Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage

  • L.M. Rábago-Panduro
  • O. Martín-Belloso
  • J. Welti-Chanes
  • M. Morales-de la Peña
Keywords: Pecan nuts, storage, phenolic compounds, antioxidant capacity


Pecan nut kernels are rich in health-promoting substances such as unsaturated fatty acids, tocopherols, and phenolic compounds. Due to their importance in the human diet, it is essential to evaluate the effects of drying, and storage temperature and time, on these phytochemicals. Moisture, water activity, lipid content, bioactive compounds concentration, and antioxidant capacity of wet and dry pecan nuts (Western variety) were determined. Then kernels and in-shell nuts were stored (240 days) at 4°C and 25°C, monitoring the changes in tocopherols concentration, phenolic content, and antioxidant capacity. Wet and dry kernels exhibited similar fatty acids profile and γ-tocopherol concentration (20.37±0.73 and 19.27±1.62 mg·100 g-1 kernels in dry basis), whereas phenolic content and antioxidant capacity decreased due to the drying process (33.2 and 22.3%, respectively). Throughout storage, condensed tannins concentration of kernels and in-shell nuts reduced by 31.5 and 41.8%, while DPPH antioxidant capacity improved 216.4 and 188.4%, respectively. These results evidenced that drying and storage time are the most significant variables regarding pecan nuts postharvest processing; nonetheless, further research related to the relationship between condensed tannins degradation and the increments in DPPH antioxidant capacity is needed.


Andrés, V., Villanueva, M. J., & Tenorio, M. D. (2014). Simultaneous determination of tocopherols, retinol, ester derivatives and β-carotene in milk- and soy-juice based beverages by HPLC with diode-array detection. LWT - Food Science and Technology, 58, 557–562.
AOAC (1996). Official Methods of Analysis. AOAC International.
Atanasov, A. G., Sabharanjak, S. M., Zengin, G., Mollica, A., Szostak, A., Simirgiotis, M., Huminiecki, Ł., Horbanczuk, O. K., Nabavi, Seyed M. N., & Mocan, A. (2018). Pecan nuts: A review of reported bioactivities and health effects. Trends in Food Science and Technology, 71, 246–257.
Baldwin, E. A., & Wood, B. (2006). Use of edible coating to preserve pecans at room temperature. HortScience, 41, 188–192.
Bello-Huitle, V., Atenco-Fernández, P., & Reyes-Mazzoco, R. (2010). Adsorption studies of methylene blue and phenol onto pecan and castile nutshells prepared by chemical activation. Revista Mexicana de Ingeniería Química, 9, 313–322.
Bors, W., & Michel, C. (2002). Chemistry of the antioxidant effect of polyphenols. Annals of the New York Academy of Sciences, 957, 57–69.
Bouali, I., Trabelsi, H., Herchi, W., Martine, L., Albouchi, A., Bouzaien, G., Sifi, S., Boukhchina, S., & Berdeaux, O. (2014). Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction. Effect of ripening stage on phytosterols and phytostanols composition. Food Chemistry, 164, 309–316.
Carrasco-Del Amor, A. M., Aguayo, E., Collado-González, J., Guy, A., Galano, J. M., Durand, T., & Gil-Izquierdo, Á. (2017). Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radical Research, 51, 141–147.
Christie, W. W. (1989). Gas chromatography and lipids: A practical guide (Third edit). Oily Press.
Christopoulos, M. V., & Tsantili, E. (2012). Storage of fresh walnuts (Juglans regia L.) - Low temperature and phenolic compounds. Postharvest Biology and Technology, 73, 80–88.
Christopoulos, M. V., & Tsantili, E. (2015). Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biology and Technology, 104, 17–25.
Corral-Escárcega, M. C., Ruiz-Gutiérrez, M. G., Quintero-Ramos, A., Meléndez-Pizarro, C. O., Lardizabal-Gutiérrez, D., & Campos-Venegas, K. (2017). Use of biomass-derived from pecan nut husks (Carya illinoinensis) for chromium removal from aqueous solutions. Column modeling and adsorption kinetics studies. Revista Mexicana de Ingeniería Química, 16, 939–953.
de la Rosa, L. A., Alvarez-Parrilla, E., & Shahidi, F. (2011). Phenolic compounds and antioxidant activity of kernels and shells of mexican pecan (Carya illinoinensis). Journal of Agricultural and Food Chemistry, 59, 152–162.
de la Rosa, L. A., Vazquez-Flores, A. A., Alvarez-Parrilla, E., Rodrigo-García, J., Medina-Campos, O. N., Ávila-Nava, A., González-Reyes, S., & Pedraza-Chaverri, J. (2014). Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions. Journal of Functional Foods, 7, 219–228.
do Prado, A. C. P., Manion, B. A., Seetharaman, K., Deschamps, F. C., Barrera Arellano, D., & Block, J. M. (2013). Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts [Carya illinoinensis (Wangenh) C. Koch]. Industrial Crops and Products, 45, 64–73.
Domínguez-Avila, J. A., Alvarez-Parrilla, E., González-Aguilar, G. A., Villa-Rodríguez, J., Olivas-Orozco, G. I., Molina Corral, J., Gómez-García, M. C., & De la Rosa, L. A. (2013). Influence of growing location on the phytochemical content of pecan (Carya illinoinensis) oil. Journal of Food Research, 2, 143–152.
Erickson, M. C., Santerre, C. R., & Malingre, M. E. (1994). Oxidative stability in raw and roasted pecans: Chemical, physical, and sensory measurements. Journal of Food Science, 59, 1234–1238.
Fernandes, G. D., Gómez-Coca, R. B., Pérez-Camino, M. del C., Moreda, W., & Barrera-Arellano, D. (2017). Chemical characterization of major and minor compounds of nut oils: Almond, hazelnut, and pecan nut. Journal of Chemistry, 2017, 1–11.
Fernandes, P., & Cabral, J. M. S. (2007). Phytosterols: Applications and recovery methods. Bioresource Technology, 98, 2335–2350.
Flores-Córdova, M. A., Sánchez-Chávez, E., Chávez-Mendoza, C., García-Hernández, J. L., & Preciado-Rangel, P. (2016). Bioactive compounds and phytonutrients in edible part and nutshell of pecan (Carya illinoinensis). Cogent Food & Agriculture, 2, 1–12.
Flores-Córdova, M. A., Sánchez, E., Muñoz-Márquez, E., Ojeda-Barrios, D. L., Soto-Parra, J. M., & Preciado-Rangel, P. (2017). Phytochemical composition and antioxidant capacity in Mexican pecan nut. Emirates Journal of Food and Agriculture, 29, 346–350.
Flores-Martínez, H., León-Campos, C., Estarrón-Espinosa, M., & Orozco-Ávila, I. (2016). Process optimization for the extraction of antioxidants from mexican oregano (Lippia graveolens HBK) by the response surface methodology (RSM) approach. Revista Mexicana de Ingeniería Química, 15, 773–785.
Fu, M., Qu, Q., Yang, X., & Zhang, X. (2016). Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT - Food Science and Technology, 65, 1126–1132.
Gardea, A. A., Martínez-Téllez, M. A., & Yahia, E. M. (2011). Pecan (Carya illinoiensis (Wangenh.) K. Koch.). Postharvest Biology and Technology of Tropical and Subtropical Fruits (Vol. 4). Woodhead Publishing Limited.
Gong, Y., Pegg, R. B., Carr, E. C., Parrish, D. R., Kellett, M. E., & Kerrihard, A. L. (2017). Chemical and nutritive characteristics of tree nut oils available in the U.S. market. European Journal of Lipid Science and Technology, 119, 1–15.
Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L. D., Hidalgo, F. J., Miyashita, K., Camp, J., Alasalvar, C., Ismail, A. B., Elmore, S., Birch, G. G., Charalampopoulos, D., Astley, S. B., Pegg, R., Zhou, P., & Finglas, P. (2018). Antioxidant activity, total phenolics, and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry, 264, 471–475.
Held, P. (2005). Performing oxygen radical absorbance capacity assays with synergyTMHT. Application Note, Biotek, 9. Retrieved from
Herald, T. J., Gadgil, P., Perumal, R., Bean, S. R., & Wilson, J. D. (2014). High-throughputmicro-plate HCl–vanillin assay for screening tannin content in sorghum grain. Journal of the Science of Food and Agriculture, 94, 2133–2136.
Herrera, E. A. (1994). Early harvest and oven drying temperatures influence pecan kernel flavor. Hortscience, 29, 671–672.
International Nut & Dried Fruit Council. (2019). Nuts & Dried Fruits Statistical Yearbook 2018/2019.
Jia, X., Luo, H., Xu, M., Wang, G., Xuan, J., & Guo, Z. (2019). Investigation of nut qualities of pecan cultivars grown in China. Journal of Plant Sciences, 7, 117–124.
Jia, X., Luo, H., Xu, M., Zhai, M., Guo, Z., Qiao, Y., & Wang, L. (2018). Dynamic changes in phenolics and antioxidant capacity during pecan (Carya illinoinensis) kernel ripening and its phenolics profiles. Molecules, 23, 1–17.
Kader, A. A. (2013). Impact of nut postharvest handling, de-shelling, drying, and storage on quality. Improving the Safety and Quality of Nuts. Pp. 22-34. Woodhead Publishing Limited.
Kanamangala, R. V., Maness, N. O., Smith, M. W., Brusewitz, G. H., Knight, S., & Chinta, B. (1999). Reduced lipid pecans: Chemical alterations and implications for quality maintenance during storage. Journal of the American Society for Horticultural Science, 124, 389–398.
Momchilova, S. M., Taneva, S. P., Zlatanov, D., Antova, G. A., Angelova-Romova, M. J., & Blagoeva, E. (2017). Fatty acids, tocopherols, and oxidative stability of hazelnuts during storage. Bulgarian Chemical Communications, 49, 65–70.
Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (2003). Harper’s Illustrated Biochemistry. McGraw-Hill, Ed.
Nicoli, M. C., Lerici, C. R., Manzocco, L., Mastrocola, D., & Calligaris, S. (2002). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11, 340–346.
Oro, T., Ogliari, P. J., Dias de Mello Castanho Amboni, R., Barrera-Arellano, D., & Mara Block, J. (2008). Evaluación de la calidad durante el almacenamiento de nueces pecán [Carya illinoinensis (Wangenh.) C. Koch] acondicionadas en diferentes envases. Grasas y Aceites, 59, 132–138.
Phatanayindee, S., Borompichaichartkul, C., Srzednicki, G., Craske, J., & Wootton, M. (2012). Changes of chemical and physical quality attributes of macadamia nuts during hybrid drying and processing. Drying Technology, 30, 1870–1880.
Price, M. L., Scoyoc, S. Van, & Butler, L. G. (1978). A Critical Evaluation of the Vanillin Reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26, 1214–1218.
Robbins, K. S., Gong, Y., Wells, M. L., Greenspan, P., & Pegg, R. B. (2015). Investigation of the antioxidant capacity and phenolic constituents of U.S. pecans. Journal of Functional Foods, 18, 1002–1013.
Robbins, K. S., Ma, Y., Wells, M. L., Greenspan, P., & Pegg, R. B. (2014). Separation and characterization of phenolic compounds from U.S. pecans by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 62, 4332–4341.
Roy, M. K., Koide, M., Rao, T. P., Okubo, T., Ogasawara, Y., & Juneja, L. R. (2010). ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. International Journal of Food Sciences and Nutrition, 61, 109–124.
Santerre, C. R. (1994). Pecan Technology. Champman & Hall.
Senter, S. D., & Forbus, W. R. (1978). Leucoanthocyanidin oxidation in pecan kernels: relation to discoloration and kernel quality. Journal of Food Science, 43, 128–134.
Shahidi, F., & John, J. A. (2010). Oxidation and protection of nuts and nut oils. Oxidation in Foods and Beverages and Antioxidant Applications (Vol. 1). Pp. 274-305. Woodhead Publishing Limited.
Shahidi, F., & John, J. A. (2013). Oxidative rancidity in nuts. Improving the Safety and Quality of Nuts. Pp. 198-229. Woodhead Publishing Limited.
Shivakumar, A., & Kumar, M. S. Y. (2018). Critical review on the analytical mechanistic steps in the evaluation of antioxidant activity. Critical Reviews in Analytical Chemistry, 48, 214–236.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2017). Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake, and pharmacological effects. British Journal of Pharmacology, 174, 1244–1262.
Troller, J. A., & Christian, J. H. B. (2014). Lipid oxidation, changes in texture, color, and nutritional quality. Water Activity and Food. Pp. 69–85.
U.S. Department of Agriculture. (2017). USDA National Nutrient Database for Standard Reference.
Vazquez-Flores, A. A., Wong-Paz, J. E., Lerma-Herrera, M. A., Martinez-Gonzalez, A. I., Olivas-Aguirre, F. J., Aguilar, C. N., Wall-Medrano, A., Gonzalez-Aguilar, G. A., Alvarez-Parrilla, E., & de la Rosa, L. A. (2017). Proanthocyanidins from the kernel and shell of pecan (Carya illinoinensis): Average degree of polymerization and effects on carbohydrate, lipid, and peptide hydrolysis in a simulated human digestive system. Journal of Functional Foods, 28, 227–234.
Villarreal-Lozoya, J. E., Lombardini, L., & Cisneros-Zevallos, L. (2007). Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chemistry, 102, 1241–1249.
Villarreal-Lozoya, J. E., Lombardini, L., & Cisneros-Zevallos, L. (2009). Electron-beam irradiation effects on phytochemical constituents and antioxidant capacity of pecan kernels [Carya illinoinensis (Wangenh.) K. Koch] during storage. Journal of Agricultural and Food Chemistry, 57, 10732–10739.
Wang, W., Jung, J., McGorrin, R. J., Traber, M. G., Leonard, S. W., Cherian, G., & Zhao, Y. (2018). Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L.). LWT, 90, 526–534.
Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52, 4026–4037.
Yao, F., Dull, G., & Eitenmiller, R. (1992). Tocopherol quantification by HPLC in pecans and relationship to kernel quality during storage. Journal of Food Science, 57, 1194–1197.
How to Cite
Rábago-Panduro, L., Martín-Belloso, O., Welti-Chanes, J., & Morales-de la Peña, M. (2020). Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage. Revista Mexicana De Ingeniería Química, 19(3), 1439-1452.
Food Engineering