Red dye 40 removal by fixed-bed columns packed with alginate-chitosan sulfate hydrogels

Keywords: chitosan sulfate, alginate, fixed-bed column, pH increase, Red Dye 40


Modified Chitosan was used for the removal of red dye 40 from aqueous solutions at a pH of 5.0. The adsorption was carried out making use of fixed-bed columns packed with beads of Alginate-Chitosan Sulfate (Alg-ChS) hydrogels. Two columns with heights of 13 and 33 cm, and two feed rates (20 and 40 mL/h) were used. The pH of the dye solutions at the exit of the columns was much higher than that at the entrance which can be explained by protons transfer from the aqueous solution to the amino and hydroxyl groups of the Alg-ChS and to the carboxilate groups of the alginate. The increase in pH was favorable for the removal of the dye. The breakthrough time and the amount of dye removed decreased when the flow rate was increased. A greater dye removal was achieved when the higher column was used. After the breakthrough time, the columns continued to remove appreciable amounts of dye and even after 50 hours of operation, column saturation was not obtained.


Acheampong, M., Pakshirajan, K., Annachhatre, A., & Lens, P. N. L. (2012). Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems. In Journal of Industrial and Engineering Chemistry (Vol. 19).

Agulló, E., Mato, R., Peniche, C., Tapia, C., Heras, A., & San Roman, J. (2004). Quitina y Quitosano: Obtención, caracterización y aplicaciones. In Fuentes y Procesos de Obtención.

Aksu, Z., Çaǧatay, S. S., & Gönen, F. (2007). Continuous fixed bed biosorption of reactive dyes by dried Rhizopus arrhizus: Determination of column capacity. Journal of Hazardous Materials, 143(1–2), 362–371.

Al-Remawi, M. M. A. (2012). Properties of chitosan nanoparticles formed using sulfate anions as crosslinking bridges. American Journal of Applied Sciences, 9(7), 1091–1100.

Balleño, A., Aranda-García, F., Morales, J. A., Mendizábal, E., & Katime, I. (2016). Hidrogeles de alginate-quitosano y alginate sulfato de quitosano para la remoción de iones cobre. Revista Iberoamericana de Polímeros, 17(6), 255–265.

Bhatnagar, A., & Sillanpää, M. (2009). Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater - A short review. Advances in Colloid and Interface Science, 152(1–2), 26–38.

Chakraborty, S., Chowdhury, S., & Saha, P. Das. (2013). Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technologies and Environmental Policy, 15(2), 255–264.

Che-Galicia G., Martínez-Vera C., Ruiz-Martínez R. S. and Castillo-Araiza C. O. (2014). Modelado de un adsorbedor de lecho fijo basado en un modelo de isoterma o un modelo cinetico aparente. Revista Mexicana de Ingeniería Química, 13(2), 539–553.

Chen, S., Yue, Q., Gao, B., Li, Q., Xu, X., & Fu, K. (2012). Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study. Bioresource Technology, 113, 114–120.

Chiou, M.-S., Ho, P. Y., & Li, H. Y. (2004). Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes and Pigments, 60(1), 69–84.

Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33(4), 399–447.

Cussler, E. L. (2009). Adsorption. Diffusion: Mass Transfer in Fluid Systems (Cambridge Series in Chemical Engineering). Cambridge: Cambridge University Press. (pp. 375–403).

Dada, A. , Olalekan, A., Olatunya, A., & Dada, O. (2012). Langmuir, Freundlich Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2 + Unto Phosphoric Acid Modified Rice Husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.

Dotto, G. L., Vieira, M. L. G., & Pinto, L. A. A. (2012). Kinetics and Mechanism of Tartrazine Adsorption onto Chitin and Chitosan. Industrial & Engineering Chemistry Research, 51(19), 6862–6868.

Flores-Alamo, N., Solache-Rios, M. J., Gómez-Espinoza, R. M., & García Gaytan, B. (2015). Estudio de adsorción competitiva de cobre y zinc en solución acuosa utilizando Q/PVA/EGDE. Revista Mexicana de Ingeniera Qumica, 14(3), 801–811.

Fourest, E., & Volesky, B. (1996). Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environmental Science and Technology, 30(1), 277–282.

Futalan, C. M., Kan, C. C., Dalida, M. L., Pascua, C., & Wan, M. W. (2011). Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydrate Polymers, 83(2), 697–704.

Gotoh, T., Matsushima, K., & Kikuchi, K. I. (2004). Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere, 55(1), 135–140.

Igberase, E., Osifo, P., & Ofomaja, A. (2014). The adsorption of copper (II) ions by polyaniline graft chitosan beads from aqueous solution: Equilibrium, kinetic and desorption studies. Journal of Environmental Chemical Engineering, 2(1), 362–369.

Jayakumar, R., Nwe, N., Tokura, S., & Tamura, H. (2007). Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules, 40(3), 175–181.

Jeon, Y. S., Lei, J., & Kim, J. H. (2008). Dye adsorption characteristics of alginate/polyaspartate hydrogels. Journal of Industrial and Engineering Chemistry, 14(6), 726–731.

Kyzas, G. Z., & Bikiaris, D. N. (2015). Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs, Vol. 13.

Kyzas, G. Z., Kostoglou, M., & Lazaridis, N. K. (2010). Relating interactions of dye molecules with chitosan to adsorption kinetic data. Langmuir, 26(12), 9617–9626.

López-Cervantes, J., Sánchez-Machado, D. I., Sánchez-Duarte, R. G., & Correa-Murrieta, M. A. (2018). Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan–glutaraldehyde biosorbent. Adsorption Science and Technology, 36(1–2), 215–232.

Mahmoodi, N. M. (2011). Equilibrium, kinetics, and thermodynamics of dye removal using alginate in binary systems. Journal of Chemical and Engineering Data, 56(6), 2802–2811.

Márquez-Rámirez E., Michtchenco A., Zacahua- Tlacuatl G. (2019). Effects of radiation of CO2 laser on natural dolomite for the degradation of azo dye reactive black 5 by photocatalysis. Revista Mexicana de Ingeniería Química, 18(2), 555–569.

McKay, G. (2007). Design models for adsorption systems in wastewater treatment. Journal of Chemical Technology and Biotechnology, 31(1), 717–731.

No, H. K., & Meyers, S. P. (2005). Handbook of Carbohydrate Engineering. Cap. 19. Treatment of Wastewaters with the Biopolymer Chitosan.

Patel, H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9(3), 1–17.

Pérez-Escobedo, A., Díaz-Flores, P.E., Rangel-Méndez, J. R., Cerino-Cordova F. J., Ovando-Medina, V.M., Alcalá-Jáuregui, J. A. (2016). Fluoride adsorption capacity of composites based on chitosan- zeolite-algae. Revista Mexicana de Ingeniería Química, 15(1), 139–147

Piccin, J. S., Dotto, G. L., Vieira, M. L. G., & Pinto, L. A. A. (2011). Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan. Journal of Chemical and Engineering Data, 56(10), 3759–3765.

Pires-Cruz, M. A., Matos-Guimarães, L. C., Ferreira da Costa Júnior, E., Ferreira Rocha, S. D., & da Luz Mesquita, P. (2019). Adsorption of crystal violet from aqueous solution in continuous flow system using bone char. Chemical Engineering Communications, 0(0), 1–10.

Qin, Y. M., Cai, L. L., Feng, D.M., Shi, B.B., Liu, J. J., Zhang, W. T., Shen, Y. C. (2007). Combined use of chitosan and alginate in the treatment of wastewater. Journal of Applied Polymer Science, 104, 3581–3587.

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632.

Ríos-Donato, N., Marmolejo-Carranza, R., Blanco-Aquino, A., García-Gaytán, B., & Mendízabal, E. (2013). Eliminación de colorantes de disoluciones acuosas utilizando sulfato de quitosano. Revista Iberoamericana de Polímeros, 14(5), 257–263.

Rios-Donato, N., Peña-Flores, A. M., Katime, I., Leyva-Ramos, R., & Mendizábal, E. (2017). Kinetics and thermodynamics of adsorption of red dye 40 from acidic aqueous solutions onto a novel chitosan sulfate. Afinidad, 74(579), 214–220.

Ríos Donato, N., Carrión Espinoza, L. G., Mayorga Rivera, J. A., Verduzco Navarro, I. P., Katime, I., & Mendizábal, E. (2018). Removal of Cd ( II ) from aqueous solutions by batch and continuous process using chitosan sulfate dispersed in a calcium alginate hydrogel. Afinidad, 75(582), 112–118.

Rouf, S., & Nagapadma, M. (2015). Modeling of Fixed Bed Column Studies for Adsorption of Azo Dye on Chitosan Impregnated with a Cationic Surfactant. 6(2), 538–545.

Saadi, Z., Saadi, R., & Fazaeli, R. (2015). Dynamics of Pb(II) adsorption on nanostructured γ-alumina: Calculations of axial dispersion and overall mass transfer coefficients In the fixed-bed column. Journal of Water and Health, 13(3), 790–800.

Súarez-Vazquez, S. I., Vidales-Contreras, J. A., Márquez-Reyes, J., Cruz-López, A., & García-Gómez, C. (2019). Remoción del colorante rojo congo usando hidroxido metálico electrocoagulado en una columna de lecho fijo: caracterización, optimización y estudios de modelado. Revista Mexicana de Ingeniera Qumica, 18(3), 1133–1142.

Torres-Segundo, C., Vergara-Sánchez, S., Reyes-Romero, P., Gómez-Díaz, A., Cruz-López, J., & García-Gómez, C. (2019). Effect on discoloration by nonthermal plasma in dissolved textile dyes:acid Black 194. Revista Mexicana de Ingeniería Química, 18(3), 939–947.

Tovar-Gómez, R., Moreno-Virgen, M. R., Dena-Aguilar, J. A., Hernández-Montoya, V., Bonilla-Petriciolet, A., & Montes-Morán, M. A. (2013). Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chemical Engineering Journal, 228, 1098–1109.

Verduzco-Navarro, I. P., Ríos-Donato, N., Mendizabal, E., & Katime, I. (2016). Remoción de colorante Rojo 40 mediante de perlas de alginato-quitosana y alginato- sulfato de quitosana. Revista de Ciencias Ambientales y Recursos Naturales, 2(4), 33–43.

Vijaya, Y., Popuri, S. R., Boddu, V. M., & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72(2), 261–271.

Zhou, Z., Lin, S., Yue, T., & Lee, T.-C. (2014). Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. Journal of Food Engineering, 126, 133–141.

Zou, W., Zhao, L., & Zhu, L. (2013). Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: experiments and prediction of breakthrough curves. Journal of Radioanalytical and Nuclear Chemistry, 295(1), 717–727.

How to Cite
Verduzco-Navarro, I., Jasso-Gastinel, C., Rios-Donato, N., & Mendizábal, E. (2020). Red dye 40 removal by fixed-bed columns packed with alginate-chitosan sulfate hydrogels. Revista Mexicana De Ingeniería Química, 19(3), 1401-1411.
Environmental Engineering