• C.H. Ortiz-Estrada
  • C. Y. Díaz-Díaz
  • J. Cruz-Olivares
  • C. Pérez-Alonso Universidad Autónoma del Estado de México
Keywords: coenzyme Q10, bioavailability, micronization, supercritical carbon dioxide


Coenzyme Q10 is a powerful antioxidant used on cardiovascular, neurodegenerative and cancer diseases. Its hydrophobic nature do limit its applications, because human body absorbs it with difficulty, that is why it was proposed to increase its bioavailability by diminishing the particle size using supercritical carbon dioxide. It was determined experimentally the phase behavior of the coenzyme in a supercritical system. The equilibrium data and a factorial 2k experimental design were utilized to find how the shape and size of the microparticles are affected by temperature, coQ10 concentration and nozzle diameter. Microparticles were characterized using infrared spectrometry and chromatography. For verify the fundamental chemical structure, the size and the shape of the microparticles was used scanning electronic microscopy. It was found a significant decrease in particle size and a modification of physical structure. The antioxidant power of coQ10 after micronization was measured, showing an increase of this property. Finally, in order to evaluate the bioavailability, the kinetic of solubility was determined in ethanol, having a substantial increase on solubilization speed of micronized coQ10 compared with the commercial one.


Alessi, P., Cortesi, A., Kikic, I., Foster, N., Macnaugfton, S.J. and Colombo, I. (1996). Production of Steroid Drugs Using Supercritical Fluid Processing. Industrial and Engineering Chemistry Research 35, 4718-4726.

Benedetti, L., Bertucco, A. and Pallado, P. (1996). Production of Micronic Particles of Biocompatible Polymer Using Supercritical Carbon Dioxide. Biotechnology and Bioengineering 53, 232-237.

Bhagavan, H.N. and Chopra, R.K. (2007). Coenzyme Q10 Response to Oral Ingestion of Coenzyme Q10 Formulations. Mitochondrion 7S, S78-S88.

Carrillo-Navas, H., González-Rodea, D.A., Cruz-Olivares, J., Barrera-Pichardo, J.F., Román-Guerrero, A. and Pérez-Alonso, C. (2011). Storage Stability and Physicochemical Properties of Passion Fruit Juice Microcapsules by Spray-Drying. Revista Mexicana de Ingeniería Química 10, 421-430.

Cavin, A., Hostettmann, K., Dyatmykow, W. and Potterat, O. (1998). Antioxidant and Lipophilic Constituents of Tinospora Crispa. Planta Medica 64, 393-396.

Chernyak, Y., Henon, F., Harris, R.B., Gould, R.D., Franklin, R.K., Edwards, J.R., DeSimone, J.M. and Carbonell, R.G. (2001). Formation of Perfluoropolyether Coatings by the Rapid Expansion of Supercritical Solutions (RESS) Process. Part 1: Experimental Results. Industrial and Engineering Chemistry Research 40, 6118-6126.

Chiou, A.H., Cheng, H.C. and D.P. Wang, D.P. (2006). Micronization and Microencapsulation of Felodipine by Supercritical Carbon Dioxide. Journal of Microencapsulation 23, 265-276.

Cotelle, N., Bernier, J., Catteau, J., Pommery, J., Wallet, J. and Gaydou, E. (1996). Antioxidant Properties of Hidroxy-flavones. Free Radical and Medicine 20, 35-43.

Foster, N.R., Fariba, D., Charoenchaitrakool, M. and Warwick, B. (2003). Application of Dense Gas Techniques for the Production of Fine Particles. AAPS PharmSciTech 5, 1-7.

Galpern, W.R. and Cudkowic, M.E. (2007). Coenzyme Q Treatment of Neurodegenerative Diseases of Aging. Mitochondrion 7S, S146- S153.

Gámez, E., Luyengi, L., Lee, S., Zhu, L., Zhou, B., Fong, H., Pezzuto, J. and Kinghorn, A. (1998). Antioxidant Flavonoid Glycosides from Daphniphyllum calycinum. Journal of Natural Products 61, 706-708.

García-Márquez, E., Román-Guerrero, A., Pérez-Alonso, C., Cruz-Sosa, F., Jiménez-Alvarado, R. and Vernon-Carter, E.J. (2012). Effect of Solvent-Temperature Extraction Conditions on the Initial Antioxidant Activity and Total Phenolic Content of Muitle Extracts and their Decay Upon Storage at Different pH. Revista Mexicana de Ingeniería Química 11, 1-10.

Helfgen, B., Hils, P., Holzknecht, Ch., T¨urk, M. and Schaber, K. (2001). Simulation of Particle Formation During the Rapid Expansion of Supercritical Solutions. Journal of Aerosol Science 32, 295-319.

Huang, J. and Moriyoshi, T. (2006). Fabrication of Fine Powders by RESS with a Clearance Nozzle. Journal of Supercritical Fluids 37, 292- 297.

Huang, Z., Sun, G.B., Chiew, Y.C. and Kawi, S. (2005). Formation of Ultrafine Aspirin Particles Through Rapid Expansion of SupercriticalSolutions (RESS). Powder Technology 160, 127-134.

Kwauk, X. and Debenedetti, P.G.J. (1993). Mathematical Modeling of Aerosol Formation by Rapid Expansion of Supercritical Solutions in a Converging Nozzle. Journal of Aerosol Science 24, 445-469.

Laplante, S., Souchet, N. and Bryl, P. (2009). Comparison of Low Temperature Processes for Oil and Coenzyme Q10 Extraction from Mackerel and Herring. European Journal of Lipid Science and Technology 111, 135-141.

Lele, A.K. and Shine, A.D. (1994). Effect of RESS Dynamics on Polymer Morphology. Industrial and Engineering Chemistry Research 33, 1476- 1485.

Liu, G.T. and Nagahama, K. (1996). Application of Rapid Expansion of Supercritical Solutions in the Crystallization Separation. Industrial and Engineering Chemistry Research 35, 4626- 4634.

Pecar, D. and Dolecek, V. (2007). Thermodynamic Properties of Coenzyme Q10 in Supercritical Carbon Dioxide. Journal of Supercritical Fluids 40, 200-207.

Reverchon, E., Donsi, G. and Gorgoglione, D. (1993). Salicylic Acid Solubilization in sc- CO2 and its Micronization by RESS. Journal of Supercritical Fluids 6, 241-248.

Salinas-Hernández, R., Ruiz-Trevi˜no, F.A., Ortiz- Estrada, C.H., Luna-Barcenas, G., Prokhorov, Y., Alvarado, J.F.J. and Sanchez, I.C. (2009). Chitin Microestrucutre Formation by Rapid Expansion Techniques with Supercritical Carbon Dioxide. Industrial and Engineering Chemistry Research 48, 769-778.

Sane, A. and Thies, M.C. (2005). The Formation of Fluorinated Tetraphenylporphyrin Nanoparticles via Rapid Expansion Processes: RESS vs. RESOLV. The Journal of Physical Chemistry B. 109, 19688-19695.

Santos, O.T. and Meireles, M.A.A. (2013). Micronization and Encapsulation of Functional Pigment Using Supercritical Carbon Dioxide. Journal of Food Process Engineering 36, 36-49.

Santoyo-Arreola, J.G. (2006). Formación de Partículas de PFOMA mediante CO2SC. Tesis de Maestría en Ciencias en Ingeniería Química, Universidad Iberoamericana. México.

Tom, J.W. and Debenedetti, P.G. (1994). Formation of Bioerodible Polymeric Microspheres and Microparticles by Rapid Expansion of Supercritical Solutions. Biotechnology Progress 7, 403-411.

Türk, M. (2009). Manufacture of Submicron Drug Particles with Enhanced Dissolution Behaviour by Rapid Expansion Processes. Journal of Supercritical Fluids 47, 537-545.

Türk, M. (2000). Influence of Thermodynamic Behaviour and Solute Properties on Homogeneous Nucleation in Supercritical Solutions. Journal of Supercritical Fluids 18, 169-184.

Türk, M., Hils, P., Helfgen, B. Schaber, K., Martin, H.J. and Wahl, M.A. (2002). Micronization of Pharmaceutical Substances by the Rapid Expansion of Supercritical Solutions (RESS): A Promising Method to Improve Bioavailability of Poorly Soluble Pharmaceutical Agents. Journal of Supercritical Fluids 22, 75-84.

Türk, M. (1999). Formation of Small Organic Particles by RESS: Experimental and Theoretical Investigations. Journal of Supercritical Fluids 1, 79-89.

Yildiz, N., Tuna, S., Döker, O. and Calimli, A. (2007). Micronization of Salicylic Acid and Taxol (Paclitaxel) by Rapid Expansion of Supercritical Fluids (RESS). Journal of Supercritical Fluids 41, 440-451.
How to Cite
Ortiz-Estrada, C., Díaz-Díaz, C. Y., Cruz-Olivares, J., & Pérez-Alonso, C. (2020). COENZYME Q10 MICROPARTICLES FORMATION WITH SUPERCRITICAL CARBON DIOXIDE. Revista Mexicana De Ingeniería Química, 14(1), 49-59. Retrieved from

Most read articles by the same author(s)