Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes

  • A. Serrano-Meza Instituto Politécnico Nacional
  • M.A. Garzón-Zúñiga Instituto Politécnico Nacional
  • B.E. Barragán-Huerta Instituto Politécnico Nacional
  • E.B. Estrada-Arriaga Instituto Mexicano de Tecnología del Agua
  • N. Almaraz-Abarca Instituto Politécnico Nacional
  • J.G. García-Olivares Instituto Politécnico Nacional
Keywords: Anaerobic digestion inhibition, wastewater treatment, wastes treatment, inhibition recovery, inhibition mitigation

Abstract

Based on a literature review, a set of inhibition indicators is presented for each stage of anaerobic digestion according to the behavior of certain parameters: the reduction of the total COD/soluble COD ratio; the low volatile fatty acids (VFA) production; the accumulation of VFA and low acetate production; and the low methane production. Moreover, we present several preventive and recovery strategies for each stage considering the detected inhibition indicator. Some of the preventive strategies are the acclimation of microorganisms to degrade organic-matter in the presence of certain inhibitors, the enrichment of the inoculum with various additives (e.g., sulfate-reducing bacteria, electron donors, mineral adsorbents or nutrients), the dilution of the influent, and the prior removal of the inhibitors. Some of the proposed recovery strategies are the reduction of the inhibitor concentration by removal strategies (e.g., precipitation, adsorption, and sulfate-reduction), intermittent feeding, and decrease of the total influent volume. Lastly, we present the challenges and future perspectives of applying the inhibition indicators and control strategies, e.g., the importance of developing straightforward and low-cost technologies for the monitoring of the various parameters or even for the design of anaerobic treatment systems, including an automatized monitoring system of the parameters proposed as inhibition indicators.

References

Aboudi K., Álvarez-Gallego C.J. & Romero-García L.I. (2015). Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: effect of the organic loading rate (OLR) on process performance. Bioresour Technol, 194, 283-290.
Alcázar-Medina F., Núñez-Núñez C., Rodríguez-Rosales M., Valle-Cervantes S., Alarcón-Herrera M. & Proal-Nájera J. (2020). Lead removal from aqueous solution by spherical agglomeration using an extract of Agave lechuguilla Torr. as biosurfactant. Revista Mexicana De Ingeniería Química, 19(1), 71-84. https://doi.org/10.24275/rmiq/Bio491
Akassou M., Kaanane A., Crolla A. & Kinsley C. (2010). Statistical modelling of the impact of some polyphenols on the efficiency of anaerobic digestion and the co-digestion of the wine distillery wastewater with dairy cattle manure and cheese whey. Water Sci Technol 62(3), 475-483.
Altaş L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J hazard Mater 162(2-3), 1551-1556.
Álvarez M.T., Crespo C. & Mattiasson B. (2007). Precipitation of Zn (II), Cu (II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere 66(9), 1677-1683.
Barakat A., Monlau F., Steyer J.P. & Carrere H. (2012). Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour Technol 104, 90-99.
Buendía-González L., Cruz-Sosa F., Rodríguez-Huezo M., Barrera-Díaz C., Hernández-Jaimes C. & Orozco-Villafuerte, J. (2019). In vitro simultaneous accumulation of multiple heavy metals by Prosopis laevigata seedlings cultures. Revista Mexicana De Ingeniería Química 18(3), 1167-1177. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Buendia
Buitrón G. & Moreno-Andrade I. (2014). Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance. Appl Biochem Biotechnol 174(7), 2471-2481.
Camarillo R. & Rincón J. (2012). Effect of inhibitory compounds on the two-phase anaerobic digestion performance of diluted wastewaters from the alimentary industry. Chem Eng J 193, 68-76.
Cavaleiro A.J., Pereira M.A. & Alves M. (2008). Enhancement of methane production from long chain fatty acid based effluents. Bioresour Technol 99(10), 4086-4095.
Celis E., Elefsiniotis P. & Singhal N. (2008). Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions. Water Res 42(12), 3218-3224.
Chao Y.M. & Liang T.M. (2008). A feasibility study of industrial wastewater recovery using electrodialysis reversal. Desalination 221(1-3), 433-439.
Chapleur O., Madigou C., Civade R., Rodolphe Y., Mazéas L. and Bouchez T. (2016). Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities. Biodegradation 27(1), 15-27.
Chen J.L., Ortiz R., Steele T.W. & Stuckey D.C. (2014). Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32(8), 1523-1534.
Chen Y., Cheng J.J. & Creamer K.S. (2008). Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10), 4044-4064.
Chiavola A., McSwain B.S., Irvine R.L., Boni M.R. & Baciocchi R. (2003). Biodegradation of 3-chlorophenol in a Sequencing Batch Reactor. J Environ Sci Health A 38(10), 2113-2123.
Choi J.H., Kim Y.H. and Choi S.J. (2007). Reductive dechlorination and biodegradation of 2, 4, 6-trichlorophenol using sequential permeable reactive barriers: Laboratory studies. Chemosphere 67(8), 1551-1557.
Choi K. & Lee W. (2012). Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu (II). J Hazard Mater 211, 146-153.
Collivignarelli M.C., Sordi M., Abbà A., Castagnola F. & Bertanza G. (2017). Treatment of waste activated sludge by means of alkaline hydrolysis under'mild'conditions. International Journal of Global Warming 11(3), 305-316.
Colussi I., Cortesi A., Della Vedova L., Gallo V. & Robles F.C. (2009). Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor. Biores Technol 100(24), 6290-6294.
Cysneiros D., Banks C.J., Heaven S. & Karatzas K.A.G. (2012). The effect of pH control and ‘hydraulic flush’on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour Technol 123, 263-271.
Dahiya S., Sarkar O., Swamy Y.V. & Mohan S.V. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour Technol 182, 103-113.
Dar S.A., Kleerebezem R., Stams A.J., Kuenen J.G. & Muyzer G. (2008). Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78(6), 1045-1055.
Fernández I., Vázquez-Padín J.R., Mosquera-Corral A., Campos J.L. & Méndez R. (2008). Biofilm and granular systems to improve Anammox biomass retention. Biochem Eng J 42(3), 308-313.
Fuess L.T., Kiyuna L.S.M., Júnior A.D.N.F., Persinoti G.F., Squina F.M., Garcia M.L. & Zaiat M. (2017). Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy 189, 480-491.
Garzón-Zuñiga M.A. & Buelna G. (2011). Treatment of wastewater from a school in a decentralized filtration system by percolation over organic packing media. Water Sci Tech 64(5), 1169-1177.
Gonçalves M.R., Costa J.C., Marques I.P. & Alves M.M. (2012). Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res 46(6), 1684-1692.
Gonzalez-Estrella J., Puyol D., Sierra-Alvarez R. & Field J.A. (2015). Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. J Hazard Mater 283, 755-763.
Gupta P., Sreekrishnan T.R. & Ahammad S.Z. (2015). Acclimatization of anaerobic sludge to treat Cr (VI) and 4-CP present in industrial effluents and their effect on microbial communities. J Hazard Toxic Radioact Waste 19(4), 04015007.
Gutierrez O., Park D., Sharma K.R. & Yuan Z. (2009). Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Res 43(9), 2549-2557.
Haghsheno R., Mohebbi A., Hashemipour H. & Sarrafi A. (2009). Study of kinetic and fixed bed operation of removal of sulfate anions from an industrial wastewater by an anion exchange resin. J Hazard Mater 166(2), 961-966.
Hernández-Fydrych V., Castilla-Hernández P., Beristain-Cardoso R., Trejo-Aguilar G. & Fajardo-Ortiz M. (2018). COD and ammonium removal in SBR operated under different combinations using pre-treated slaughterhouse wastewater. Revista Mexicana De Ingeniería Química 17(2), 621-631. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Hernandez
Ho L. & Ho G. (2012). Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid. Water Res 46(14), 4339-4350.
Ho S.H., Yang Z.K., Nagarajan D., Chang J.S. & Ren N.Q. (2017). High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresour Technol 246, 142-149.
Jáuregui-Jáuregui J.A., Mendez-Acosta H.O., Gonzalez-Alvarez V., Snell-Castro R., Alcaraz-Gonzalez V. & Godon J.J. (2014). Anaerobic treatment of tequila vinasses under seasonal operating conditions: Start-up, normal operation and restart-up after a long stop and starvation period. Bioresour Technol 168, 33-40.
Jennings M. (2018). Optimizing Genetic Manipulation of Methanogens through Faster Cloning Techniques. https://scholarworks.uark.edu. Accessed 14 October 2019.
Jiménez-Rodríguez A.M., Durán-Barrantes M.M., Borja R., Sánchez E., Colmenarejo M.F. & Raposo F. (2009). Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH. J Hazard Mater 165(1-3), 759-765.
Kieu H.T., Müller E. & Horn H. (2011). Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Res 45(13), 3863-3870.
Kuang Y., Pullammanappallil P., Lepesteur M. & Ho G.E. (2006). Recovery of oleate‐inhibited anaerobic digestion by addition of simple substrates. J Chem Technol Biotechnol 81(6), 1057-1063.
Kuss K., Alano C., Arbigaus A., Rampinelli J., Silveira M., Bonatti-Chaves M. & Furlan S. (2018). Study of the removal of bisphenol-a by pleurotus sajor-caju crude enzyme broth. Revista Mexicana De Ingeniería Química 17(3), 989-998. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Kuss
Kwietniewska E. & Tys J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renew Sust Energ Rev 34, 491-500.
Lei X., Sugiura N., Feng C. & Maekawa T. 2007 Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. J Hazard Mater 145(3), 391-397.
Levén L., Nyberg K., Korkea-Aho L. & Schnürer A. (2006). Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil. Sci Total Environ 364(1-3), 229-238.
Liamleam W. & Annachhatre A.P. (2007). Electron donors for biological sulfate reduction. Biotechnol Adv 25(5), 452-463.
Lombi E., Donner E., Tavakkoli E., Turney T.W., Naidu R., Miller B.W. & Scheckel K.G. (2012). Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ Sci Technol 46(16), 9089-9096.
López C. M., Garcia-Lopez A. L., Garcia L. V., Rios M. E., Perez M. A. & Villarroel A. (2018). Pilot scale-up of zeolite NaA synthesis from aluminosilicate gels obtained using untreated industrial Venezuelan materials. Revista Mexicana de Ingeniería Química 17(1), 75-86. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/LopezC
Luna-del Risco M., Orupõld K. & Dubourguier H.C. (2013). Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J Hazard Mater 189(1), 603-608.
Méndez-Acosta H.O., García-Sandoval J.P., Gonzalez-Alvarez V., Alcaraz-González V. & Jáuregui-Jáuregui J.A. (2011). Regulation of the organic pollution level in anaerobic digesters by using off-line COD measurements. Bioresour Technol 102(17), 7666-7672.
Méndez-Hernández J. & Loera O. (2019). Biotechnological potential of ligninolytic enzymes for pollutant biodegradation in water: from test tubes to pilot-scale enzymatic reactors. Revista Mexicana De Ingeniería Química 18(2), 397-417. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Mendez
Miao L., Wang C., Hou J., Wang P., Ao Y., Li Y. & You G. (2016). Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Bioresour Technol 216, 537-544.
Montes M., Veiga M.C. & Kennes C. (2010). Two-liquid-phase mesophilic and thermophilic biotrickling filters for the biodegradation of α-pinene. Bioresour Technol 101(24), 9493-9499.
Mudhoo A. & Kumar S. (2013). Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10(6), 383-1398.
Nakakubo R., Møller H.B., Nielsen A.M. & Matsuda J. (2008). Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ Eng Sci 25(10), 1487-1496.
Nelson N.O., Mikkelsen R.L. & Hesterberg D.L. (2003). Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresour Technol 89(3), 229-236.
Nkemka V.N. & Murto M. (2010). Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J Environ Manage 91(7), 1573-1579.
Noyan K., Allı B., Okutman Taş D., Sözen S. & Orhon D. (2017). Relationship between COD particle size distribution, COD fractionation and biodegradation characteristics in domestic sewage. J Chem Technol Biotechnol 92(8), 2142-2149.
Orozco A.F., Contreras E.M. & Zaritzky N.E. (2010). Cr (VI) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication. J Hazard Mater 176(1-3), 657-665.
Otero-González L., Field J.A. & Sierra-Alvarez R. 2014 Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles. Water Res 58, 160-168.
Palatsi J., Laureni M., Andrés M.V., Flotats X., Nielsen H.B. & Angelidaki I. (2009). Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100(20), 4588-4596.
Park J., Jin H.F., Lim B.R., Park K.Y. & Lee K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101(22), 8649-8657.
Plugge C.M., Zhang W., Scholten J. & Stams A.J. (2011). Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2, 81.
Puyol D., Mohedano A.F., Sanz J.L. & Rodríguez J.J. (2009). Anaerobic biodegradation of 2, 4, 6-trichlorophenol by methanogenic granular sludge: role of co-substrates and methanogenic inhibition. Water Sci Technol 59(7), 1449-1456.
Rosenkranz F., Cabrol L., Carballa M., Donoso-Bravo A., Cruz L., Ruiz-Filippi G. & Lema J.M. (2013). Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Water Res 47(17), 6739-6749.
Saatci Y., Arslan E.I. & Konar V. (2003). Removal of total lipids and fatty acids from sunflower oil factory effluent by UASB reactor. Bioresour Technol 87, 269–272.
Seifi M. & Fazaelipoor M.H. (2012). Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Appl Math Model 36(11), 5603-5613.
Shanmugam P. & Horan N.J. (2009). Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour Technol 100(18), 4117-4120.
Shawaqfeh A.T. (2010). Removal of pesticides from water using anaerobic-aerobic biological treatment. Chin J Chem Eng 18(4), 672-680.
Singh S.P. & Prerna P. (2009). Review of recent advances in anaerobic packed-bed biogas reactors. Renewable and Sustainable Energy Rev 13(6-7):1569-1575.
Soltani R.D.C., Khataee A.R., Safari M. & Joo S.W. (2013). Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int Biodeterior Biodegradation 85, 383-391.
Souto T., Aquino S., Silva S. & Chernicharo C. (2010). Influence of incubation conditions on the specific methanogenic activity test. Biodegradation 21, 411-424.
Stams A.J., Huisman J., Encina P.A.G. & Muyzer G. (2009). Citric acid wastewater as electron donor for biological sulfate reduction. Appl Microbiol Biotechnol 83(5), 957-963.
Suárez-García L., Cuervo-López F. & Texier A.-C. (2019). Biological removal of mixtures of ammonium, phenol, cresol isomers, and sulfide in a sequencing batch reactor. Revista Mexicana De Ingeniería Química 18(3), 1189-1202. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Suarez
Sumino H., Takahashi M., Yamaguchi T., Abe K., Araki N., Yamazaki S., Shimozaki S., Nagano A., & Nishio N. (2007). Feasibility study of a pilot-scale sewage treatment system combining an up-flow anaerobic sludge blanket (UASB) and an aerated fixed bed (AFB) reactor at ambient temperature. Bioresour Technol 98, 177-182.
Tada C., Yang Y., Hanaoka T., Sonoda A., Ooi K. & Sawayama S. (2005). Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresour Technol 96(4), 459-464.
Vanotti M.B., Dube P.J., Szogi A.A. & García-González M.C. (2017). Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes. Water Res 112, 137-146.
Vigueras-Cortés J.M., Villanueva-Fierro I., Garzón-Zúñiga M.A., Návar-Cháidez J.J., Chaires-Hernández I. & Hernández-Rodríguez C. (2013). Performance of a biofilter system with agave fiber filter media for municipal wastewater treatment. Water Sci Technol 68(3), 599-607.
Walker M., Iyer K., Heaven S. & Banks C.J. (2011). Ammonia removal in anaerobic digestion by biogas stripping: an evaluation of process alternatives using a first order rate model based on experimental findings. Chem Eng J 178, 138-145.
Wang T., Li Z., Chen X. & Long X.E. (2019). Effects of nickel and cobalt on methane production and methanogen abundance and diversity in paddy soil. https://peerj.com/articles/6274/. Accessed 14 October 2019.
Wang W. & Han H. (2012). Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater. Bioresour Technol 103(1), 95-100.
Wang X.J., Song Y. & Mai J.S. (2008). Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. J Hazard Mater 160(2), 344-348.
Wang Y., Westerhoff P. & Hristovski K.D. (2012). Fate and biological effects of silver, titanium dioxide, and C 60 (fullerene) nanomaterials during simulated wastewater treatment processes. J Hazard Mater 201, 16-2.
Westerhoff P., Song G., Hristovski K. & Kiser M.A. (2013). Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO 2 nanomaterials. J Environ Monit 13(5), 1195-1203.
Westerholm M., Müller B., Arthurson V. & Schnürer A. (2011). Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ 26(4), 347-353.
Wu B., He C., Yuan S., Hu Z. & Wang W. (2019). Hydrogen enrichment as a bioaugmentation tool to alleviate ammonia inhibition on anaerobic digestion of phenol-containing wastewater. Bioresour Technol 276, 97-102.
Wu G., Healy M.G. & Zhan X. (2009). Effect of the solid content on anaerobic digestion of meat and bone meal. Bioresour Technol 100(19), 4326-4331.
Xu Y., Zhou Y., Wang D., Chen S., Liu J. & Wang Z. (2008). Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology. J Environ Sci 20(11), 1281-1287.
Yan W., Sun F., Liu J. & Zhou Y. (2018). Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chem Eng J 352, 1-9.
Yang F. (2011). Mesophilic anaerobic digestion conducted in single unit reactor at increasing ammonia concentrations http://www.diva-portal.org. Accessed 11 October 2019).
Yap S.D., Astals S., Lu Y., Peces M., Jensen P.D., Batstone D.J. & Tait S. (2018). Humic acid inhibition of hydrolysis and methanogenesis with different anaerobic inocula. Waste Management 80, 130-136.
Yue Z.B., Yu H.Q. & Wang Z.L. (2007). Anaerobic digestion of cattail with rumen culture in the presence of heavy metals. Bioresour Technol 98(4), 781-786.
Zarazúa-Aguilar Y., Paredes-Carrera S., Valenzuela-Zapata M. & Sánchez-Ochoa J. (2018). Cr (VI) and naftalene simultaneous degradation using layered double hydroxides CuZnGa. Revista Mexicana De Ingeniería Química, 17(2), 679-691. https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n2/Zarazua
Zeppilli M., Pavesi D., Gottardo M., Micolucci F., Villano M. & Majone M. (2017). Using effluents from two-phase anaerobic digestion to feed a methane-producing microbial electrolysis. Chem Eng J 328, 428-433.
Zhang C., Su H., Baeyens J. & Tan T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Rev 38, 383-392.
Zhang Z., Zhang G., Li W., Li C. & Xu G. (2016). Enhanced biogas production from sorghum stem by co-digestion with cow manure. Int J Hydrogen Energy 41(21), 9153-9158.
Zhao F., Ju F., Huang K., Mao Y., Zhang X.X., Ren H. & Zhang T. (2019). Comprehensive insights into the key components of bacterial assemblages in pharmaceutical wastewater treatment plants. Sci Total Environ 651, 2148-2157.
Published
2020-04-23
How to Cite
Serrano-Meza, A., Garzón-Zúñiga, M., Barragán-Huerta, B., Estrada-Arriaga, E., Almaraz-Abarca, N., & García-Olivares, J. (2020). Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes. Revista Mexicana De Ingeniería Química, 19(Sup. 1), 29-44. https://doi.org/10.24275/rmiq/IA1221
Section
Environmental Engineering