Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals

  • N.N. Zakaria
  • A.F.A. Roslee
  • C. Gomez-Fuentes
  • A. Zulkharnain
  • M. Abdulrasheed
  • S. Sabri
  • N. Ramírez-Moreno
  • N. Calisto-Ulloa
  • S.A. Ahmad Universiti Putra Malaysia
Keywords: Antarctica, bacteria, diesel, heavy metal, marine

Abstract

The presence of heavy metals in Antarctica is an emerging issue as human influence becomes more discernible over the years. The study of pollution in Antarctica can help people to understand the real influence of human activities on the environmental pollution from polar regions. Bioremediation of petroleum hydrocarbons in the polar environment where toxic metals co-existed involves selecting strictly autochthonous Antarctic strains with dual catabolic competence and tolerance to toxic metals. In this study, diesel degradation was observed in the presence of 1 ppm of eight selected heavy metals; Ag, Al, Cd, Co, Cr, Hg, Ni and Zn. Bacterial growth was inhibited in increasing order of Zn> Cr> Cd> Al> Ni> Hg> Co> Ag. Bacterial growth was the highest in Zn at OD600 0.556 (P>0.05) and lowest in Ag at OD600 0.151 (P<0.05). Diesel degradation was inhibited in the order of Hg> Cr> Al> Zn> Ag> Cd> Ni> Co, which was analysed using gravimetry analysis. Degradation was the highest in Hg at 52.23% (P>0.05) and lowest in Co at 22.76% (P<0.05). This work serves as a pilot study in gathering data to analyse and gather more data for inhibition concentration of heavy metals for the Antarctic marine bacteria.

References

Adriano, D.C (2001) Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals. 2nd Edition, Springer, New York, 867. doi.10.1007/978-0-387-21510-5.

Ahmad, S.A., Asokan, G., Yasid, N.A., Nawawi, N.M., Subramaniam, K., Zakaria, N.N. and Shukor, M.Y. (2018). Effect of heavy metals on biodegradation of phenol by Antarctic bacterium: Arthrobacter bambusae strain AQ5-003. Malaysian Journal of Biochemistry and Molecular Biology, 21, 47-51.

Ahmad, S.A., Shukor, M.Y., Shamaan, N.A., Mac Cormack, W.P. and Syed, M.A. (2013). Molybdate reduction to molybdenum blue by an Antarctic bacterium. BioMed Research International, 2013, doi:10.1155/2013/871941.

Al Defiery, M.E.J. and Reddy, G. (2014). Influence of metal ions concentration on phenol degradation by Rhodococcus pyridinivorans GM3. Mesopotamia Environmental Journal, 1, 30-38.

Al-Saleh, E.S. and Obuekwe, C. (2009). Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils. Journal of Basic Microbiology, 49, 256-263.

Alcázar-Medina, F.A., Núñez-Núñez, C.M., Rodríguez-Rosales, M.D.J., Valle-Cervantes, S., Alarcón-Herrera, M.T. and Proal-Nájera, J.B. (2020). Lead removal from aqueous solution by spherical agglomeration using an extract of Agave lechuguilla Torr. as biosurfactant. Revista Mexicana De Ingeniería Química, 19, 71-84.

Allen, H.E. (1997). Importance of speciation of metals in natural waters and soils to risk assessment. In: Report of international workshop on risk assessment of metals and their inorganic compounds, International Council on Metals and the Environment, Ottawa. pp.141-157.

Amer, R.A., Mapelli, F., El Gendi, H.M., Barbato, M., Goda, D.A., Corsini, A., Cavalca, L., Fuzi, M., Borin, S., Daffonichio, D. and Abdel-Fattah, Y.R. (2015). Bacterial diversity and bioremediation potential of the highly contaminated marine sediments at El-Max District (Egypt, Mediterranean Sea). BioMed Research International, 2015, doi.org/10.1155/2015/981829.

Asgeir, A., Almas, A.R., Bakken, L.R., and Mulder, J. (2004). Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biology and Biochemistry, 36, 805-813.

Atlas, R.M. and Hazen, T.C. (2011). Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environmental Science and Technology, 45, 6709-6715.

Balagurusamy, N. (2005). Anaerobic bioremediation–an untapped potential. Revista Mexicana De Ingeniería Química, 4, 273-287.

Brown, K.E., King, C.K., And Harrison, P.L. (2017). Lethal and behavioral impacts of diesel and fuel oil on the Antarctic amphipod Paramoera walkeri. Environmental Toxicology and Chemistry, 36, 2444-2455.

Bushnell, L.D. and Haas, H.F. (1941). The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41, 653-673.

Celis, J.L., Gonzalez-Acuña, D., Espejo, W., Barra, R. and Chaing, G. (2018). Studying heavy metals on antarctica by using non invasive biotic samples of penguins. Environmental Analysis and Ecology Studies, 1(5). 96-97.

Chakraborty, S. and Owens, G. (2014). Metal distributions in seawater, sediment and marine benthic macroalgae from the South Australian coastline. International Journal of Environmental Science and Technology, 11, 1259-1270.

Chiboub, M., Saadani, O., Fatnassi, I. C., Abdelkrim, S., Abid, G., Jebara, M. and Jebara, S.H. (2016). Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Competes Rendes Biologies, 339, 391-398.

Chu, W-L., Dang, N-L., Kok, Y-Y., Yap, K-S.I., Phang, S-M. and Convey, P. (2019). Heavy metal pollution in Antarctica and its potential impacts on algae. Polar Science, 20, 75-83.

Chu, Z.D., Yang, Y.K., Wang, Y.H., Sun, L.G., Yang, W.Q., Yang, L.J. and Gao, Y.S. (2018). Assessment of heavy metal contamination from penguins and anthropogenic activities on Fildes Peninsula and Ardley Island, Antarctic. Science of The Total Environment, 646, 951-957.

Dai, J., Becquer, T., Rouiller, J.H., Reversat, G., Bernhard-Reversat, F. and Lavelle, P. (2004). Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd- contaminated soils. Applied Soil Ecology, 25, 99-109.

de la Fuente-Nunez, C., Korolik, V., Bains, M., Nguyen, U., Breidenstein, E.B., Horsman, S., Lewenza, S., Burrows, L. and Hancock, R.E. (2012). Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrobial Agents and Chemotherapy, 56, 2696-2704.

De, J., Ramaiah, N. and Vardanyan, L. (2008). Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology (New York), 10, 471-477.

Deng, X. and Wang, P. (2012) Isolation go marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresource and Technology, 121, 342-347.

Durve, A., Naphade, S., Bhot, M., Varghese, J. and Chandra, N. (2013). Quantitative evaluation of heavy metal bioaccumulation by microbes. Journal of Microbiology and Biotechnology Research, 6, 21-32.

Dziewit, L. and Drewniak, L. (2016) Heavy metals resistance, metabolism and transformation—genomic, metagenomic and metatranscrip- tomic studies. In: Dlugonski J (ed) Microbial biodegradation: from omics to function and application. Caister Academic Press, Poole, pp 13-26.

Espejo, W., Celis, J.E., Gonzalez-Acuna, D., Jara, S. and Barra, R. (2014). Concentration of trace metals in excrements of two species of penguins from different locations of the Antarctic Peninsula. Polar Biology, 37, 675-683.

European catalogue, (2002). “EU Water Framework Directive—Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the community action in the field of water policy.

Feher, T., Bogos, B., Mehi, O., Fekete, G., Csorgo, B., Kovacs, K., Posfai, G., Papp, B., Hurst, L.D. and Pal, C. (2012). Competition between transposable elements and mutator genes in bacteria. Molecular Biology and Evolution, 29, 3153-3159.

Ganesh, A. and Lin, J. (2009). Diesel degradation and biosurfactant production by Gram-positive isolates. African Journal of Biotechnology, 8, 5847-5854.

Garrido-Sanz, D., Redondo-Nieto, M., Guirado, M., Jiménez, O.P., Millán, R., Martin, M. and Rivilla, R. (2019) Metagenomic Insights into the bacterial functions of a diesel-degrading consortium for the rhizoremediation of diesel-polluted soil. Genes, 10, doi: 10.3390/genes10060456.

Gikas, P. (2008). Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: A review. Journal of Hazardous Materials, 159, 187-203.

Gillard, B., Chatzievangelou, D., Thomsen, L. and Ullrich, M.S. (2019). Heavy-metal-resistant microorganisms in deep-sea sediments disturbed by mining activity: an application toward the development of experimental in vitro systems. Frontiers in Marine Science, 6, doi:10.3389/fmars.2019.00462

Giller, K.E., Witter, E., and McGrath, S.P. (1998) Toxicity of heavy metals to micro-organisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389-1414.

Giotta, L., Agostiano, A., Italiano, F., Milano, F. and Trotta, M. (2006). Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere, 62, 1490-1499.

Gorlach, U. and Boutron, C.F. (1992). Variations in heavy metals concentrations in Antarctic snows from 1940 to 1980. Journal of Atmospheric Chemistry, 14, 205-222.

Hantke, K. (2005). Bacterial zinc uptake and regulators. Current Opinion in Microbiology, 8, 196-202.

Karamba, K.I, Ahmad, S.A., Zulkharnain, A., Yasid, N.A., Khalid, A. and Shukor, M.Y. (2016). Biodegradation of cyanide and evaluation of kinetic models by immobilized cells of Serratia marcescens strain AQ07. International Journal of Environmental Science and Technology, 14, 1945-1958.

Kotas, J. and Stasicka, Z. (2000) Chromium occurrence in the environment and methods of its speciation. Environmental pollution, 107, 263-283.

Lee, G.L.Y., Ahmad, S.A., Yasid, N.A., Zulkharnain, A., Convey, P., Johari, W. L.W., Alias, S.A., Gonzalez-Rocha, G. and Shukor, M.Y. (2018). Biodegradation of phenol by cold-adapted bacteria from Antarctic soils. Polar Biology, 41, 553-562.

Liu, X., Hu, X., Cao, Y., Pang, W., Huang, J., Guo, P. and Huang, L. (2019). Biodegradation of phenanthrene and heavy metal removal by acid-tolerant Burkholderia fungorum FM-2. Frontiers in Microbiology, 10, doi: 10.3389/fmicb.2019.00408.

Margesin, R., Fonteyne, P.A. and Red, B. (2005). Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Research in Microbiology, 156, 68-75.

Markwiese, J.T. and Colberg, P.J.S. (2000). Bacterial reduction of copper contaminated ferric oxide: Copper toxicity and the interaction between fermentative and iron-reducing bacteria. Archive of Environmental Contamination and Toxicology, 38, 139-146.

Maynard, A.D. (2007). Nanotechnology: the next big thing, or much ado about nothing? The Annals of Occupational Hygiene, 51, 1-12.

Milenkovic, N., Damjanovic, M. and Ristic, M. (2005). Study of heavy metal pollution in sediments from the Iron Gate (Danube River), Serbia and Montenegro. Polish Journal of Environmental Studies, 14, 781-787

Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T. and Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346-2453.

Mustafa, A.D., Juahir, H., Yunus, K., Amran, M.A., Che Hasnam, C.N., Azaman, F., Abidin, I.Z., Azmee, S.H. and Sulaiman, N.H. (2015). Oil spill related heavy metal: A review. Malaysian Journal of Analytical Sciences, 19, 1348-1360.

Nagel. F., Jaap, O., Tramper, J. and Arjen, R. (1999). Improved model system for solid-substrate fermentation: Effects of pH, nutrients and buffer on fungal growth rate. Process Biochemistry, 35, 69-75.

Nies, D.H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730-750.

Oyetibo, G.O., Ilori, M.O., Adebusoye, S.A., Obayori, O.S. and Amund, O.O. (2010). Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigeria contaminated systems. Environmental Monitoring and Assessment, 168, 305-314.

Oyetibo, G.O., Ilori, M.O., Obayori, O.S. and Olukayode (2013). Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt. Journal of Basic Microbiology, 53, 1-11

Ram, Y., Dellus-Gur, E., Bibi, M., Karkare, K., Obolskia, U., Feldman, M.W., Cooper, T.F., Berman, J. and Hadany, L. (2019). Predicting microbial growth in a mixed culture from growth curve data. Proceedings of the National Academy of Sciences of the United States of America, 116, 4698-14707.

Ray, S.A. and Ray, M.K. (2009) Bioremediation of heavy metal toxicity with special reference to chromium. Al Ameen Journal of Medical Science, 2, 57-63

Ribeiro, A.P., Figueira, R.C.L., Martins, C.C., Silva, C.R.A., França, E.J., Bícego, M.C., Mahiques, M.M. and Montone, R.C. (2011). Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 62, 192-196.

Robinson, J.B. and Tuovinen, O.H. (1984). Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiological Reviews, 48, 95-124.

Romaniuk, K., Ciok, A., Decewicz, P., Uhrynowski, W., Budzik, K., Nieckarz, M., Pawlowska, J., Zdanowski, M.K., Bartosik, D. and Dziewit, L. (2018). Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biology, 41, 1319-1333.

Ross, D.S., Sjogren, R.E. and Bartlett, R.J (1981) Behaviour of chromium in soils: IV. Toxicity to microorganisms. Journal of Environmental Quality, 10, 145-148.

Santos, I., R., Silva-Filho, E. V., Schaefer, C., Sella, S.M., Silvaa, C.A., Gomes, V., Passos, M.J.A.C.R. and Ngan, P. H. (2006). Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environmental Pollution, 140, 304-311.

Sengor, S.S., Barua, S., Gikas, P., Ginn, T.R. and Peyton, B. (2009) Influence of heavy metals on microbial growth kinetics including lag time: mathematical modeling and experimental verification. Environmental Toxicology and Chemistry, 28, 2020-2029.

Sheppard, D., Claridge, G. and Campbell, I. (2000). Metal contamination of soils at Scott base, Antarctica. Applied Geochemistry, 15, 513-530.

Silver, S. and Phung le, T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology and Biotechnology, 32, 587-605.

Tin, T., Fleming, Z.L., Hughes, K.A., Ainley, D.G., Convey, P., Moreno, C.A., Pfeiffer, S., Scott, J. and Snape, I. (2009). Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 3-33.

Tuohy, A., Bertler, N., Neff, P., Edwards, R., Emanuelsson, D., Beers, T. and Mayewski, P. (2015). Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. Journal of Geophysical Research: Atmospheres, 10, 996-1011.

United State Environmental Protection Agency, (2002). “Supplemental guidance for developing soil screening levels for superfund sites,” Office of solid waste and emergency response, Washington, DC, USA.

Valdés, J., Román, D., Rivera, L., Ávila, J. and Corté, P. (2011). Metal contents in coastal waters of San Jorge Bay, Antofagasta, northern Chile: a base line for establishing seawater quality guidelines. Environmental Monitoring and Assessment, 183, doi:10.1007/s10661-011-1917-x.

Valentine, N.B., Bolton, H.J., Kingsley, M.T., Drake, G.R. Balkwill, D.L. and Plymale, A.E (1996). Biosorption of cadmium, cobalt, nickel, and strontium by a Bacillus simplex strain isolated from the vadose zone. Journal of Industrial Microbiology, 16, 189–196

Verasoundarapandian, G., Darham, S. and Ahmad, S.A. (2019). Toxicity of molybdenum and microbial application in molybdenum reduction for bioremediation: A mini review. Malaysian Journal of Biochemistry and Molecular Biology, 22, 46-51.

Vergeynst, L., Kjeldsen, K.U., Lassen, P. and Rysgaard, S. (2018) Bacterial community succession and degradation patterns of hydrocarbons in seawater at low temperature. Journal of Hazardous Materials, 353, 127-134.

Villabona-Ortíz, A., Tejada-Tovar, C.N. and Ortega-Toro, R. (2020). Modelling of the adsorption kinetics of chromium (vi) using waste biomaterials. Revista Mexicana De Ingeniería Química, 19, 401-408.

Wales, A.D. and Davies, R.H. (2015). Co-Selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4, 567-604

Wei, G., Fan, L., Zhu, W., Fu, Y., Yu, J., and Tang, M. (2009). Isolation and characterization of the heavy metal resistant bacteria CCNWRS33- 2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. Journal of Hazardous Materials, 162, 50-56.

Wood, B.D., Ginn, T.R. and Dawson, C. (1995). Effects of microbial metabolic lag in contaminant transport and biodegradation modeling. Water Resource Research, 31, 553-563.

Xu, F. and Imlay, J.A. (2012). Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Applied and Environmental Microbiology, 78, 3614-3621.

Yates, G.T. and Smotzer, T. (2007). On the lag phase and initial decline of microbial growth curves. Journal of Theoretical Biology, 244, 511-517.

Zakaria, N.N., Ahmad, S.A., Yin, G.L.L., Yasid, N.A., Manogaran, M., Subramaniam, K., Mazuki, T.A.T., Nawawi, N.M. and Shukor, M.Y. (2018). Biodegradation of phenol by Antarctic bacterium Rhodococcus baikonurensis strain AQ5-001 in the presence of heavy metals. Malaysian Journal of Biochemistry and Molecular Biology, 21, 29-36.

Zwietering, M.H., Jongenburger, I., Rombouts, F.M. and van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied Environmental and Microbiology, 56, 1875-1881.
Published
2020-02-25
How to Cite
Zakaria, N., Roslee, A., Gomez-Fuentes, C., Zulkharnain, A., Abdulrasheed, M., Sabri, S., Ramírez-Moreno, N., Calisto-Ulloa, N., & Ahmad, S. (2020). Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Revista Mexicana De Ingeniería Química, 19(3), 1375-1388. https://doi.org/10.24275/rmiq/Bio1072