A new route for the synthesis of Sn3Sb2S6 thin films by chemical deposition

  • E. Barrios-Salgado
  • Y. Rodríguez-Lazcano
  • J. P. Pérez-Orozco
  • A. R. Garcia-Angelmo
Keywords: sulfosalt thin films, chemical deposition, Sn3Sb2S6, thermal annealing process


In this work, SnS-Sb2S3 stack films were formed by sequential chemical deposition, and then they were annealed in a nitrogen atmosphere to synthesize Sn3Sb2S6 thin films successfully.  The structural and optical properties were studied by X-ray diffraction and transmittance and reflectance. All the samples show a high absorption coefficient of > 105 cm-1 in the visible region. Their optical bandgap and refractive index are between 1.6-1.8 eV and 3.00-2.71, respectively, which decrease with the increase of film thickness. The electrical conductivity is in the range of 10-8 to 10-7−1 cm−1. The light-generated current density (JL) is presented as a function of Sn3Sb2S6 film thickness when exposed to air mass 1.5 global (AM1.5G) and solar radiation intensity of 1000 W/m2. In short, Sn3Sb2S6 thin films obtained via the proposed new route exhibit appropriate properties for solar cell applications.


Abdelkader, D., Akkari, F. C., Khemiri, N., Miloua, R., Antoni, F., Gallas, B., Kanzari, M. (2018). Effect of SnS addition on the morphological and optical properties of (SnS)m(Sb2S3)n nano-rods elaborated by glancing angle deposition. Physica B: Condensed Matter 546, 33-43. https://doi.org/10.1016/j.physb.2018.05.016.

Abdelkader, D., Rabeh, M. B., Khemiri, N., Kanzari, M. (2014). Investigation on optical properties of SnxSbySz sulfosalts thin films. Materials Science in Semiconductor Processing 21, 14-19. https://doi.org/10.1016/j.mssp.2014.01.027.

Ali, N., Hussain, A., Ahmed, R. Wan Shamsuri, W. N., Abdel-Salam, N. M., Khenata, R. (2017). Fabrication and characterization of 150 nm tin antimony sulfide thin films, a promising window layer material for homojunction solar cells. Applied Physics A, 123: 282. https://doi.org/10.1007/s00339-017-0879-4.

Ali, N., Hussain, A., Ahmed, R., Wang, M. K., Zhao, C., Haqa, B. U., Fu, Y. Q. (2016). Advances in nanostructured thin film materials for solar cell applications. Renewable and Sustainable Energy Reviews, 59, 726-737. https://doi.org/10.1016/j.rser.2015.12.268.

Aousgi, F. and Kanzari, M. (2011). Study of the Optical Properties of Sn-doped Sb2S3 Thin Films. Energy Procedia 10, 313-322.

Becerra, D., Nair, M. T. S. and Nair, P. K. (2011). Analysis of a Bismuth Sulfide/Silicon Junction for Building Thin Film Solar Cells, Journal of the Electrochemical Society. 158, H741-H749. https://doi.org/10.1149/1.3591045.

Bennaji, N., Fadhli, Y., Mellouki, I., Lahouli, R., Kanzari, M., Yacoubi, N., Khirouni, K. (2019). Thermal, Electrical and Dielectric Characteristics of SnSbS Thin Films for Solar Cell Applications. Journal of Electronic Materials, 1, 1-8. https://doi.org/10.1007/s11664-019-07782-7.

Chalapathi, U., Poornaprakash, B., Ahn, C., Park, S. (2018). Large-grained Sb2S3 thin films with Sn-doping by chemical bath deposition for planar heterojunction solar cells. Materials Science in Semiconductor Processing. 84, 138-143. https://doi.org/10.1016/j.mssp.2018.05.017.

Cullity B. D., Stock, S. R. (2001). Elements of X-ray Diffraction. Pearson, London.

Dittrich, H., Stadler, A., Tropa, D., Hermann‐Josef Schimper, Basch, A. (2009). Progress in sulfosalt research. Physica Status Solidi A: Applications and Materials Science, 206 (5) 1034-1041. https://doi.org/10.1002/pssa.200881242.

Drissi, N., Gassoumi, A., Boughzala, H., Ouerfellic, J., Kanzari, M. (2013). Investigation of structural and optical properties of the sulfosalt SnSb4S7 thin films. Journal of Molecular Structure, 1047, 61-65. https://doi.org/10.1016/j.molstruc.2013.04.068.

Fadhli, Y., Rabhi, A., Kanzari, M. (2016). Optical Constant and Electrical Resistivity of Annealed Sn3Sb2S6 Thin Films. Acta Metallurgica Sinica, 29 (3) 287-294. https://doi.org/10.1007/s40195-016-0391-4.

Garcia-Angelmo A. R., M.T.S. Nair and P. K. Nair (2014). Evolution of crystalline structure in SnS thin films prepared by chemical deposition, Solid State Sciences 30, 26-35. http://dx.doi.org/10.1016/j.solidstatesciences.2014.02.002.

Hodes, G. (2003). Chemically Solution Deposition of Semiconductor Films. Marcel Dekker, Inc., New York.
Hubbell, J. H., Seltzer, S. M. (2004). NIST X-ray Mass Attenuation Coefficient Tables. http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html, accessed 10 May 2016.

Jebali, A., Khemiri, N., Kanzari, M. (2016). The effect of annealing in N2 atmosphere on the physical properties of SnSb4S7 thin films. Journal of Alloys and Compounds. 673, 38-46.

Khan, M. A., Ahmed, A., Ali, N., Iqbal, T., Arif Khan, A., Ullah, M, Shafique, M. (2016). Improved Optical Properties of Tin Antimony Sulphide Thin Films for Photovoltaics. American Journal of Materials Science and Engineering, 4 (1) 1-6. http://pubs.sciepub.com/ajmse/4/1/1

Khemiri, N., Abdelkader, D., Jebali, A., Antoni, F., Kanzari, M. (2018). Effects of excimer laser annealing energy on the properties of thermally evaporated tin antimony sulfide thin films and TEM characterization of the powder. Journal of Materials Science: Materials in Electronics, 29, 16295-16304. https://doi.org/10.1007/s10854-018-9719-3.

Larbi, A., Akkari, F. C., Dahman, Demaille, H. D., Gallas, B. and Kanzari, M. (2016). Structural, Morphological and Optical Properties of Sn3Sb2S6 Thin Films Synthesized by Oblique Angle Deposition. Journal of Electronic Materials. 45, 5487-5496. https://doi.org/10.1007/s11664-016-4714-z

Larbi, A., Dahman, H. and M. Kanzari (2014a). Effect of substrate temperature on structural and optical properties of the new high absorbent Sn3Sb2S6 thin films. Vacuum 110, 34-39. http://dx.doi.org/10.1016/j.vacuum.2014.08.009.

Larbi, A., Khedmi N. and M. Kanzari (2014b). The Effect of the Growth Condition on the Properties of the New Material Sn3Sb2S6 Thin Films. International Journal of Thin Films Science and Technology. 3, 27-34.

Madelung, O. (1992). Data in Science and Technology, Semiconductors Other than Group IV Elements and III-V Compounds. Springer-Verlag, Berlin.

McCandless, B. E. (2005). Glancing incidence X-ray diffraction of polycrystalline thin films. Materials Research Society Symposium Proceedings. 865, 75-79. https://doi.org/10.1557/PROC-865-F4.1

Mellouki, I, Mami, A. Bennaji, N., Fadhli, Y. (2018). Study of doping and annealing effects on thermal properties of SnxSb2Sy (1≤x≤3,4≤y≤6) sulfosalts thin films by electro-pyroelectric technique. Thermochimica Acta, 670, 123-127. https://doi.org/10.1016/j.tca.2018.10.021.

Nair, P. K., Garcia‐Angelmo, A. R., Nair, M. T. S. (2016). Cubic and orthorhombic SnS thin‐film absorbers for tin sulfide solar cells. Physica Status Solidi A 213, 170–177. https://doi.org/10.1002/pssa.201532426

Nelson, J., (2003) The Physics of Solar Cells. Imperial College Press, London.

Ovando-Medina, V. M., Farías-Cepeda, L., Pérez-Aguilar, N. V., Rivera de la Rosa, H., Martínez-Gutiérrez, J., Romero Galarza, A., Cervantes-González, E., Cayetano-Castro, N. (2018). Facile synthesis of low band gap ZnO microstructures. Revista Mexicana de Ingeniería Química 17, 455-562. doi: 10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Ovando
Rodríguez-Lazcano, Y., Nair, M. T. S., Nair, P. K. (2005). Photovoltaic p-i-n structure of Sb2S3 and CuSbS2 absorber. Journal of the Electrochemical Society, 152, G635-G638. https://dx.doi.org/ 10.1149/1.1945387

Schroder, D. K. (1990). Semiconductor Materials and Device Characterization. Wiley, New York.
Smith, R.A. (1978). Semiconductors. Cambridge University Press, Cambridge.

Tlig, F, Gannouni, M., Ben Assaker, I., Chtourou, R. (2017). New investigation on the physical and electrochemical properties of (TAS) thin films grown by electrodeposition technique. Journal of Photochemistry and Photobiology A: Chemistry, 13, 26-35. https://doi.org/10.1016/j.jphotochem.2016.11.013.

Würfel, P. (2005). Physics of Solar Cells – From Principles to New Concepts. Wiley-VCH, Weinheim.
How to Cite
Barrios-Salgado, E., Rodríguez-Lazcano, Y., Pérez-Orozco, J. P., & Garcia-Angelmo, A. R. (2020). A new route for the synthesis of Sn3Sb2S6 thin films by chemical deposition. Revista Mexicana De Ingeniería Química, 19(3), 1363-1373. https://doi.org/10.24275/rmiq/Mat1061

Most read articles by the same author(s)