Effect of thermal treatment of activated carbon fiber felt for reuse in removal of methylene blue from a synthetic wastewater

  • O.G. Rojas-Valencia https://orcid.org/0000-0003-3638-4387
  • M. Estrada-Flores
  • C.M. Reza-San-Germán
  • E. Torres-Santillán
  • J. Hernández-Fuentes
  • J.L. Ledezma-Martínez
Keywords: reuse, activated carbon fiber felt, removal, methylene blue, calcination.


This work proposes reusing based acrylonitrile activated carbon fiber felt (ACFF) for the removal (adsorption) of a cationic dye (methylene blue, MB) from synthetic wastewater. After every removal process, ACFF was thermally treated (calcinated) for reuse. The surface morphology was characterized by high-resolution scanning electron microscopy (HRSEM), and Fourier transform infrared spectroscopy (FTIR) analysis helped to identify functional groups that allowed adsorption process. Batch experiments were carried out at 27 °C with a pH of 10. Results revealed that after calcination, the MB adsorbed turned to carbon deposits, which desorbed during others removal processes, this allowed reusing of ACFF for several adsorption cycles with no significant change in adsorption capacity. The adsorption data followed Langmuir isotherm with the kinetics of pseudo-first-order, which suggests that chemisorption was carried on for removal of MB. The novelty of this work focuses on reusing, through calcination of ACFF, which allows removal efficiency more than 99% up to ten cycles, whereby removal of methylene blue from wastewater by activated carbon fiber felt could be cheaper than other proposed methods.


Abid, M. F., Zablouk, M. A., & Abid-Alameer, A. M. (2012). Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Journal of Environmental Health Science and Engineering, 9(1), 1–9. https://doi.org/10.1186/1735-2746-9-17

Alcañiz-Monge, J., Bueno-López, A., Lillo-Rodenas, M. Á., & Illán-Gómez, M. J. (2008). NO adsorption on activated carbon fibers from iron-containing pitch. Microporous and Mesoporous Materials, 108(1–3), 294–302. ttps://doi.org/10.1016/j.micromeso.2007.04.011

Amaringo Villa, F. A. (2013). Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. Revista de Investigación Agraria y Ambiental, 4(2), 27. https://doi.org/10.22490/21456453.982

An, H., Feng, B., & Su, S. (2009). CO2 capture capacities of activated carbon fibre-phenolic resin composites. Carbon, 47(10), 2396–2405. https://doi.org/10.1016/j.carbon.2009.04.029

Andrade S. N., Veloso C. M., Fontan C. R. I., Bonomo R. C. F., Santos L. S., Brito M.J.P., D. G. A. (2018). Chemical-activated carbon from coconut (cocos nucifera) endocarp waste and its application in the adsorption of β-lactoglobulin protein. Revista Mexicana de Ingeniería Química, 17(2), 463–475.


Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/3039817

Aziz, B. K. (2013). Removal of textile dyes from waste water of Kiffry textile factory using natural clay of the area. International Journal of Chemical and Environmental Engineering, 4(3).

Balanay, J. A. G., & Lungu, C. T. (2016). Determination of pressure drop across activated carbon fiber respirator cartridges. Journal of Occupational and Environmental Hygiene, 13(2), 141–147. https://doi.org/10.1080/15459624.2015.1091960

Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876. https://doi.org/10.1080/10643389.2017.1393263

Butani, S. A., & Mane, S. J. (2017). Coagulation/flocculation process for cationic, anionic dye removal using water treatment residuals–a review. Internation Journal of Science Technology and Management, 6(4), 1–5.


Carmen, Z., & Daniel, S. (2012). Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, 2741(31). https://doi.org/10.5772/32373

Che-Galicia G., Martínez-Vera C., R.-M. R. S. and C.-A. C. O. (2014). Modelling of a fixed bed adsorbed on isotherm model or an apparent kinetik model. Revista Mexicana de Ingeniería Química, 13(2), 539–553.

Corral-Escárcega M. C., Ruiz-Gutiérrez M. G., Quintero-Ramos A., Meléndez-Pizarro C. O., Lardizabal-Gutiérrez D., C.-V. K. (2017). Use of biomass-derived from pecan nut husks ( carya illinoinensis ) for chromium removal from aqueous solutions. Column modeling and adsorption kinetics studies. Revista Mexicana de Ingeniera Quimica, 3, 939–953.

do Amaral Junior, M. A., Matsushima, J. T., Rezende, M. C., Gonçalves, E. S., Marcuzzo, J. S., & Baldan, M. R. (2017). Production and characterization of activated carbon fiber from textile PAN Fiber. Journal of Aerospace Technology and Management, 9(4), 423–430. https://doi.org/10.5028/jatm.v9i4.831

Dos Santos, A. B., Cervantes, F. J., & Van Lier, J. B. (2004). Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. Applied Microbiology and Biotechnology, 64(1), 62–69. https://doi.org/10.1007/s00253-003-1428-y

EC. (2007). REGULATION (EC) No 1907/2006. Official Journal of the European Union, L 136(7), 3–280.

El-Sayed, G. O., Yehia, M. M., & Asaad, A. A. (2014). Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resources and Industry, 7–8, 66–75. https://doi.org/10.1016/j.wri.2014.10.001

Etico, E. B., On, D. E. L. A. B., Lodos, M., & Soportados, A. (2017). Biokinetic and Zymographic Study of the Acid Blue 74 Dye Biodegradation Using Activated Sludge Onto Activated Carbon. Revista Mexicana de Ingeniería Química, 16(3), 971–982.

Fallon, J. A., Hopkins, W. A., & Fox, L. (2013). A practical quantification method for Heinz bodies in birds applicable to rapid response field scenarios. Environmental Toxicology and Chemistry, 32(2), 401–405. https://doi.org/10.1002/etc.2058

Febrianto, G., Karisma, D., & Mangindaan, D. (2019). Polyetherimide nanofiltration membranes modified by interfacial polymerization for treatment of textile dyes wastewater. IOP Conference Series: Materials Science and Engineering, 622(1). https://doi.org/10.1088/1757-899X/622/1/012019

Gita, S., Hussan, A., & Choudhury, T. G. (2017). Impact of Textile Dyes Waste on Aquatic Environments and its Treatment. Environment & Ecology, 35(3), 2349–2353.

Gómora-Hernández J. C., Serment-Guerrero J.H., Carreño-de-León M.C., F.-A. N. (2020). Voltage production in a plant-microbial fuel cell using agapanthus Africanus. Revista Mexicana de Ingeniería Química, 19(1), 227–237. https://doi.org/https://doi.org/10.24275/rmiq/IA542

Gong, R., Ye, J., Dai, W., Yan, X., Hu, J., Hu, X., Li, S., & Huang, H. (2013). Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Industrial and Engineering Chemistry Research, 52(39), 14297–14303. https://doi.org/10.1021/ie402138w

Hernández-Botello M. T., Barriada-Pereira J.L., Sastre de Vicente M.E., Mendoza-Pérez J.A., Chanona-Pérez J.J., López-Cortez M.S., T.-M. D. I. (2020). Determination of biosorption mechanism in biomass of agave,using spectroscopic and microscopic techniques for thepurification of contaminated water. Revista Mexicana de Ingeniería Química, 19(1), 215–226. https://doi.org/https://doi.org/10.24275/rmiq/IA501

Hesas, R. H., Arami-Niya, A., Wan Daud, W. M. A., & Sahu, J. N. (2013). Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: Application in methylene blue adsorption. BioResources, 8(2), 2950–2966. https://doi.org/10.15376/biores.8.2.2950-2966

Ibupoto, A. S., Qureshi, U. A., Ahmed, F., Khatri, Z., Khatri, M., Maqsood, M., Brohi, R. Z., & Kim, I. S. (2018). Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chemical Engineering Research and Design, 136, 744–752. https://doi.org/10.1016/j.cherd.2018.06.035

Karisma, D., Febrianto, G., & Mangindaan, D. (2018). Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane. IOP Conference Series: Earth and Environmental Science, 109(1), 0–6. https://doi.org/10.1088/1755-1315/109/1/012012

Kuruvilla, A. (2013). Indigenous vs. Factory-Made Activated Carbon Fabric Masks to Reduce Lead Absorption-A Pilot Study. Journal of Bacteriology & Parasitology, S1(01), 2–4. https://doi.org/10.4172/scientificreports.606

Lee, T., Ooi, C. H., Othman, R., & Yeoh, F. Y. (2014). Activated carbon fiber - The hybrid of carbon fiber and activated carbon. Reviews on Advanced Materials Science, 36(2), 118–136.

Méndez-Hernández J. E. and Loera O. (2019). Biotechnological potential of ligninolytic enzymes for pollutant biodegradation in water: from test-tubes to full-scale enzymatic reactors. Revista Mexicana de Ingeniería Química, 1, 397–417. https://doi.org/https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Mendez

Mohamed, R. M. S. R., Norasyikin M., NurFaeeza A. R., & Ibrahim Kutty, A. H. (2014). Colour Removal of Reactive Dye from Textile Industrial Wastewater using Different Types of Coagulants. Asian Journal of Applied Sciences, 02(05), 2321–0893.

Pandit, P., & Basu, S. (2004). Removal of Ionic Dyes from Water by Solvent Extraction Using Reverse Micelles. Environmental Science and Technology, 38(8), 2435–2442. https://doi.org/10.1021/es030573m

Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

Pérez-Osorio, G., Hernández-Aldana, F., Mendoza Hernández, J. C., Arriola-Morales, J., Castillo-Morales, M., Castillo-Morales, M., Gutiérrez-Martin, S. N., & Gutiérrez-Arias, J. M. (2019). Photodegradation of erionyl dye in aqueous medium by sunlight and palladium catalysts. Revista Mexicana de Ingeniera Quimica, 18(3), 1027–1035. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Perez

Quintal-Franco C., Poot-Cobá O., López-Padilla A., Ponce-Caballero C., Gíacoman-Vallejos C., Moreno-Andrade I., G.-E. V. R. (2020). Effect of the water type, the inoculum and the concentrationon the phenanthrene degradation in a fluidized bed reactorusing activated charcoal as a bacterial support. Revista Mexicana de Ingeniería Química, 19(1), 189–204. https://doi.org/https://doi.org/10.24275/rmiq/IA416

Rahman, A., Urabe, T., & Kishimoto, N. (2013). Color Removal of Reactive Procion Dyes by Clay Adsorbents. Procedia Environmental Sciences, 17, 270–278. https://doi.org/10.1016/j.proenv.2013.02.038

Ramos, R. L., Elizabeth, P., Flores, D., María, R., Coronado, G., Mendoza, J., & Aragón, A. (2004). Adsorción de Cd(II) en solución acuosa sobre diferentes tipos de fibras de carbón activado. Revista de La Sociedad Química de México, 48(003), 196–202.

Rodriguez, M., Ciro, H. J., Salcedo, J., & Serna, T. (2020). Revista Mexicana de Ingeniería Q uímica. Revista Mexicana de Ingeniería Química, 12(3), 505–511. http://www.redalyc.org/articulo.oa?id=62029966013

Şahin, Ö., Saka, C., & Kutluay, S. (2013). Cold plasma and microwave radiation applications on almond shell surface and its effects on the adsorption of Eriochrome Black T. Journal of Industrial and Engineering Chemistry, 19(5), 1617–1623. https://doi.org/10.1016/j.jiec.2013.01.032

Said, A., Hakim, M. S., & Rohyami, Y. (2014). The Effect of Contact Time and pH on Methylene Blue Removal by Volcanic Ash. July 2019, 12–15. https://doi.org/10.17758/iaast.a0514002

Salazar-Rabago, J. J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Perez, R., & Cerino-Cordova, F. J. (2017). Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine (Pinus durangensis) sawdust: Effect of operating conditions. Sustainable Environment Research, 27(1), 32–40. https://doi.org/10.1016/j.serj.2016.11.009

Sayʇili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84–93. https://doi.org/10.1016/j.jclepro.2015.01.009

Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan, P. R., & Subburaam, C. V. (2006). Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresource Technology, 97(14), 1618–1625. https://doi.org/10.1016/j.biortech.2005.08.001

Singh, S., Sidhu, G. K., & Singh, H. (2019). Removal of methylene blue dye using activated carbon prepared from biowaste precursor. Indian Chemical Engineer, 61(1), 28–39. https://doi.org/10.1080/00194506.2017.1408431

Su, C. I., Peng, C. C., & Lee, C. Y. (2011). Performance of viscose rayon based activated carbon fabric modified by sputtering silver and continuous plasma treatment. Textile Research Journal, 81(7), 730–737. https://doi.org/10.1177/0040517510388546

Suárez-Vázquez S.I., Vidales-Contreras J.A., Márquez-Reyes J.M., Cruz-López A., G.-G. C. (2019). Removal of congo red dye using electrocoagulated metal hydroxide in a fixed-bed column: characterization, optimization and modeling studies. Revista Mexicana de Ingeniera Quimica, 18(3), 1133–1142.


Tünay, O., Kabdasli, I., Eremektar, G., & Orhon, D. (1996). Color removal from textile wastewaters. Water Science and Technology, 34(11 pt 7), 9–16. https://doi.org/10.1016/S0273-1223(96)00815-3

United Nations Department of Economic and Social Affairs Population Division. (2019). World population prospects 2019. In Department of Economic and Social Affairs. World Population Prospects 2019. (Issue 141). http://www.ncbi.nlm.nih.gov/pubmed/12283219

Vargas, A. M. M., Cazetta, A. L., Kunita, M. H., Silva, T. L., & Almeida, V. C. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168(2), 722–730. https://doi.org/10.1016/j.cej.2011.01.067

Villabona-Ortíz A., Tejada-Tovar C. N., O.-T. R. (2020). Comparative study of the use of starch from agro-industrial materials in thecoagulation-flocculation process. Revista Mexicana de Ingeniería Química, 19(2), 593–601. https://doi.org/https://doi.org/10.24275/rmiq/IA740

Yang, K. S., Kim, B. H., & Yoon, S. H. (2014). Pitch based carbon fibers for automotive body and electrodes. Carbon Letters, 15(3), 162–170. https://doi.org/10.5714/CL.2014.15.3.162

Yusof, N., & Ismail, A. F. (2012). Polyacrylonitrile/acrylamide-based carbon fibers prepared using a solvent-free coagulation process: Fiber properties and its structure evolution during stabilization and carbonization. Polymer Engineering and Science, 52(2), 360–366. https://doi.org/10.1002/pen.22090

Yusof, Norhaniza, Rana, D., Ismail, A. F., & Matsuura, T. (2016). Microstructure of polyacrylonitrile-based activated carbon fibers prepared from solvent-free coagulation process. Journal of Applied Research and Technology, 14(1), 54–61. https://doi.org/10.1016/j.jart.2016.02.001

Zahrim, A. Y., & Hilal, N. (2013). Treatment of highly concentrated dye solution by coagulation/flocculation-sand filtration and nanofiltration. Water Resources and Industry, 3, 23–34. https://doi.org/10.1016/j.wri.2013.06.001

How to Cite
Rojas-Valencia, O., Estrada-Flores, M., Reza-San-Germán, C., Torres-Santillán, E., Hernández-Fuentes, J., & Ledezma-Martínez, J. (2020). Effect of thermal treatment of activated carbon fiber felt for reuse in removal of methylene blue from a synthetic wastewater. Revista Mexicana De Ingeniería Química, 19(3), 1515-1526. https://doi.org/10.24275/rmiq/Mat1184