EFFECT OF FLUIDIZED BED DRYING ON PHYSICOCHEMICAL AND MICROBIOLOGICAL PROPERTIES OF MEXICAN FRESH CHEESE

  • A. Domínguez-Ni˜no
  • A.N. Buendía-González
  • D. Cantú-Lozano
  • I. Andrade-González
  • G. Luna-Solano
Keywords: fresh cheese, fluidized bed drying, viability, protein content, cost

Abstract

Artisan Mexican fresh cheese traditionally made from raw milk, is often salted and susceptible to changes caused by enzymes and spoilage microorganisms, generating alterations in the product at the sensory and nutritional level. The main purpose of this study was to evaluate the effect of fluidized bed drying on physicochemical and microbiological properties of Mexican fresh cheese. A 23+2(3)+1 rotatable central composite design was used to establish the fluidized bed drying conditions. The factors were drying time 60, 90 and 120 min, drying air temperature 50, 60 and 70 °C, and particle size 0.5, 2 and 3.5 cm. The analysis of variance indicated that time and drying temperature aected significantly (p ± 0.10) on response variables of dried cheese. According to results the lowest values at the end of the process of moisture content, water activity, color dierence, NaCl, fat, energy consumption and production cost were: 0.31%, 0.22, 6.63, 1.50%, 38.07%, 0.5293 kW and 72.11 $·Kg-1 respectively. The highest values for viability, protein content and production were: 6.66 log UFC·g-1 of lactobacillus, 39.45% and 0.0556 Kg·h-respectively

References

Aday, S. y Karagul, Y.Y. (2014). Physicochemical and sensory properties of mihalic cheese. Journal of Food Properties 17, 2207-2227.

Arboatti, A.S., Olivares, M.L., Sabbag, N.G., Costa, S.C., Zorrilla, S.E. y Sihufe, G.A. (2014). The influence of sodium chloride reduction on physicochemical, biochemical, rheological and sensory characteristics of Mozzarella cheese. Journal of Dairy Science & Technology 94, 373-386.

Da Cunha, L.R., García de la Cruz, A. y Menegalli, C.F. (2006). Effects of operating conditions on the quality of mango pulp dried in a spout fluidized bed. Journal of Drying Technology 24, 423-432.

Erbay, Z. y Koca, N. (2012). Energetic, exergetic, and exergoeconomic analyses of spray-drying process during white cheese powder production. Journal of Drying Technology 30, 435-444.

Erbay, Z., Koca, N., Kaymak-Ertekin, F. y Ucuncu, M. (2015). Optimization of spray drying process in cheese powder production. Journal of Food and Bioproducts Processing 93, 156-165.

Faccia, M., Mastromatteo, M., Conte, A. y Del Nobile M.A. (2012). Influence of the different sodium chloride concentrations on microbiological and physicochemical characteristics of Mozzarella cheese. Journal of Dairy Research 79, 390-396.

Farkye, N.Y. (2006). Significance of milk fat in milk powder. En: Advanced Dairy Chemistry (P.F. Fox y P.L.H. McSweeney, eds.), Pp. 451-465. Springer, New York.

Food and Agricultural Organization of the United Nations. (2013). Statistical yearbook world food and agriculture. Editorial FAO, Roma. Ghandi, A., Powell, I.B., Chen, X.D. y Adhikari, B. (2012). The effect of dryer inlet and outlet air temperatures and protectant solids on the survival of Lactococcuslactis during spray drying. Journal of Drying Technology 30, 1649- 1657.

Hernández-Botello, M. T., Chanona-Pérez, J. J., Mendoza-Pérez, J. A., Trejo-Valdéz, M., Calderón-Domínguez, G., Barriada-Pereira, J. L., Sastre de Vicente, M. E. Perea-Flores, M. J. y Terres-Rojas, E. (2014). Eect of the fluidized bed drying on the structure and biosorption capability of Pb+2 of agave epidermis. Revista Mexicana de Ingenier´ıa Qu´ımica 13, 865-885.

Hnosko, J., Clark, S. y Van Hekken, D. (2009). Latin American Cheeses. En: The Sensory Evaluation of Dairy Products, (S. Clark., M. Costello., M. Drake y F. Bodyfelt, eds.), Pp. 489-504. Springer, New York.

James, C.S. (1995). Analytical Chemistry of Foods. Editorial Chapman & Hall, United Kingdom. Jangam, S.V., Law, C.L. y Mujumdar, A.S. (2010). Basic Concepts and Definitions in Drying of Foods, Vegetables and Fruits. ISBN-978-981- 08-6759-1, Singapore.

Kim, E.H.J., Chen, X.D. y Pearce, D. (2009). Surface composition of industrial spray-dried milk powders. 1. Development of surface composition during manufacture. Journal of Food Engineering 94, 163-168.

Kocabiyik, H. y Tezer, D. (2009). Drying of carrot slices using infrared radiation. Journal of Food Science and Technology 44, 953-959.

Kozanoglu, B., Martinez, J., Alvarez, S., Guerrero-Beltr´an, J.A. y Welti-Chanes, J. (2012).Influence of Particle Size on Vacuum- Fluidized Bed Drying. Journal of Drying Technology 30, 138-145.

Kudra, T. (2014). Cost-estimation methods for dryers and drying processes. En: Handbook of Industrial Drying, (A.S. Mujumdar ed.), Pp. 1291-1301. CRC Press, Boca Raton FL.

Liapis, A.I. y Bruttini, R. (2014). Freeze drying. En: Handbook of Industrial Drying, (A.S. Mujumdar, ed.), Pp. 259-282. CRC Press, Boca Raton, FL.

Law, C.L. y Mujumdar, A.S. (2014). Fluidized bed dryers. En: Handbook of Industrial Drying, (A.S. Mujumdar, ed.), Pp. 161-189. CRC Press, Boca Raton, FL.

Lozano-Acevedo, A., Jiménez-Fern´ández, M., Ragazzo-Sánchez, A., Urrea-García, G.R. y Luna-Solano, G. (2011). Fluidized bed dryingof thinly sliced potato (Solanumtuberosum).American Journal of Potatoe Research 88, 360-366.

Luna-Solano, G., Salgado-Cervantes, M.A., Rodríguez-Jimenes, G.C. y García-Alvarado, M.A. (2005). Optimization of brewer’s yeast spray drying process. Journal of Food Engineering 68, 9-18.

Morales-Delgado, D.Y., T´ellez-Medina, D.I., Rivero- Ramírez, N.L., Arellano-C´ardenas, S., López- Cortez, S., Hernández-Sánchez, H., Gutiérrez-López, G. y Cornejo-Mazón. (2014). Effect of convective drying on total anthocyanin content, antioxidant activity and cell morphometric parameters of strawberry parenchymal tissue (Fragaria x ananassa Dutch). Revista Mexicana de Ingenier´ıa Qu´ımica 13, 179-187.

Murthy, Z.V.P. y Joshi, D. (2007). Fluidized bed drying of aonla (Emblicaoffcinalis). Journal of Drying Technology 25, 883-889.

Páez, R., Lavari, L., Vinderola, G., Audero, G., Cuatrin, A., Zaritzky, N. y Reinheimer, J. (2012). Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Journal of Food Research International 48, 748-754.

Pérez-Alonso, C., Campos-Montiel, R. G., Morales-Luna, E., Reyes-Munguía, A., Aguirre-Álvarez, G. y Pimentel-González, D. J. (2015). Stabilization of phenolic compounds from Opuntia oligacantha först by microencapsulation with agave sap (aguamiel). Revista Mexicana de Ingenier´ıa Qu´ımica 3, 579-588.

Pérez-Francisco, J.M., Cerecero-Eníquez, R., Andrade-González, I., Ragazzo-Sánchez, J.A. y Luna-Solano, G. (2008). Optimization of vegetal pear drying using response surface methodology. Journal of Drying Technology 26, 1401-1405.

Ram´ırez-L´opez, C. y V´elez-Ruiz, J.F. (2012). Quesos frescos: propiedades, m´etodos de determinaci´on y factores que afectan su calidad. Temas Selectos de Ingenier´ıa de Alimentos 6-2, 131-148.

Reyes, A., Mahn, A., Guzm´an, C. y Antoniz, D. (2012). Analysis of the drying of broccoli florets in a fluidized pulsed bed. Journal of Drying Technology 30, 1368-1376.

Sharma, G.P. y Prasad, S. (2006). Specific energy consumption in microwave drying of garlic cloves. Journal of Energy 31, 1921-1926.

Shingare, S.P. y Thorat, N.B. (2013). Effect of drying temperature and pretreatment on protein content and color changes during fluidized bed drying of finger millets (Ragi, Eleusinecoracana) sprouts. Journal of Drying Technology 31, 507-518.

Soares, C., Fernando, A.N., Mendes, B. y Martins, P.L.A. (2015). The eect of lowering salt on the physicochemical, microbiological and sensory properties of Sao Joao cheese of Pico Islan. Journal of Dairy Technology 3, 409-419.

Tarhan, S., Telci, I., Tuncay, M.T. y Polatci, H. (2011). Peppermit drying performance of contact dryer in terms of product quality, energy consumption, and drying duration. Journal of Drying Technology 29, 642-651.

Tasirin, M.S., Puspasari, I., Sahalan, Z.A., Mokhtar, M., Kamel, M. y Yaakob, Z. (2014). Drying of citrus sinensis peels in an inert fluidized bed: Kinetics, microbiological activity, vitamin C, and limonene determination. Journal of Drying Technology 32, 497-508.

Tuyen T.T., Truong, V., Fukai, S. y Bhandari B. (2009). Eects of high-temperature fluidized bed drying and tempering on kernel cracking and milling quality of vietnamese rice varieties. Journal of Drying Technology 27, 486-494.

Varming, C., Beck, T.K., Petersen, M.A. y Ardo, Y. (2011). Impact of processing steps on the composition of volatile compounds in cheese powders. Journal of Dairy Technology 64, 197-206.

V´azquez-Ch´avez, L. y Vizcarra-Mendoza, M. (2008). Secado por lecho fluidizado del trigo y su calidad. Revista Mexicana de Ingenier´ıa Qu´ımica 7, 131-137.

Vignolles, M.L., Jeantet, R., Lopez, C. y Schuck, P. (2007). Free fat, surface fat and dairy powders: interactions between process and product. A review. Lait 87, 187-236.

Villegas-Santiago, J., Calderon-Santoyo, M., Ragazzo-S´anchez, A., Salgado-Cervantes, M.A. y Luna-Solano, G. (2011). Fluidized bed and tray drying of thinly sliced mango (Mangiferaindica) pretreated with ascorbic and citric acid. Journal of Food Science and Technology 46, 1296-1302.

Wade, W.A. (1998). Report on biomass drying technology. National renewable energy laboratory. Golden, CO. Code NREL/TP-570-25885.

Yazdanpanah, N. y Langrish, A.G.T. (2012). Releasing fat in whole milk powder during fluidized bed drying. Journal of Drying Technology 30, 1081-1087.
Published
2019-12-09
How to Cite
Domínguez-Ni˜noA., Buendía-González, A., Cantú-Lozano, D., Andrade-González, I., & Luna-Solano, G. (2019). EFFECT OF FLUIDIZED BED DRYING ON PHYSICOCHEMICAL AND MICROBIOLOGICAL PROPERTIES OF MEXICAN FRESH CHEESE. Revista Mexicana De Ingeniería Química, 15(3), 869-881. Retrieved from http://rmiq.org/ojs311/index.php/rmiq/article/view/1073
Section
Food Engineering

Most read articles by the same author(s)