Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage

  • L.M. Rábago-Panduro
  • O. Martín-Belloso
  • J. Welti-Chanes
  • M. Morales-de la Peña
Keywords: Pecan nuts, storage, phenolic compounds, antioxidant capacity

Abstract

Pecan nut kernels are rich in health-promoting substances such as unsaturated fatty acids, tocopherols, and phenolic compounds. Due to their importance in the human diet, it is essential to evaluate the effects of drying, and storage temperature and time, on these phytochemicals. Moisture, water activity, lipid content, bioactive compounds concentration, and antioxidant capacity of wet and dry pecan nuts (Western variety) were determined. Then kernels and in-shell nuts were stored (240 days) at 4°C and 25°C, monitoring the changes in tocopherols concentration, phenolic content, and antioxidant capacity. Wet and dry kernels exhibited similar fatty acids profile and γ-tocopherol concentration (20.37±0.73 and 19.27±1.62 mg·100 g-1 kernels in dry basis), whereas phenolic content and antioxidant capacity decreased due to the drying process (33.2 and 22.3%, respectively). Throughout storage, condensed tannins concentration of kernels and in-shell nuts reduced by 31.5 and 41.8%, while DPPH antioxidant capacity improved 216.4 and 188.4%, respectively. These results evidenced that drying and storage time are the most significant variables regarding pecan nuts postharvest processing; nonetheless, further research related to the relationship between condensed tannins degradation and the increments in DPPH antioxidant capacity is needed.

References

Andrés, V., Villanueva, M. J., & Tenorio, M. D. (2014). Simultaneous determination of tocopherols, retinol, ester derivatives and β-carotene in milk- and soy-juice based beverages by HPLC with diode-array detection. LWT - Food Science and Technology, 58, 557–562. https://doi.org/10.1016/j.lwt.2014.03.025
AOAC (1996). Official Methods of Analysis. AOAC International.
Atanasov, A. G., Sabharanjak, S. M., Zengin, G., Mollica, A., Szostak, A., Simirgiotis, M., Huminiecki, Ł., Horbanczuk, O. K., Nabavi, Seyed M. N., & Mocan, A. (2018). Pecan nuts: A review of reported bioactivities and health effects. Trends in Food Science and Technology, 71, 246–257. https://doi.org/10.1016/j.tifs.2017.10.019
Baldwin, E. A., & Wood, B. (2006). Use of edible coating to preserve pecans at room temperature. HortScience, 41, 188–192.
Bello-Huitle, V., Atenco-Fernández, P., & Reyes-Mazzoco, R. (2010). Adsorption studies of methylene blue and phenol onto pecan and castile nutshells prepared by chemical activation. Revista Mexicana de Ingeniería Química, 9, 313–322.
Bors, W., & Michel, C. (2002). Chemistry of the antioxidant effect of polyphenols. Annals of the New York Academy of Sciences, 957, 57–69. https://doi.org/10.1111/j.1749-6632.2002.tb02905.x
Bouali, I., Trabelsi, H., Herchi, W., Martine, L., Albouchi, A., Bouzaien, G., Sifi, S., Boukhchina, S., & Berdeaux, O. (2014). Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction. Effect of ripening stage on phytosterols and phytostanols composition. Food Chemistry, 164, 309–316. https://doi.org/10.1016/j.foodchem.2014.05.029
Carrasco-Del Amor, A. M., Aguayo, E., Collado-González, J., Guy, A., Galano, J. M., Durand, T., & Gil-Izquierdo, Á. (2017). Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radical Research, 51, 141–147. https://doi.org/10.1080/10715762.2017.1288909
Christie, W. W. (1989). Gas chromatography and lipids: A practical guide (Third edit). Oily Press. https://doi.org/10.1016/0031-9422(89)80324-3
Christopoulos, M. V., & Tsantili, E. (2012). Storage of fresh walnuts (Juglans regia L.) - Low temperature and phenolic compounds. Postharvest Biology and Technology, 73, 80–88. https://doi.org/10.1016/j.postharvbio.2012.06.001
Christopoulos, M. V., & Tsantili, E. (2015). Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biology and Technology, 104, 17–25. https://doi.org/10.1016/j.postharvbio.2015.03.003
Corral-Escárcega, M. C., Ruiz-Gutiérrez, M. G., Quintero-Ramos, A., Meléndez-Pizarro, C. O., Lardizabal-Gutiérrez, D., & Campos-Venegas, K. (2017). Use of biomass-derived from pecan nut husks (Carya illinoinensis) for chromium removal from aqueous solutions. Column modeling and adsorption kinetics studies. Revista Mexicana de Ingeniería Química, 16, 939–953.
de la Rosa, L. A., Alvarez-Parrilla, E., & Shahidi, F. (2011). Phenolic compounds and antioxidant activity of kernels and shells of mexican pecan (Carya illinoinensis). Journal of Agricultural and Food Chemistry, 59, 152–162. https://doi.org/10.1021/jf1034306
de la Rosa, L. A., Vazquez-Flores, A. A., Alvarez-Parrilla, E., Rodrigo-García, J., Medina-Campos, O. N., Ávila-Nava, A., González-Reyes, S., & Pedraza-Chaverri, J. (2014). Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions. Journal of Functional Foods, 7, 219–228. https://doi.org/10.1016/j.jff.2014.02.008
do Prado, A. C. P., Manion, B. A., Seetharaman, K., Deschamps, F. C., Barrera Arellano, D., & Block, J. M. (2013). Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts [Carya illinoinensis (Wangenh) C. Koch]. Industrial Crops and Products, 45, 64–73. https://doi.org/10.1016/j.indcrop.2012.11.042
Domínguez-Avila, J. A., Alvarez-Parrilla, E., González-Aguilar, G. A., Villa-Rodríguez, J., Olivas-Orozco, G. I., Molina Corral, J., Gómez-García, M. C., & De la Rosa, L. A. (2013). Influence of growing location on the phytochemical content of pecan (Carya illinoinensis) oil. Journal of Food Research, 2, 143–152. https://doi.org/10.5539/jfr.v2n5p143
Erickson, M. C., Santerre, C. R., & Malingre, M. E. (1994). Oxidative stability in raw and roasted pecans: Chemical, physical, and sensory measurements. Journal of Food Science, 59, 1234–1238.
Fernandes, G. D., Gómez-Coca, R. B., Pérez-Camino, M. del C., Moreda, W., & Barrera-Arellano, D. (2017). Chemical characterization of major and minor compounds of nut oils: Almond, hazelnut, and pecan nut. Journal of Chemistry, 2017, 1–11. https://doi.org/10.1155/2017/2609549
Fernandes, P., & Cabral, J. M. S. (2007). Phytosterols: Applications and recovery methods. Bioresource Technology, 98, 2335–2350. https://doi.org/10.1016/j.biortech.2006.10.006
Flores-Córdova, M. A., Sánchez-Chávez, E., Chávez-Mendoza, C., García-Hernández, J. L., & Preciado-Rangel, P. (2016). Bioactive compounds and phytonutrients in edible part and nutshell of pecan (Carya illinoinensis). Cogent Food & Agriculture, 2, 1–12. https://doi.org/10.1080/23311932.2016.1262936
Flores-Córdova, M. A., Sánchez, E., Muñoz-Márquez, E., Ojeda-Barrios, D. L., Soto-Parra, J. M., & Preciado-Rangel, P. (2017). Phytochemical composition and antioxidant capacity in Mexican pecan nut. Emirates Journal of Food and Agriculture, 29, 346–350. https://doi.org/10.9755/ejfa.EJFA-2016-08-1075
Flores-Martínez, H., León-Campos, C., Estarrón-Espinosa, M., & Orozco-Ávila, I. (2016). Process optimization for the extraction of antioxidants from mexican oregano (Lippia graveolens HBK) by the response surface methodology (RSM) approach. Revista Mexicana de Ingeniería Química, 15, 773–785.
Fu, M., Qu, Q., Yang, X., & Zhang, X. (2016). Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT - Food Science and Technology, 65, 1126–1132. https://doi.org/10.1016/j.lwt.2015.10.002
Gardea, A. A., Martínez-Téllez, M. A., & Yahia, E. M. (2011). Pecan (Carya illinoiensis (Wangenh.) K. Koch.). Postharvest Biology and Technology of Tropical and Subtropical Fruits (Vol. 4). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092618.143
Gong, Y., Pegg, R. B., Carr, E. C., Parrish, D. R., Kellett, M. E., & Kerrihard, A. L. (2017). Chemical and nutritive characteristics of tree nut oils available in the U.S. market. European Journal of Lipid Science and Technology, 119, 1–15. https://doi.org/10.1002/ejlt.201600520
Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L. D., Hidalgo, F. J., Miyashita, K., Camp, J., Alasalvar, C., Ismail, A. B., Elmore, S., Birch, G. G., Charalampopoulos, D., Astley, S. B., Pegg, R., Zhou, P., & Finglas, P. (2018). Antioxidant activity, total phenolics, and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry, 264, 471–475. https://doi.org/10.1016/j.foodchem.2018.04.012
Held, P. (2005). Performing oxygen radical absorbance capacity assays with synergyTMHT. Application Note, Biotek, 9. Retrieved from http://www.biotek.com/resources/docs/ORAC_Assay_Application_Note.pdf
Herald, T. J., Gadgil, P., Perumal, R., Bean, S. R., & Wilson, J. D. (2014). High-throughputmicro-plate HCl–vanillin assay for screening tannin content in sorghum grain. Journal of the Science of Food and Agriculture, 94, 2133–2136. https://doi.org/10.1002/jsfa.6538
Herrera, E. A. (1994). Early harvest and oven drying temperatures influence pecan kernel flavor. Hortscience, 29, 671–672.
International Nut & Dried Fruit Council. (2019). Nuts & Dried Fruits Statistical Yearbook 2018/2019. https://doi.org/10.1002/9781118464663
Jia, X., Luo, H., Xu, M., Wang, G., Xuan, J., & Guo, Z. (2019). Investigation of nut qualities of pecan cultivars grown in China. Journal of Plant Sciences, 7, 117–124. https://doi.org/10.11648/j.jps.20190705.13
Jia, X., Luo, H., Xu, M., Zhai, M., Guo, Z., Qiao, Y., & Wang, L. (2018). Dynamic changes in phenolics and antioxidant capacity during pecan (Carya illinoinensis) kernel ripening and its phenolics profiles. Molecules, 23, 1–17. https://doi.org/10.3390/molecules23020435
Kader, A. A. (2013). Impact of nut postharvest handling, de-shelling, drying, and storage on quality. Improving the Safety and Quality of Nuts. Pp. 22-34. Woodhead Publishing Limited.
Kanamangala, R. V., Maness, N. O., Smith, M. W., Brusewitz, G. H., Knight, S., & Chinta, B. (1999). Reduced lipid pecans: Chemical alterations and implications for quality maintenance during storage. Journal of the American Society for Horticultural Science, 124, 389–398.
Momchilova, S. M., Taneva, S. P., Zlatanov, D., Antova, G. A., Angelova-Romova, M. J., & Blagoeva, E. (2017). Fatty acids, tocopherols, and oxidative stability of hazelnuts during storage. Bulgarian Chemical Communications, 49, 65–70.
Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (2003). Harper’s Illustrated Biochemistry. McGraw-Hill, Ed.
Nicoli, M. C., Lerici, C. R., Manzocco, L., Mastrocola, D., & Calligaris, S. (2002). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11, 340–346. https://doi.org/10.1016/s0924-2244(01)00014-0
Oro, T., Ogliari, P. J., Dias de Mello Castanho Amboni, R., Barrera-Arellano, D., & Mara Block, J. (2008). Evaluación de la calidad durante el almacenamiento de nueces pecán [Carya illinoinensis (Wangenh.) C. Koch] acondicionadas en diferentes envases. Grasas y Aceites, 59, 132–138. https://doi.org/10.3989/gya.2008.v59.i2.501
Phatanayindee, S., Borompichaichartkul, C., Srzednicki, G., Craske, J., & Wootton, M. (2012). Changes of chemical and physical quality attributes of macadamia nuts during hybrid drying and processing. Drying Technology, 30, 1870–1880. https://doi.org/10.1080/07373937.2012.703275
Price, M. L., Scoyoc, S. Van, & Butler, L. G. (1978). A Critical Evaluation of the Vanillin Reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26, 1214–1218. https://doi.org/10.1021/jf60219a031
Robbins, K. S., Gong, Y., Wells, M. L., Greenspan, P., & Pegg, R. B. (2015). Investigation of the antioxidant capacity and phenolic constituents of U.S. pecans. Journal of Functional Foods, 18, 1002–1013. https://doi.org/10.1016/j.jff.2015.05.026
Robbins, K. S., Ma, Y., Wells, M. L., Greenspan, P., & Pegg, R. B. (2014). Separation and characterization of phenolic compounds from U.S. pecans by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 62, 4332–4341.
Roy, M. K., Koide, M., Rao, T. P., Okubo, T., Ogasawara, Y., & Juneja, L. R. (2010). ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. International Journal of Food Sciences and Nutrition, 61, 109–124. https://doi.org/10.3109/09637480903292601
Santerre, C. R. (1994). Pecan Technology. Champman & Hall.
Senter, S. D., & Forbus, W. R. (1978). Leucoanthocyanidin oxidation in pecan kernels: relation to discoloration and kernel quality. Journal of Food Science, 43, 128–134.
Shahidi, F., & John, J. A. (2010). Oxidation and protection of nuts and nut oils. Oxidation in Foods and Beverages and Antioxidant Applications (Vol. 1). Pp. 274-305. Woodhead Publishing Limited.
Shahidi, F., & John, J. A. (2013). Oxidative rancidity in nuts. Improving the Safety and Quality of Nuts. Pp. 198-229. Woodhead Publishing Limited.
Shivakumar, A., & Kumar, M. S. Y. (2018). Critical review on the analytical mechanistic steps in the evaluation of antioxidant activity. Critical Reviews in Analytical Chemistry, 48, 214–236. https://doi.org/10.1080/10408347.2017.1400423
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2017). Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake, and pharmacological effects. British Journal of Pharmacology, 174, 1244–1262. https://doi.org/10.1111/bph.13630
Troller, J. A., & Christian, J. H. B. (2014). Lipid oxidation, changes in texture, color, and nutritional quality. Water Activity and Food. Pp. 69–85. https://doi.org/10.1016/b978-0-12-700650-5.50010-x
U.S. Department of Agriculture. (2017). USDA National Nutrient Database for Standard Reference.
Vazquez-Flores, A. A., Wong-Paz, J. E., Lerma-Herrera, M. A., Martinez-Gonzalez, A. I., Olivas-Aguirre, F. J., Aguilar, C. N., Wall-Medrano, A., Gonzalez-Aguilar, G. A., Alvarez-Parrilla, E., & de la Rosa, L. A. (2017). Proanthocyanidins from the kernel and shell of pecan (Carya illinoinensis): Average degree of polymerization and effects on carbohydrate, lipid, and peptide hydrolysis in a simulated human digestive system. Journal of Functional Foods, 28, 227–234. https://doi.org/10.1016/j.jff.2016.11.003
Villarreal-Lozoya, J. E., Lombardini, L., & Cisneros-Zevallos, L. (2007). Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chemistry, 102, 1241–1249. https://doi.org/10.1016/j.foodchem.2006.07.024
Villarreal-Lozoya, J. E., Lombardini, L., & Cisneros-Zevallos, L. (2009). Electron-beam irradiation effects on phytochemical constituents and antioxidant capacity of pecan kernels [Carya illinoinensis (Wangenh.) K. Koch] during storage. Journal of Agricultural and Food Chemistry, 57, 10732–10739. https://doi.org/10.1021/jf901719s
Wang, W., Jung, J., McGorrin, R. J., Traber, M. G., Leonard, S. W., Cherian, G., & Zhao, Y. (2018). Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L.). LWT, 90, 526–534. https://doi.org/10.1016/j.lwt.2018.01.002
Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52, 4026–4037. https://doi.org/10.1021/jf049696w
Yao, F., Dull, G., & Eitenmiller, R. (1992). Tocopherol quantification by HPLC in pecans and relationship to kernel quality during storage. Journal of Food Science, 57, 1194–1197. https://doi.org/10.1111/j.1365-2621.1992.tb11297.x
Published
2020-03-07
How to Cite
Rábago-Panduro, L., Martín-Belloso, O., Welti-Chanes, J., & Morales-de la Peña, M. (2020). Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage. Revista Mexicana De Ingeniería Química, 19(3), 1439-1452. https://doi.org/10.24275/rmiq/Alim1149
Section
Food Engineering