Low temperature hydrochloric acid hydrolysis of corn stover. Kinetic, thermodynamics and characterization

  • J.C. Gómora-Hernández
  • M. del C. Carreño-de-León
  • N. Flores-Alamo Instituto Tecnologico de Toluca
Keywords: Acid hydrolysis, corn stover, holocellulose, kinetic study, reducing sugars.

Abstract

Dilute acid hydrolysis at high temperature is one technique to pretreat and produce monomeric sugars from lignocelluloses; however, its main disadvantage is the production of inhibitory aldehydes. In this paper, sugar production was realized by acid hydrolysis of corn stover employing 2.2 M hydrochloric acid solution and low temperature range (60 – 80 ºC). Experimental data were great fitted to different kinetic models, thermodynamic parameters were calculated from first order, Saeman and Saeman biphasic kinetic model, rate constants showed similar values between each other demonstrating that corn stover hydrolysis is an endothermic and non-spontaneous process capable to generate thermodynamically stable products. FTIR and SEM analyses showed the breaking of lignocellulosic matrix and the depolymerization of polysaccharides after acid treatment. The proposed operational conditions were adequate to produce reducing sugars avoiding decomposition into inhibitory aldehydes.

 

References

Abd-Rahim F., Wasoh H., Zakaria M. R., Ariff A., Kapri R., Ramli N., Siew-Ling L. (2014). Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis. Food Hydrocolloids 42, 309-315.
Adeogun A. I., Idowu M. A., Oladeji O. B., Ofudje E. A., Akinloye A. O. (2018). Kinetic, thermodynamic and optimization studies of dilute acid hydrolysis of Manihot esculenta peels for glucose production. Waste and Biomass Valorization 1-10.
Aguilar-Rivera N., Canizales-Leal M. J. (2004). Barley straw acidic hydrolysis kinetics. Revista Mexicana de Ingeniería Química 3, 257-263.
Alves G. L. V., Marabezi K., Zanbom M. D., Silva C. A. A. (2012). Dilute acid hydrolysis of sugar cane bagasse at high temperatures: A kinetic study of cellulose saccharification and glucose decomposition. Part 1: Sulfuric acid as the catalyst. Industrial & Engineering Chemistry Research 51, 1173-1185.
AOAC. (2005). Official method of Analysis of the Association of Analytical Chemists. Determination of Moisture, ash, protein and fat. AOAC. Washington DC.
APHA. (2005). Standard Methods for Water and Wastewater Examination 21 st ed. American Public Health Association-American Water Works Association. Water Environmental Federation Publication. Washington DC.
Arslan Y., Takac S., Eken-Saracoglu N. (2012). Kinetic study of hemicellulosic sugar production from hazelnut shells. Chemical Engineering Journal 185-186, 23-28.
ASTM. (2013). American Society for Testing and Materials. ASTM D1106-96, Standard Test Method for Acid-Insoluble Lignin in Wood, ASTM International, West Conshohocken.
Bin-Bin H., Ming-Yuan L., Yu-Tao W., Ming-Jun Z. (2018). Enhanced biohydrogen production from dilute acid pretreated sugarcane bagasse by detoxification and fermentation strategy. International Journal of Hydrogen Energy 43, 19366-19374.
Byeong-Il N., Jae-Won L. (2015). Kinetic study on the dilute acid catalysed hydrolysis of waste mushroom medium. Journal of Industrial and Engineering Chemistry 25, 176-179.
Camesasca L., Ramírez M. B., Guigou M., Ferrari M. D., Lareo C. (2015). Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass & Bioenergy 74, 193-201.
Chen L., Zhang H., Li J., Lu M., Guo X., Han L. (2015). A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover. Bioresource Technology 177, 8-16.
Fan L. T., Gharpuray M. M., Lee Y. H. (1987). Cellulose hydrolysis. Editorial Springer, Germany.
Gaur R., Soam S., Sharma S., Gupta R. P., Vansal V.R., Kumar R., Tuli D. K. (2016). Bench scale dilute acid pretreatment optimization for producing fermentable sugars from cotton stalk and physicochemical characterization. Industrial Crops and Products 83, 104-112.
Gonzales R. R., Sivagurunathan P., Sang-Hyoun K. (2016). Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation. International Journal of Hydrogen Energy 41, 21678-21684.
Guerra-Rodríguez E., Portilla-Rivera O. M., Jarquín-Enríquez L., Ramírez J. A. Vázquez M. (2012). Acid hydrolysis of wheat straw: A kinetic study. Biomass & Bioenergy 36, 346-355.
Herrera A., Téllez-Luis S. J., Ramírez J. A., Vázquez M. (2003). Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science 37, 267-274.
Hsu T. C., Guo G. L., Chen W. H., Hwang W. S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology 101, 4907-4913.
Kuglarz M., Alvarado-Morales M., Dabkowska K., Angelidaki I. (2018). Integrated production of cellulosic bioetanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresource Technology 265, 191-199.
Lenihan P., Orozco A., O’Neill E., Ahmad M. N. M., Rooney D. W., Walker G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal 156, 395-403.
Li P., Cai D., Luo Z., Qin P., Chen C., Wang Y., Zhang C., Wang Z., Tan T. (2016). Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology 206, 86-92.
Lu X. B., Zhang Y. M., Liang Y., Yang J., Dan H. B. (2008). Modelling and optimization of the dilute sulphuric acid treatment on corn stover at low temperature. Chemical and Biochemical Engineering Quarterly 22 (2), 134-142.
Mishra A., Ghosh S. (2019). Bioethanol production from various lignocellulosic feedstocks by a novel “Fractional hydrolysis” technique with different inorganic acids and co-culture fermentation. Fuel 236, 544-553.
Muñoz-Páez K. M., Alvarado-Michi E. L., Buitrón G., Valdez-Vázquez I. (2019). Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. International Journal of Hydrogen Energy 44, 2289-2297.
Pappas I. A., Koukoura Z., Tananaki C., Goulas C. (2014). Effect of dilute acid pretreatment severity on the bioconversion efficiency of Phalaris aquatica L. Lignocellulosic biomass into fermentable sugars. Bioresource Technology 166, 395-402.
Rafiqul I.S.M., Sakinah A. M. M. (2012). Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science 71, 431-437.
Saeman J. F. (1945). Kinetics of wood saccharification: Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial and Engineering Chemistry 37, 43-52.
Sánchez-Herrera D., Sánchez O., Houbron E., Rustrian E., Toledano T., Tapia-Tussel R., Alzate-Gaviria L. A. (2018). Biomethane potential from sugarcane straw in Veracruz, Mexico: Combined Liquid hot water pretreatment and enzymatic or Biological hydrolysis. Revista Mexicana de Ingeniería Química 17, 1105-1120.
Saqib A. A. N., Whitney P. J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono and di-saccharide sugars. Biomass & Bioenergy 35, 4748-4750.
Saucedo-Luna J., Castro-Montoya A. J., Rico J. L., Campos-García J. (2010). Optimization of acid hydrolysis of bagasse from Agave tequilana Weber. Revista Mexicana de Ingeniería Química 9, 91-97.
Sawatdeenarunat C., Surendra K. C., Takara D., Oechsner H., Khanal S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology 178, 178-186.
Siripong P., Duangporn P., Takata E., Tsutsumi Y. (2016). Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresource Technology 203, 303-308.
Swati G., Haldar S., Ganguly A., Chatterjee P. K. (2013). Investigations on the kinetics and thermodynamics of dilute acid hydrolysis of Parthenium hysterophorus L. substrate. Chemical Engineering Journal 229, 111-117.
Texco-López A., Cadena-Ramírez A., Álvarez-Cervantes J., Tovar-Jiménez X., Gómez-Aldapa C. A., Castro-Rosas J., Téllez-Jurado A. (2018). Optimization of the acid hydrolysis of cladodes of Opuntia ficus-indica by response surface methodology. Revista Mexicana de Ingeniería Química 17, 1095-1104.
Tizazu B. Z., Moholkar V. S. (2018). Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology 250, 197-203.
Vázquez M., Oliva M., Téllez-Luis S. J., Ramírez J. A. (2007). Hydrolysis of sorghum straw using phosphoric acid: Evaluation of furfural production. Bioresource Technology 98, 3053-3060.
Wise L. E., Murphy M., D’Adieco A. (1946). Chlorite holocellulose, its fractionation and beating on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122, 35-45.
Yu H., Xiao W., Han L., Huang G. (2019). Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis. Bioresource Technology 282, 69-74.
Zhang H., Jin Q., Xu R., Yan L., Lin. (2011). Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor. Frontiers of Chemical Science and Engineering 5 (2), 252-257.
Published
2020-03-05
How to Cite
Gómora-Hernández, J., Carreño-de-León, M. del C., & Flores-Alamo, N. (2020). Low temperature hydrochloric acid hydrolysis of corn stover. Kinetic, thermodynamics and characterization. Revista Mexicana De Ingeniería Química, 19(3), 1425-1437. https://doi.org/10.24275/rmiq/IA1088
Section
Environmental Engineering

Most read articles by the same author(s)