Effect of the adsorbent dose in Pb(II) removal by using sugar cane bagasse: Kinetics and isotherms

  • Candelaria Tejada-Tovar Universidad de Cartagena
  • Humberto Bonilla Mancilla Universidad Nacional del Centro del Perú
  • Jenny Del Pino Moreyra Universidad Nacional del Centro del Perú
  • Angel villabona-ortiz
  • Rodrigo Ortega Toro Professor Universidad de Cartagena, Colombia
Keywords: sugar cane residual bagasse, physical morphology, Lead (II), interaction, kinetics


The objective of this work was to evaluate the effect of the adsorbent dose on the removal of lead (II) present in a synthetic solution using sugarcane bagasse (Saccharum officinarum). The biomaterial was characterized before and after removal by FTIR analysis which reported the presence of hydroxyl, carboxyl and carbonyl functional groups; and SEM analysis showing a porous surface in the form of fibrous cylinders typical of lignocellulosic materials, evidencing that Pb (II) ions are captured on the surface of the adsorbent. It was determined that the best dose of adsorbent was 0.10g obtaining 99.68% removal. The results of the kinetics were adjusted by the first order Pseudo model; and the isothermal adsorption that described the process was Langmuir, determining that the process occurs by physic-sorption and monolayer. It is concluded that the residual cane bagasse is efficient for the preparation of adsorbent and is recommended for the removal of the metal ion under study.


Adamu, A. D., Adie, D. B., Okuofu, C. A., & Giwa, A. (2018). Application of Activated Carbon Prepared from Sugarcane Bagasse for Lead Removal from Wastewater. ATBU Journal of Science, Technology and Education 6(3), 126-140.
Basu, M., Guha, A. K., & Ray, L. (2017). Adsorption of Lead on Cucumber Peel. Journal of Cleaner Production 151, 603–615. https://doi.org/10.1016/j.jclepro.2017.03.028
Canlas, J. J., Go, J. C., Mendoza, A. C., & Dimaano, M. N. (2019). Talisay (Terminalia catappa) seed husk biochar for adsorption of lead (II) ions in artificially contaminated soil. In MATEC Web of Conferences 268, 04011. EDP Sciences. https://doi.org/10.1051/matecconf/201926804011
Çelebi, H., & Gök, O. (2017). Evaluation of lead adsorption kinetics and isotherms from aqueous solution using natural walnut shell. International Journal of Environmental Research 11(1), 83-90. https://doi.org/10.1007/s41742-017-0009-3
Chu, Y., Khan, M. A., Wang, F., Xia, M., Lei, W., & Zhu, S. (2019). Kinetics and equilibrium isotherms of adsorption of Pb(II) and Cu(II) onto raw and arginine-modified montmorillonite. Advanced Powder Technology 30(5), 1067-1078. https://doi.org/10.1016/j.apt.2019.03.002
Cruz, J. F., Cruz, G. J. F., Ainassaari, K., Gómez, M. M., Solís, J. L., & Keiski, R. L. (2018). Microporous activation carbon made of sawdust from two forestry species for adsorption of methylene blue and heavy metals in aqueous system–case of real polluted water. Revista Mexicana de Ingeniería Química 17(3), 847-861. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Cruz
Doke, K. M., & Khan, E. M. (2017). Equilibrium, kinetic and diffusion mechanism of Cr ( VI ) adsorption onto activated carbon derived from wood apple shell. Arabian Journal of Chemistry 10 (Supplement 1), S252–S260. https://doi.org/10.1016/j.arabjc.2012.07.031
Guiza, S. (2017). Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecological Engineering 99, 134-140. https://doi.org/10.1016/j.ecoleng.2016.11.043
Jena, S., & Sahoo, R. K. (2017). Removal of Pb (II) from aqueous solution using fruits peel as a low-cost adsorbent. International Journal of Science, Engineering and Technology 5(1), 5-13.
Karimi, Y., Marofi, S., & Zare, M. A. (2018). Removal of Lead from Polluted Water Using Corn Silk as a Cheap Biosorbent. Journal of health research in community 4(1), 35-48.
Kariuki, Z., Kiptoo, J., & Onyancha, D. (2017). Biosorption studies of lead and copper using roger’s mushroom biomass ‘Lepiota hystrix’. South African Journal of Chemical Engineering 23, 62-70. https://doi.org/10.1016/j.sajce.2017.02.001
Lawal, O. S., Ayanda, O. S., Rabiu, O. O., & Adebowale, K. O. (2017). Application of black walnut (Juglans nigra) husk for the removal of lead (II) ion from aqueous solution. Water Science and Technology 75(10), 2454-2464. doi: 10.2166/wst.2017.125
Leizou, K. E., Ashraf, M. A., Chowdhury, A. J. K., & Rashid, H. (2018). Adsorption studies of Pb2+ and Mn2+ ıons on low-cost adsorbent: Unripe plantain (Musa paradisiaca) peel biomass. Acta Chemica Malaysia (ACMY) 2(1), 11-15. http://doi.org/10.26480/acmy.01.2018.11.15
Ma, H. T., Ho, V. T. T., Pham, N. B., Bach, L. G., & Phan, T. D. (2018). The comparison of surface modification methods of the heavy metals adsorption of activated carbon from rice husk. Applied Mechanics and Materials 876, 91–96. doi: 10.4028/www.scientific.net/amm.876.91
Marimón-Bolívar, W., Tejeda-Benítez, L., & Herrera, A. P. (2018). Removal of mercury (II) from water using magnetic nanoparticles coated with amino organic ligands and yam peel biomass. Environmental Nanotechnology, Monitoring and Management 10(IIi), 486–493. https://doi.org/10.1016/j.enmm.2018.10.001
Medellín-Castillo, N. A., Hernández-Ramírez, M. G., Salazar-Rábago, J. J., Labrada-Delgado, G. J., & Aragón-Piña, A. (2017). Bioadsorción de plomo (II) presente en solución acuosa sobre residuos de fibras naturales procedentes de la industria ixtlera (Agave lechuguilla Torr) y Yucca carnerosana (TREL.) MCKELVEY). Revista Internacional de Contaminación Ambiental 33(2), 269-280.
Mohammad-Rezaei, R. and M. Jaymand, 2019. Graphene quantum dots coated on quartz sand as efficient and low-cost adsorbent for removal of Hg2+ and Pb2+ from aqueous solutions. Environmental Prog Sustainable Energy 38, S24-S31. https://doi.org/10.1002/ep.12911
Morosanu, I., Teodosiu, C., Paduraru, C., Ibanescu, D., & Tofan, L. (2017). Biosorption of lead ions from aqueous effluents by rapeseed biomass. New Biotechnology 39, 110–124. doi:10.1016/j.nbt.2016.08.002
Nikolic, M., Robert, R. J., & Girish, C. R. (2019). The Adsorption of Cadmium, Nickel, Zinc, Copper and Lead from Wastewater using Tea Fiber Waste. Journal of Engineering and Applied Sciences 14(19), 7272-7284. 10.36478/jeasci.2019.7743.7755
Naskar, A., & Bera, D. (2018). Mechanistic exploration of Ni (II) removal by immobilized bacterial biomass and interactive influence of coexisting surfactants. Environmental Progress & Sustainable Energy 37(1), 342-354. https://doi.org/10.1002/ep.12685
Obike, A. I., Igwe, J. C., Emeruwa, C. N., & Uwakwe, K. J. (2018). Equilibrium and kinetic studies of Cu (II), Cd (II), Pb (II) and Fe (II) adsorption from aqueous solution using cocoa (Theobroma cacao) pod husk. Journal of Applied Sciences and Environmental Management 22(2), 182-190. http://dx.doi.org/10.4314/jasem.v22i2.5
Pollack Velásquez, M., Helfgott Lerner, S., & Tejada Soraluz, J. (2018). El cultivo de caña de azúcar en la Costa del Perú durante los eventos de El Niño 1982-83 y 1997-98. Ecología Aplicada 17(1), 77-84. http://dx.doi.org/10.21704/rea.v17i1.1176
Ray, J., S. Jana, S.K. Bhanja & T. Tripathy, 2018. Efficient removal f Co (II), Ni (II) and Zn (II) metal ions from binary and ternary solutions using a pH responsive bifunctional graft copolymer. Colloid and Polymer Science 296, 1275-1291. 10.1007/s00396-018-4345-4
Sahmoune, M. N. (2019). Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environmental Chemistry Letters 17(2), 697-704. https://doi.org/10.1007/s10311-018-00819-z
Singh, N., Kumari, A., & Balomajumder, C. (2018). Modeling studies on mono and binary component biosorption of phenol and cyanide from aqueous solution onto activated carbon derived from saw dust. Saudi Journal of Biological Sciences 25, 1454-1467. https://doi.org/10.1016/j.sjbs.2016.01.007
Tejada-Tovar, C., Gonzalez-Delgado, A. D., & Villabona-Ortiz, A. (2019). Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Applied Sciences 9(21), 4486.
Tejada Tovar, C., Herrera, A., & Núñez Zarur, J. (2016). Remoción de plomo por biomasas residuales de cáscara de naranja (Citrus sinensis) y zuro de maíz (Zea mays). Revista U.D.C.A.: Actualidad & Divulgación Científica 19(1), 169-178. https://doi.org/10.31910/rudca.v19.n1.2016.126
Tejada-Tovar, C., Villabona-Ortiz, Á., & Garcés-Jaraba, L. (2015a). Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. TecnoLógicas 18(34), 109–123. https://doi.org/10.22430/22565337.209
Tejada Tovar, C., Villabona Ortiz, Á., & Garcés Jaraba, L. E. (2015b). Kinetics of adsorption in mercury removal using cassava (Manhiot esculenta) and lemon (Citrus limonum) wastes modified with citric acid. Ingeniería y Universidad 19(2), 283-298. https://doi.org/10.11144/Javeriana.iyu19-2.kamr
Torres-Santillan, E., Capula-Colindres, S., Reza-San German, C. M., Cayetano-Castro, N., & Villagarcia-Chavez, E. (2018). Effect of functional groups in the structure of carbon nanotubes to adsortion grade of cadmium ions. Revista Mexicana de Ingeniería Química 17 (3), 955-961. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Torres
US-EPA (2014). Code of Federal Regulations 40 EPA Part 423 Appendix A. US EPA. [Online]: https://www3.epa.gov/region1/npdes/permits/generic/prioritypollutants.pdf
Verma, S.P. and B. Sarkar, 2018. Simultaneous removal of Cd (II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: Flux decline, adsorption kinetics and isotherm studies. Journal of Environmental Management 213, 217-235. 10.1016/j.jenvman.2018.02.069.
Vilardi, G., Di Palma, L., & Verdone, N. (2018). Heavy metals adsorption by banana peels micro-powder: Equilibrium modeling by non-linear models. Chinese Journal of Chemical Engineering 26(3), 455-464. https://doi.org/10.1016/j.cjche.2017.06.026
Villabona-Ortíz, A., Tejada-Tovar, C. N., & Ortega-Toro, R. (2020). Modelling of the adsorption kinetics of chromium (VI) using waste biomaterials. Revista Mexicana de Ingeniería Química 19(1), 401-408. https://doi.org/10.24275/rmiq/IA650
Vizcaíno-Mendoza, L., Fuentes-Molina, N., González-Fragozo, H. (2017). Adsorción de plomo (II) en solución acuosa con tallos y hojas de Eichhornia crassipes. Revista U.D.C.A. Actualidad & Divulgación Científica 20(2), 435-444. https://doi.org/10.31910/rudca.v20.n2.2017.400
Zhou, Z., Y.G. Liu, S.B. Liu, H.Y. Liu and G.M. Zeng et al., 2017. Sorption performance and mechanisms of arsenic (V) removal by magnetic gelatin-modified biochar. Chemical Engineering Journal 314, 223-231. https://doi.org/10.1016/j.cej.2016.12.113
How to Cite
Tejada-Tovar, C., Bonilla Mancilla, H., Del Pino Moreyra, J., villabona-ortiz, A., & Ortega Toro, R. (2020). Effect of the adsorbent dose in Pb(II) removal by using sugar cane bagasse: Kinetics and isotherms. Revista Mexicana De Ingeniería Química, 19(3), 1413-1423. https://doi.org/10.24275/rmiq/IA1101
Environmental Engineering