• E. Agama-Acevedo Instituto Politécnico Nacional Centro de desarrollo de Productos Bíoticos
  • L.A. Bello-Pérez Instituto Politécnico Nacional Centro de desarrollo de Productos Bíoticos
  • G. Pacheco-Vargas Instituto Politécnico Nacional Centro de desarrollo de Productos Bíoticos
  • S. Evangelista-Lozano Instituto Politécnico Nacional Centro de desarrollo de Productos Bíoticos
Keywords: starch, plantain, chemical gelatinization, microscopy, granule size


The structural organization of starch components (amylose and amylopectin) of plantain starch was studied using surface gelatinization. The remnant starch granules were studied in the morphological, thermal, and molecular features. Two reagents were tested to carried out the surface gelatinization; 13 M lithium chloride produced higher damage than 2 M calcium chloride on structure of starch granule, so calcium chloride was used to carried out surface gelatinization at different reaction times. Gelatinized surface increased and the granule size decreased when the reaction time increased. In general, the average temperature and enthalpy of gelatinization decreased when the removed surface increased, showing disorganization or “weakening” of the granule structure. However, surface gelatinization did not affect the X-ray diffraction pattern and the crystallinity level. Knowledge of the organization of plantain starch components (amylose and amylopectin), support to explain the physicochemical, functional and digestibility characteristics, as well as its reactivity when the plantain starch is enzymatic and chemical modified 


AACC. (2000). Approved Methods of the American Association of Cereal Chemists (10th ed.). American Association of Cereal Chemist, St. Paul, MN. EUA.

Aparicio-Saguilan, A., Flores-Huicochea, E., Tovar, J., García-Suárez, F., Gutiérrez-Meraz, F. y Bello-Pérez, L.A. (2005). Resistant starch- rich powders prepared by autoclaving of native and litnerized banana starch: partial characterization. Starch/St ¨arke 57, 405-412.

Dhital, S., Shrestha, A.K. y Gidley, M.J. (2010). Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydrates Polymers 480, 480-488.

Dhital, S., Shrestha, A. K., Hasjim, J. y Gidley, M. J. (2011). Physicochemical and structural properties of maize and potato starches as a function of granule size. Journal of Agricultural and Food Chemistry 59, 10151-10161.

Englyst, H.N. y Cummings, J.H. (1986). Digestion of the carbohydrates of banana (Musa paradisiacal sapientum) in the human small intestine. The American Journal of Clinical Nutrition 44, 42- 50.

Espinoza-Solís, V., Jane, J.L. y Bello-Pérez, L.A. (2009). Physicochemical characteristics of starches from unripe fruits of mango and banana. Starch/St ¨arke 61, 291-299.

Espinoza-Solís, V., Sánchez-Ambriz, B., Hamaker, B. y Bello-Pérez, L.A. (2011). Fine structural characteristics related to digestion properties of acid-treated fruit starches. Starch/St ¨arke 63, 717-727.

Hermans, P.H. y Weidinger, A. (1948). Quantitative X-ray investigations on the crystallinity of cellulose fibers: a background analysis. Journal of Applied Physics 19, 491-506.

Jane, J.L. (1993). Mechanism of starch gelatinization in neutral salt solutions. Starch/St ¨arke 45, 161- 166.

Jane, J., Chen, Y.Y., Lee, L.F., McPerson A.R., Wong K.S., Radosavljevic, M. y Kasemsuwan, T. (1999). Effect of amylopectin branch chain and amylose content on gelatinization and pasting properties. Cereal Chemistry 76, 629-937.

Kuakpetoon, D. y Wang, Y.J. (2007). Internal structure and physicochemical properties of corn starches as reveled by chemical surface gelatinization. Carbohydrate Research 42, 2253-2263.

Nuñez-Santiago, M.C., García-Suárez, F.J., Gutiérrez-Meraz, F., Sánchez-Rivera, M.M. y Bello-Pérez, L.A. (2011). Some intrinsic and extrinsic factors of acetylated starches: Morphological, physicochemical and structural characteristics. Revista Mexicana de Ingenier´ıa Qu´ımica 10, 501-512.

OBrien, S. y Wang, Y.J. (2008). Susceptibility of annealed starches to hydrolysis by a-amylase and glucoamylase. Carbohydrate Polymers 72, 597-607.

Pan, D. D. y Jane, J. (2000). Internal structure of normal maize starch granules revealed by chemical surface gelatinization. Biomacromolecules 1, 126-132.

Pérez, S. y Bertof, E. (2010). The molecular structures of starch component and their contribution to the architecture of starch granules: A comprehensive review. Starch/St ¨arke 62, 389-420.

Romero-Bastida, C.A., Zamudio-Flores, P.B. y Bello-Pérez, L.A. (2011). Antimicrobianos en películas de almidón oxidado de Plátano: Efecto sobre la actividad antibacteriana, microestructura, propiedades mecánicas y de barrera. Revista Mexicana de Ingeniería Química 10, 445-453.

Sánchez-Rivera, M.M., Almanza-Benítez, S., Bello Pérez, L.A., Mendez-Montealvo, G., Santiago Núñez, M.C. y Rodríguez-Ambriz, S.L. (2013). Acetylation of banana (Musa paradisiaca L.) and corn (Zea mays L.) starches using a microwave heating procediure and iodine as a catalyst: II. Rheological and structural studies. Carbohydrate Polymers 92, 1256-1261.

Smith, A.M. (2001). The biosynthesis of the starch granule. Biomacromolecules 2, 335-341.

Tester, R., Karkalas, J. y Qi, X. (2004). Starchcomposition, fine structure and architecture. Journal of Cereal Science 39, 151-165.

Wang, L.Z. y White, P.L. (1994). Functional properties of oat starches and relationships among functional and structural characteristics. Cereal Chemistry 71, 451-458. Whistler, R. L. (1998). Banana starch production. Patent 5,797,985. West Lafayette Ind.

Zamudio-Flores, P.B. y Bello-Pérez, L.A. (2013). Elaboración y caracterización de películas de glicoproteínas obtenidas mediante reacción de Maillard utilizando almidón acetilado y aislado proteico de suero lácteo. Revista Mexicana de Ingeniería Química 12, 401-413
How to Cite
Agama-Acevedo, E., Bello-Pérez, L., Pacheco-Vargas, G., & Evangelista-Lozano, S. (2020). INNER STRUCTURE OF PLANTAIN STARCH GRANULES BY SURFACE CHEMICAL GELATINIZATION: MORPHOLOGICAL, PHYSICOCHEMICAL AND MOLECULAR PROPERTIES. Revista Mexicana De Ingeniería Química, 14(1), 73-80. Retrieved from
Food Engineering