The green synthesis and characterisation of silver nanoparticles from Serratia spp

  • C. De Silva
  • A. A. Mohd Noor
  • M. M. Abd Karim
  • B. Gunasekaran
  • S. Abd Gani
  • M. A. Cabrera
  • S. A. Ahmad
Keywords: Green synthesis, silver nanoparticles, Serratia sp.

Abstract

The biological means of silver nanoparticles synthesis is an evolutionary step in the process of synthesizing nanoparticles to produce particles within the nano range. With the side effects of the use of chemical and physical synthesis methods yielding toxic and unstable, researches have turned to green synthesis to produce nanoparticles using the mechanism of the bacteria specifically the nitrate reductase enzyme present in most bacteria to break down silver nitrate to silver nanoparticles which are stable and reduces the cost of production. Marine bacteria plays it role by being a reservoir that can intake heavy metals and breaking down with no difficulty as a result of their harsh habitat which is rich in heavy metals. This study was done to prove that marine bacteria can synthesize silver nanoparticles and the nanoparticles are stable and has a range of size and shape through preliminary studies. Marine bacteria were isolated from marine soil samples and later identified to belong to the genus Serratia. Synthesis of the nanoparticles were done using extracellular synthesis where equal amounts of bacterial supernatant and 0.5 M silver nitrate was added and incubated under dark condition for 72 hours. 20 isolates showed positive results for synthesis which were further examined using UV-Visible Spectra analysis showing all 20 samples having a range of size and shape of nanoparticles with peaks observed between the ranges of 340 nm to 440 nm, with the sample strain AQ5-NT6 being the most potent. This study will provide fundamental data and add knowledge to the field of green synthesis of silver nanoparticles.

References

Ashelford, K.E., Fry, J.C., Bailey, M.J. and Day M.J. (2002). Characterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp. quinovora Grimont et al. 1983 to Serratia quinivorans corrig., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 52, 2281-2289.

Baer, D.R. (2011). Surface characterization of nanoparticles: critical needs and significant challenges. Journal of Surface Analysis, 17, 163-169.

Balashanmugam, P. and Kalaichelvan, P.T. (2015). Biosynthesis characterization of silver nanoparticles using Cassia roxburghii D, aqueous extract, and coated on cotton cloth for effective antibacterial activity. International Journal of Nanomedicine, 10, 87-97.

Bretado Aragón, L.A., Jiménez Mejía, R., López-Meza, J.E. and Loeza-Lara, P.D. (2016). Composites of silver-chitosan nanoparticles: a potential source for new antimicrobial therapies. Revista Mexicana de Ciencias Farmaceuticas, 47, 7-25.

Cervantes-Aviles, P., Souza-Brito, E., Bernal-Martinez, A., Reyes-Aguilera, J.A., de la Rosa, G. and Cuevas-Rodriguez, G. (2017). Impact of nanopollutants in aerobic bioreactors for wastewater treatment. Revista Mexicana de Ingeniera Quimica, 16, 247-260.

Chernousova, S. and Epple, M. (2013). Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie (International Edition in English), 52, 1636-1653.

Christen, M., Kulasekara, H.D., Christen, B., Kulasekara, B.R., Hoffman, L.R. and Miller, S.I. (2010). Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science, 328, 1295-1297.

Darroudi, M., Ahmad, M.D., Zamiri, R., Zak, A.K., Abdullah, A.H. and Ibrahim, N.A. (2011). Time-dependent effect in green synthesis of silver nanoparticles. International Journal of Nanomedicine, 6, 677-681.

Devi, J.S. and Bhimba, B.V. (2014). Antibacterial and antifungal activity of silver nanoparticles synthesized using Hypnea muciformis. Bioscience, Biotechnology Research Asia, 11, 235-238.

Flores-Hernández, E.A., Lira-Saldívar, R.H., Acosta-Ortiz, R., Méndez-Arguello, B., García-López, J.I., Díaz-Barriga-Castro, E., González-Torres, A. and García-Carrillo, M. (2020). Synthesis and characterization of calcium phosphatenanoparticles and effect of the agitation type on particlesmorphology. Revista Mexicana de Ingeniería Química, 19, 285-298.

El-Batal, A.I., El-Hendawy, H.H. and Faraag, A.H. (2016). Synthesis and characterization of silver nanoparticles by Serratia marcescens strains isolated from different sources in Egypt. Nature and Science, 14, 205-215.

Graf, C., Vossen, D.L.J., Imhof, A. and van Blaaderen, V. (2003). A general method to coat colloidal particles with silica. Langmuir, 19, 6693-6700.

Iyer, A., Mody, K. and Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50, 340-343.

Jha, A.K., Prasad, K., Prasad, K. and Kulkarni, A.R. (2009). Plant system: Nature’s nanofactory. Colloids and Surface B: Biointerfaces, 73, 219-223.

Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T. and Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces, 76, 50-56.

Lakshmipathy, M. and Nanda, A. (2013). Biocatalysts of silver nanoparticles synthesized using an environmental isolate, Serratia marcescens S01. International Journal of ChemTech Research, 5, 1162-1168.

Lee, S.H. and Jun, B.H. (2019). Silver nanoparticles: synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20, doi:10.3390/ijms20040865.

Majdalawieh, A., Kanan, M.C., El-Kadri, O. and Kanan S.M. (2014). (2014). Recent advances in gold and silver nanoparticles: synthesis and applications. Journal of Nanoscience and Nanotechnology, 14, 4757-4780.

Mock, J.J, Barbic, M., Smith, D.R., Schultz, D.A. and Schultz, S. (2002). Shape effects in plasmon resonance of individual colloidal silver nanoparticles. The Journal of Chemical Physics, 116, doi.10.1063/1.1462610.

Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507-517.

Mukunthan, K.S., Elumalai, E.K., Pate, T.N. and Murty, V.R. (2011). Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pacific Journal of Tropical Biomedicine, 1, 270-274.

Peng, S., McMahon, J.M., Schatz, G.C., Gray, S.K. and Sun, Y. (2010). Reversing the size dependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America, 107, 14530-14534.

Rajeshkumar, S. and Malarkodi, C. (2017). Optimization of Serratia nematodiphila using response surface methodology to silver nanoparticles synthesis for aquatic pathogen control. IOP Conference Series: Materials Science and Engineering, 263, doi:10.1088/1757-899X/263/2/022041.

Rajeshkumar, S., Malarkodi, C., Paulkumar, K. and Mahendran, V. (2013). Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invention Today, 5, 119-125.

Rajeshkumar, S., Malarkodi, C., Paulkumar, K., Vanaja, M., Gnanajobitha, G. and Annadurai, G. (2013). Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginoticus. Nanoscience and Nanotechnology: An International Journal, 3, 21-25.

Shankar, S.S, Rai, A., Ahmad, A. and Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496-502.

Shivakrishna, P., Krishna, M.R.P.G. and Charya, M.A.S. (2013). Synthesis of silver nanoparticles from marine bacteria Pseudomonas aerogenosa. Octa Journal of Bioscience, 1, 108-114.

Simone, S.D., Gallo, A.L., Paladini, F., Sannino, A. and Pollini, M. (2014). Development of silver nano-coatings on silk sutures as a novel approach against surgical infections. Journal of Materials Science: Materials in Medicine, 25, 2205-2214.

Sotelo-Boyas, M.E., Valverde-Aguilar, G., Plascencia-Jatomea, M., Correa-Pacheco, Z.N., Jime ́nez-Aparicio, A., Solorza-Feria, J., Barrera-Necha, L. and Bautista-Ban ̃os, S. (2015). Characterization of chitosan nanoparticles added with essential oils. In vitro effect on Pectobacterium carotovorum. Revista Mexicana de Ingeniería Química, 14, 589-599.

Suber, L., Sondi, I., Matijević, E. and Goia, D.V. (2005). Preparation and the of formation of silver particles of different morphologies in homogeneous solutions. Journal of Colloid and Interface Science, 288, 489-495.

Vanaja, M., Gnanajobitha, G., Paulkumar, K. and Shanmugam, R. (2013). Phytosynthesis of silver nanoparticles by 'Cissus quadrangularis', influence of physiochemical factors. Journal of Nanostructure in Chemistry, 3, 1-8.

Velasco-Rodríguez, V., Cornejo-Mazón, M., Flores-Flores, J.O., Gutiérrez-López, G.F. and Hernández-Sánchez, H. (2012). Preparation and properties of alpha-lipoic acid-loaded chitosan nanoparticles. Revista Mexicana de Ingeniería Química, 11, 155-161.

Zheng, Y., Wang, Z., Peng, F. and Fu, l. (2017). Biosynthesis of silver nanoparticles by Plectranthus amboinicus leaf extract and their catalytic activity towards methylene blue degradation. Revista Mexicana de Ingeniería Química, 16, 41-45.
Published
2020-02-15
How to Cite
De Silva, C., Mohd Noor, A. A., Abd Karim, M. M., Gunasekaran, B., Abd Gani, S., Cabrera, M. A., & Ahmad, S. A. (2020). The green synthesis and characterisation of silver nanoparticles from Serratia spp. Revista Mexicana De Ingeniería Química, 19(3), 1327-1339. https://doi.org/10.24275/rmiq/Bio1059