-Salas, A. M., Ordaz-Díaz, L. A., Cháirez-Hernández, I., Alvarado-de la Peña, A. and Proal-Nájera, J. B. (2018). Lead and copper removal from groundwater by spherical agglomeration using a biosurfactant extracted from Yucca decipiens Trel. Chemosphere, 207, 278-284. https://doi.org/10.1016/j.chemosphere.2018.05.103

Balladares, E., Jerez, O., Parada, F., Baltierra, L., Hernández, C., Araneda, E., Parra, V. (2018). Neutralization and co-precipitation of heavy metals by lime addition to effluent from acid plant in a copper smelter. Minerals Engineering 122, 122-129. https://doi.org/10.1016/j.mineng.2018.03.028

Bhuiyan, M. A., Islam, M. A., Dampare, S. B., Parvez, L. and Suzuki, S. (2010). Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. Journal of Hazardous Materials, 179(1-3), 1065-1077. https://doi.org/10.1016/j.jece.2017.05.029

Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J. and Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of environmental chemical engineering, 5(3), 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029

Chen, Q., Luo, Z., Hills, C., Xue, G. and Tyrer, M. (2009). Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water research, 43(10), 2605-2614. https://doi.org/10.1016/j.watres.2009.03.007

Close, D., Rodriguez Jr, M., Hu, R., Yang, X. (2017). Disposition and bioavailability of inulin and free sugar in untreated and dilute acid pretreated Agave tequilana leaves. Biomass & Bioenergy, 106, 176-181. https://doi.org/10.1016/j.biombioe.2017.08.032

Corral-Bermúdez, M. D. L., Rivera-Quintero, N. and Sánchez-Ortiz, E. (2014). Perceptions and realities about pollution in the mining community of San José de Avino, Durango. Tecnología y Ciencias del Agua, 5(5), 125-140.

Cruz, J. F., Cruz, G. J. F., Ainassaari, K., Gómez, M. M., Solís, J. L., and Keiski, R. L. (2018). Microporous activation carbon made of sawdust from two forestry species for adsorption of methylene blue and heavy metals in aqueous system–case of real polluted water. Revista Mexicana de Ingeniería Química, 17(3), 847-861. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Cruz

Cuppett, J. D., Duncan, S. E. and Dietrich, A. M. (2006). Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response. Chemical senses, 31(7), 689-697. https://doi.org/10.1093/chemse/bjl010

Edet, A. E., and Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal, 57(4), 295-304. https://doi.org/10.1023/B:GEJO.0000007250.92458.de

Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo, X., and Bi, D. (2015). The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere, 138, 726-734. https://doi.org/10.1016/j.chemosphere.2015.07.051

García-González, R, Gómez-Espinosa, R., Avila-Pérez, P, García-Gaitán, B., García-Rivas, J., and Zavala-Arce, R. (2016). Estudio de biosorción de cu2+ en el criogel quitosano-celulosa. Revista Mexicana de Ingeniería Química, 15(2): 311-322

Gonzalez-Valdez, L. S., Almaraz-Abarca, N., Proal-Nájera, J. B., Robles-Martinez, F., Valencia-Del-Toro, G. and Quintos-Escalante, M. (2013). Surfactant properties of the saponins of Agave durangensis, application on arsenic removal. International Journal of Engineering, 4(2), 8269.

Gu, J. D. (2018). Mining, pollution and site remediation. International Biodeterioration & Biodegradation, 128, 1-2 https://doi.org/10.1016/j.ibiod.2017.11.006

Herbert-Doctor, L. A., Saavedra-Aguilar, M., Villarreal, M. L., Cardoso-Taketa, A. and Vite-Vallejo, O. (2016). Insecticidal and Nematicidal Effects of Agave tequilana Juice against Bemisia tabaci1 and Panagrellus redivivus2. Southwestern Entomologist, 41(1), 27-41. 41(1), 27-41. https://doi.org/10.3958/059.041.0105

Hernández-Botello, M. T., Barriada-Pereira, J. L., de Vicente, M. S., Mendoza-Pérez, J. A., Chanona-Pérez, J. J., López-Cortez, M. S., and Téllez-Medina, D. I. (2020). Determination of biosorption mechanism in biomass of agave, using spectroscopic and microscopic techniques for the purification of contaminated water. Revista Mexicana de Ingeniería Química, 19(1), 215-226.
https://doi.org/10.24275/rmiq/IA501

Hernández, R. H., Lugo, E. C., Díaz, L., and Villanueva, S. (2005). Extracción y cuantificación indirecta de las saponinas de" agave lechuguilla" Torrey. e-Gnosis, 3.

Iconaru, S., Motelica-Heino, M., Guegan, R., Predoi, M., Prodan, A. and Predoi, D. (2018). Removal of Zinc Ions Using Hydroxyapatite and Study of Ultrasound Behavior of Aqueous Media. Materials, 11(8), 1350. https://doi.org/10.3390/ma11081350

Iñiguez-Covarrubias, G., Díaz-Teres, R., Sanjuan-Dueñas, R., Anzaldo-Hernández, J., Rowell, R. M. (2001). Utilization of by-products from the tequila industry. Part 2: potential value of Agave tequilana Weber azul leaves. Bioresource Technology, 77(2), 101-108. https://doi.org/10.1016/S0960-8524(00)00167-X

Jahanshahi, R. and Zare, M. (2015). Assessment of heavy metals pollution in groundwater of Golgohar iron ore mine area, Iran. Environmental earth sciences, 74(1), 505-520. https://doi.org/10.1007/s12665-015-4057-8

Kaya, A., Onac, C., Alpoguz, H. K., Yilmaz, A. and Atar, N. (2016). Removal of Cr (VI) through calixarene based polymer inclusion membrane from chrome plating bath water. Chemical Engineering Journal, 283, 141-149. https://doi.org/10.1016/j.cej.2015.07.052

Kobielska, P. A., Howarth, A. J., Farha, O. K., Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92-107. https://doi.org/10.1016/j.ccr.2017.12.010

Krishna, K. V. S. and Chandra, K. B. (2018). Development, characterization and evaluation of empagliflozin spherical agglomerates using spherical agglomeration technique. The Pharma Innovation Journal. 7(3), 202-207.

Li, S., Wang, W., Liang, F., and Zhang, W. X. (2017). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of hazardous materials, 322, 163-171. https://doi.org/10.1016/j.jhazmat.2016.01.032

Liu, T., Zhao, L., Sun, D., and Tan, X. (2010). Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. Journal of hazardous materials, 184(1-3), 724-730. https://doi.org/10.1016/j.jhazmat.2010.08.099

Luo, X., Zeng, J., Liu, S., Zhang, L. (2015). An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres. Bioresource Technology 194, 403-406. https://doi.org/10.1016/j.biortech.2015.07.044

Muya, F. N., Sunday, C. E., Baker, P. and Iwuoha, E. (2015). Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review. Water Science and Technology, 73(5), 983-992. https://doi.org/10.2166/wst.2015.567

Oleszek, W. A. (2002). Chromatographic determination of plant saponins. Journal of chromatography A, 967(1), 147-162. https://doi.org/10.1016/S0021-9673(01)01556-4

Proal-Nájera, J. B., Martínez-Tabche, L. M. and Mueller, M. (1997). Estudio sobre el tratamiento de aguas residuales industriales altamente concentradas en metales pesados bajo aglomeración esférica. Journal of the mexican chemical society, 41(2), 51-56.

Rossetti, D., Pepin, X. and Simons, S. J. (2003). Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process. Journal of colloid and interface science, 261(1), 161-169. https://doi.org/10.1016/S0021-9797(03)00043-2

Sanyang, L., Ghani, W. A. W. A. K., Idris, A., and Mansor, A. (2014). Zinc Removal from Wastewater Using Hydrogel Modified Biochar. In Applied Mechanics and Materials (Vol. 625, pp. 842-846). Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/AMM.625.842

SCFI, 2001. NMX-AA-051-SCFI-2001. Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. (Determination of metals by atomic absorption in natural, potable, residual and residual waters treated). Diario Oficial de la Federación.

SSA, 1993. NOM-014-SSA1-1993. Procedimientos sanitarios para el muestreo de agua para uso y consumo humano en sistemas de abastecimiento de agua públicos y privados. (Sanitary procedures for water sampling for human use and consumption in public and private water supply systems). Diario Oficial de la Federación.

SSA. 2000. Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994. Salud ambiental, agua para uso y consume humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización (Permissible limits of quality and treatments to which water must be subjected for potabilization). Diario Oficial de la Federación.

Singaraja, C., Chidambaram, S., Srinivasamoorthy, K., Anandhan, P. and Selvam, S. (2015). A study on assessment of credible sources of heavy metal pollution vulnerability in groundwater of Thoothukudi districts, Tamilnadu, India. Water quality, exposure and health, 7(4), 459-467. https://doi.org/10.1007/s12403-015-012-x

Tadhani, M., and Subhash, R. (2006). Preliminary studies on Stevia rebaudiana leaves: proximal composition, mineral analysis and phytochemical screening. J. Med. Sci, 6(3), 321-326.

Trejo, L., Limones, V., Peña, G., Scheinvar, E., Vargas-Ponce, O., Zizumbo-Villarreal, D., and Colunga-GarcíaMarín, P. (2018). Genetic variation and relationships among agaves related to the production of Tequila and Mezcal in Jalisco. Industrial Crops and Products, 125, 140-149. https://doi.org/10.1016/j.indcrop.2018.08.072

Tsai, W. C., Ibarra-Buscano, S., Kan, C. C., Futalan, C. M., Dalida, M. L. P., and Wan, M. W. (2016). Removal of copper, nickel, lead, and zinc using chitosan-coated montmorillonite beads in single-and multi-metal system. Desalination and Water Treatment, 57(21), 9799-9812. https://doi.org/10.1080/19443994.2015.1035676

Velázquez Ríos, I. O., González-García, G., Mellado-Mojica, E., Veloz-García, R. A., Dzul-Cauich, J. G., López, M. G., and García-Vieyra, M. I. (2019). Phytochemical profiles and classification of Agave syrups using 1H‐NMR and chemometrics. Food science & nutrition, 7(1), 3-13. https://doi.org/10.1002/fsn3.755

Villabona-Ortíz, A., Tejada-Tovar, C., and Ortega-Toro, R. (2019). Modelling of the adsorption kinetics of chromium (VI) using waste biomaterials. Revista Mexicana De Ingeniería Química, 19(1), 401-408. https://doi.org/10.24275/rmiq/IA650

World Health Organisation (WHO), 2011. Guidelines for drinking water quality (4th edn.). ISBN 9241546387.
Published
2020-01-13
How to Cite
Alcázar-Medina, F., Núñez-Núñez, C., Villanueva-Fierro, I., Antileo, C., & Proal-Nájera, J. (2020). Removal of heavy metals present in groundwater from a northern Mexico mining community using Agave tequilana Weber extracts. Revista Mexicana De Ingeniería Química, 19(3), 1187-1199. https://doi.org/10.24275/rmiq/Bio1047

Most read articles by the same author(s)